References
Akaike, H. (1983) Information measures and model selection.Bulletin of the International Statistical Institute, 44, 277–291.
Almaraz, P. (2005) Ecological time-series analysis through structural modelling with latent constructs: concepts, methods and applications.Comptes Rendus Biologies , 328, 301–316.
Atkinson, E.M., Bateman, A.W., Dill, L.M., Krkošek, M., Reynolds, J.D. & Godwin, S.C. (2018) Oust the louse: leaping behaviour removes sea lice from wild juvenile sockeye salmon Oncorhynchus nerka .Journal of Fish Biology , 93, 263–271.
Barber, I., Hoare, D. & Krause, J. (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Review of Fish Biology and Fisheries , 10, 131–165.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software , 67, 1–48.
Becker, D.J., Albery, G.F., Kessler, M.K., Lunn, T.J., Falvo, C.A., Czirják, G.Á. et al (2020) Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defense. Journal of Animal Ecology, 89, 972–995.
Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. & Begon, M. (2008) Poor condition and infection: a vicious circle in natural populations. Proceedings of the Royal Society B , 275, 1753–1759.
Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. & Begon, M. (2009a) The vicious circle and infection intensity: the case of Trypanosoma microti in field vole populations.Epidemics, 1, 162–167.
Beldomenico, P.M., Telfer, S., Lukomski, L., Gebert, S., Bennett, M. & Begon, M. (2009b) Host condition and individual risk of cowpox virus infection in natural animal populations: cause or effect?Epidemiology & Infection, 137, 1295–1301.
Beldomenico, P.M. & Begon, M. (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends in Ecology & Evolution, 25, 21–27.
Blanchet, S., Méjean, L., Bourque, J.F., Lek, S., Thomas, F., Marcogliese, D.J. et al. (2009) Why do parasitized hosts look different? Resolving the “chicken-egg” dilemma. Oecologia, 160, 37–47.
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M. et al. (2012) Costs of dispersal. Biological Review , 87, 290–312.
Brown, G.P., Kelehear, C., Pizzatto, L. & Shine, R. (2016) The impact of lungworm parasites on rates of dispersal of their anuran host, the invasive cane toad. Biological invasions , 18, 103–114.
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited.Journal of Parasitology, 83, 575–583.
Byrnes, J.E., Reed, D.C., Cardinale, B.J., Cavanaugh, K.C., Holbrook, S.J. & Schmitt, R.J. (2011) Climate‐driven increases in storm frequency simplify kelp forest food webs. Global Change Biology , 17, 2513–2524.
Cornet, S., Biard, C. & Moret, Y. (2009) Variation in immune defence among populations of Gammarus pulex (Crustacea: Amphipoda).Oecologia , 159, 257–269.
Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. (2008) Homage to Linnaeus: how many parasites? How many hosts?Proceedings of the National Academy of Sciences, 105, 11482–11489.
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H. & Shao, C. (2016) Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes , 5, 1–12.
Fast, M.D. (2014) Fish immune responses to parasitic copepod (namely sea lice) infection. Developmental Comparative Immunology , 43, 300–312.
Ferguson, J.A., Koketsu, W., Ninomiya, I., Rossignol, P.A., Jacobson, K.C. & Kent, M. L. (2011) Mortality of coho salmon (Oncorhynchus kisutch ) associated with burdens of multiple parasite species.International Journal for Parasitology , 41, 1197–1205.
Filipsson, K., Petersson, T., Höjesjö, J., Piccolo, J.J., Näslund, J., Wengström, N. & Österling, E. M. (2018) Heavy loads of parasitic freshwater pearl mussel (Margaritifera margaritifera L.) larvae impair foraging, activity and dominance performance in juvenile brown trout (Salmo trutta L.). Ecology of Freshwater Fish , 27, 70–77.
Forbes, K.M., Mappes, T., Sironen, T., Strandin, T., Stuart, P., Meri, S. et al. (2016) Food limitation constrains host immune responses to nematode infections. Biology Letters , 12, 20160471.
Gabelhouse Jr,D.W. (1991) Seasonal changes in body condition of white crappies and relations to length and growth in Melvern Reservoir, Kansas. North American Journal of Fisheries Management , 11, 50–56.
Gall, G.A.E., Mcclendon, E.L. & Schafer, W.E. (1972) Evidence on the influence of the copepod (Salmincola californiensis ) on the reproductive performance of a domesticated strain of rainbow trout (Salmo gairdneri ). Transactions of the American Fisheries Society, 101, 345–346.
Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K., Wilson, A.J. & Little, T.J. (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology.Functional Ecology , 25, 5–17.
Harper, D. G. (1999) Feather mites, pectoral muscle condition, wing length and plumage coloration of passerines. Animal Behaviour , 58, 553–562.
Hasegawa, R. & Koizumi, I. (2021) Relative importance of host-dependent versus physical environmental characteristics affecting the distribution of an ectoparasitic copepod infecting the mouth cavity of stream salmonid. Ecological Research , 36, 1015–1027.
Hasegawa, R., Ayer, C.G., Umatani, Y., Miura, K., Ukumura, M., Katahira, H. & Koizumi, I. (2022a) Potential negative effects and heterogeneous distribution of a parasitic copepod Salmincola edwardsii(Copepoda: Lernaeopodidae) on Southern Asian Dolly VardenSalvelinus curilus in Hokkaido, Japan. Parasitology. International , 87, 102529.
Hasegawa, R., Katahira, H. & Koizumi, I. (2022b) Salmincola markewitschi (Copepoda: Lernaeopodidae) or S. carpionis ? A requirement for taxonomic revision due to their high morphological variations. Folia Parasitologica, 69, 025.
Hiramatsu, N., Fukada, H., Kitamura, M., Shimizu, M., Fuda, H., Kobayashi, K. & Hara, A. (2001) Serum Immunoglobulin M (IgM) in Sakhalin Taimen (Hucho perryi ). Aquaculture Science, 49, 347–355.
Hosoya, K (2013) Salmonidae. In: Fishes of Japan with pictorial keys to the species, 3rd edition. Nakabo (ed). Tokai University Press, Hadano, pp 362–367 (In Japanese).
Hedger, R.D., Diserud, O.H., Sandlund, O.T., Saksgård, L., Ugedal, O. & Bremset, G. (2018) Bias in estimates of electrofishing capture probability of juvenile Atlantic salmon. Fisheries Research , 208, 286–295.
Hudson, P.J., Dobson, A.P. & Newborn, D. (1998) Prevention of population cycles by parasite removal. Science, 282, 2256–2258.
Hudson, P.J., Dobson, A.P. & Lafferty, K.D. (2006) Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution, 21, 381–385.
Jakob, E.M., Marshall, S.D. & Uetz, G.W. (1996) Estimating fitness: a comparison of body condition indices. Oikos, 77, 61–67.
Kabata, Z. (1969) Revision of the genus Salmincola Wilson, 1915 (Copepoda: Lernaeopodidae). Journal of Fisheries Board on Canada , 26, 2987–3041.
Kabata, Z. & Cousens, B. (1977) Host–parasite relationships between sockeye salmon, Oncorhynchus nerka , and Salmincola californiensis (Copepoda: Lernaeopodidae). Journal of the Fisheries Board of Canada , 34, 191–202.
Krohn, M.M. & Boisclair, D. (1994) Use of stereo video system to stimate the energy expenditure of free-swimming fish. Canadian Journal of Fisheries and Aquatic Sciences , 51, 1119–1127.
Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo, L., Boch, C. A. et al. (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 454, 515–518.
Lafferty, K.D., Dobson, A.P. & Kuris, A.M. (2006) Parasites dominate food web links. Proceedings of the National Academy of Sciences , 103, 11211–11216.
Larsson, S. (2005) Thermal preference of Arctic charr, Salvelinus alpinus , and brown trout, Salmo trutta –implications for their niche segregation. Environmental Biology of Fishes, 73, 89–96.
Laake, J.L., Johnson, D.S. & Conn, P.B. (2013) Marked: An R package for maximum-likelihood and MCMC analysis of capture-recapture data.Methods in Ecology & Evolution , 4, 885–890.
Lebreton, J.D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monograph , 62, 67–118.
Lefcheck, J.S. (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology & Evolution , 7, 573–579.
Lochmiller, R.L. (1996) Immunocompetence and animal population regulation. Oikos , 76, 594–602.
Mayo-Hernandez, E., Serrano, E., Penalver, J., Garcia-Ayala, A., De Ybáñez, R.R. & Munoz, P. (2015) The European eel may tolerate multiple infections at a low biological cost. Parasitology , 142, 968–977.
Monzyk, F.R., Friesen, T.A. & Romer, J.D. (2015) Infection of juvenile salmonids by Salmincola californiensis (Copepoda: Lernaeopodidae) in reservoirs and streams of the Willamette River basin, Oregon.Transactions of the American Fisheries Society, 144, 891–902.
Morita, K. (2001) The growth history of anadromous white-spotted charr in northern Japan: a comparison between river and sea life.Journal of Fish Biology , 59, 1556–1565.
Morita, K., Morita, S.H. & Yamamoto, S. (2009) Effects of habitat fragmentation by damming on salmonid fishes: lessons from white-spotted charr in Japan. Ecological Research , 24, 711–722.
Morita, K., Morita, S.H. & Nagasawa, T. (2011) Seasonal changes in stream salmonid population densities in two tributaries of a boreal river in northern Japan. Ichthyological Research , 58, 134–142.
Nagasawa, K., Watanabe, J.R., Kimura, S. & Hara, A. (1994) Infection ofSalmincola stellatus (Copepoda: Lernaeopodidae) on Sakhalin taimen Hucho perryi reared in Hokkaido. Bulletin of Fisheries Sciences, Hokkaido University, 45, 109–112.
Nagasawa, K., Ikuta, K., Nakamura, H., Shikama, T. & Kitamura, S. (1998). Occurrence and effects of the parasitic copepod Salmincola carpionis on salmonids in the Nikko District, central Japan.Journal of Marine System , 15, 269–272.
Nakano, S. (1995) Competitive interactions for foraging microhabitats in a size-structured interspecific dominance hierarchy of two sympatric stream salmonids in a natural habitat. Canadian Journal of Zoology, 73, 1845–1854.
Nakano, S., Kitano, F. & Maekawa, K. (1996) Potential fragmentation and loss of thermal habitats for charrs in the Japanese archipelago due to climatic warming. Freshwater Biology, 36, 711–722.
Neilson, J.D. (1992) Sources of error in otolith microstructure examination. Otolith microstructure examination and analysis.Canadian Journal of Fisheries and Aquatic Sciences, 117, 115–125.
Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A.J., Thomson, N.R. et al. (2010) Antagonistic coevolution accelerates molecular evolution. Nature, 464, 275–278.
Pedersen, A.B. & Greives, T.J. (2008) The interaction of parasites and resources cause crashes in a wild mouse population. Journal Animal Ecology , 77, 370–377.
Peterson, R.H., Sutterlin, A.M. & Metcalfe, J.L. (1979) Temperature preference of several species of Salmo and Salvelinus and some of their hybrids. Journal of the Fisheries Board on Canada , 36, 1137–1140.
Poulin, R. (2011) Evolutionary ecology of parasites. 2nd edition. Princeton University Press, Princeton.
R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riley, S.C. & Fausch, K.D. (1992) Underestimation of trout population size by maximum-likelihood removal estimates in small streams.North American Journal Fisheries Management, 12, 768–776.
Sala-Bozano, M., Van Oosterhout, C. & Mariani, S. (2012) Impact of a mouth parasite in a marine fish differs between geographical areas.Biological Journal of the Linnean Society , 105, 842–852.
Sanchez, C.A., Becker, D.J., Teitelbaum, C.S., Barriga, P., Brown, L.M., Majewska, A. et al. (2018) On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis.Ecology Letters , 21, 1869–1884.
Saunders, W.C., Fausch, K.D. & White, G.C. (2011) Accurate estimation of salmonid abundance in small streams using nighttime removal electrofishing: an evaluation using marked fish. North American Journal of Fisheries Management , 31, 403–415.
Sheldon, B.C. & Verhulst, S. (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317–321.
Shipley, B. (2009) Confirmatory path analysis in a generalized multilevel context. Ecology , 90, 363–368.
Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Paterson, S. & Begon, M. (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science , 330, 243–246.
Temple, S.A. (1987) Do predators always capture substandard individuals disproportionately from prey populations? Ecology , 68, 669–674.
Terui, A., Ooue, K., Urabe, H. & Nakamura, F. (2017) Parasite infection induces size-dependent host dispersal: consequences for parasite persistence. Proceedings of the Royal Society B, 284, 20171491.
Vicente, J., Fierro, Y., Martinez, M. & Gortazar, C. (2004) Long-term epidemiology, effect on body condition and interspecific interactions of concomitant infection by nasopharyngeal bot fly larvae (Cephenemyia auribarbis and Pharyngomyia picta , Oestridae) in a population of Iberian red deer (Cervus elaphus hispanicus ).Parasitology , 129, 349–361.
Watz, J., Otsuki, Y., Nagatsuka, K., Hasegawa, K. & Koizumi, I. (2019) Temperature‐dependent competition between juvenile salmonids in small streams. Freshwater Biology, 64, 1534–1541.
White, G.C., Burnham, K. P., Otis, D.L. & Anderson, D.R. (1978) User’s manual for program CAPTURE. Logan, Utah: Utah State University Press.
White, C.F., Gray, M.A., Kidd, K.A., Duffy, M.S., Lento, J. & Monk, W.A. (2020) Prevalence and intensity of Salmincola edwardsii in brook trout in northwest New Brunswick, Canada. Journal of Aquatic Animal Health , 32, 11–20.
Wilder, S.M., Raubenheimer, D. & Simpson, S.J. (2016) Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Functional Ecology , 30, 108–115.