References
Akaike, H. (1983) Information measures and model selection.Bulletin of the International Statistical Institute, 44,
277–291.
Almaraz, P. (2005) Ecological time-series analysis through structural
modelling with latent constructs: concepts, methods and applications.Comptes Rendus Biologies , 328, 301–316.
Atkinson, E.M., Bateman, A.W., Dill, L.M., Krkošek, M., Reynolds, J.D.
& Godwin, S.C. (2018) Oust the louse: leaping behaviour removes sea
lice from wild juvenile sockeye salmon Oncorhynchus nerka .Journal of Fish Biology , 93, 263–271.
Barber, I., Hoare, D. & Krause, J. (2000) Effects of parasites on fish
behaviour: a review and evolutionary perspective. Review of Fish
Biology and Fisheries , 10, 131–165.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) Fitting linear
mixed-effects models using lme4. Journal of Statistical Software ,
67, 1–48.
Becker, D.J., Albery, G.F., Kessler, M.K., Lunn, T.J., Falvo, C.A.,
Czirják, G.Á. et al (2020) Macroimmunology: The drivers and consequences
of spatial patterns in wildlife immune defense. Journal of Animal
Ecology, 89, 972–995.
Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. &
Begon, M. (2008) Poor condition and infection: a vicious circle in
natural populations. Proceedings of the Royal Society B , 275,
1753–1759.
Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M. &
Begon, M. (2009a) The vicious circle and infection intensity: the case
of Trypanosoma microti in field vole populations.Epidemics, 1, 162–167.
Beldomenico, P.M., Telfer, S., Lukomski, L., Gebert, S., Bennett, M. &
Begon, M. (2009b) Host condition and individual risk of cowpox virus
infection in natural animal populations: cause or effect?Epidemiology & Infection, 137, 1295–1301.
Beldomenico, P.M. & Begon, M. (2010) Disease spread, susceptibility and
infection intensity: vicious circles? Trends in Ecology &
Evolution, 25, 21–27.
Blanchet, S., Méjean, L., Bourque, J.F., Lek, S., Thomas, F.,
Marcogliese, D.J. et al. (2009) Why do parasitized hosts look different?
Resolving the “chicken-egg” dilemma. Oecologia, 160, 37–47.
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs,
M. et al. (2012) Costs of dispersal. Biological Review , 87,
290–312.
Brown, G.P., Kelehear, C., Pizzatto, L. & Shine, R. (2016) The impact
of lungworm parasites on rates of dispersal of their anuran host, the
invasive cane toad. Biological invasions , 18, 103–114.
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997)
Parasitology meets ecology on its own terms: Margolis et al. revisited.Journal of Parasitology, 83, 575–583.
Byrnes, J.E., Reed, D.C., Cardinale, B.J., Cavanaugh, K.C., Holbrook,
S.J. & Schmitt, R.J. (2011) Climate‐driven increases in storm frequency
simplify kelp forest food webs. Global Change Biology , 17,
2513–2524.
Cornet, S., Biard, C. & Moret, Y. (2009) Variation in immune defence
among populations of Gammarus pulex (Crustacea: Amphipoda).Oecologia , 159, 257–269.
Dobson, A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W.
(2008) Homage to Linnaeus: how many parasites? How many hosts?Proceedings of the National Academy of Sciences, 105,
11482–11489.
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H. & Shao,
C. (2016) Applications of structural equation modeling (SEM) in
ecological studies: an updated review. Ecological Processes , 5,
1–12.
Fast, M.D. (2014) Fish immune responses to parasitic copepod (namely sea
lice) infection. Developmental Comparative Immunology , 43,
300–312.
Ferguson, J.A., Koketsu, W., Ninomiya, I., Rossignol, P.A., Jacobson,
K.C. & Kent, M. L. (2011) Mortality of coho salmon (Oncorhynchus
kisutch ) associated with burdens of multiple parasite species.International Journal for Parasitology , 41, 1197–1205.
Filipsson, K., Petersson, T., Höjesjö, J., Piccolo, J.J., Näslund, J.,
Wengström, N. & Österling, E. M. (2018) Heavy loads of parasitic
freshwater pearl mussel (Margaritifera margaritifera L.) larvae
impair foraging, activity and dominance performance in juvenile brown
trout (Salmo trutta L.). Ecology of Freshwater Fish , 27,
70–77.
Forbes, K.M., Mappes, T., Sironen, T., Strandin, T., Stuart, P., Meri,
S. et al. (2016) Food limitation constrains host immune responses to
nematode infections. Biology Letters , 12, 20160471.
Gabelhouse Jr,D.W. (1991) Seasonal changes in body condition of white
crappies and relations to length and growth in Melvern Reservoir,
Kansas. North American Journal of Fisheries Management , 11,
50–56.
Gall, G.A.E., Mcclendon, E.L. & Schafer, W.E. (1972) Evidence on the
influence of the copepod (Salmincola californiensis ) on the
reproductive performance of a domesticated strain of rainbow trout
(Salmo gairdneri ). Transactions of the American Fisheries
Society, 101, 345–346.
Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K., Wilson, A.J. &
Little, T.J. (2011) Fitness consequences of immune responses:
strengthening the empirical framework for ecoimmunology.Functional Ecology , 25, 5–17.
Harper, D. G. (1999) Feather mites, pectoral muscle condition, wing
length and plumage coloration of passerines. Animal Behaviour ,
58, 553–562.
Hasegawa, R. & Koizumi, I. (2021) Relative importance of host-dependent
versus physical environmental characteristics affecting the distribution
of an ectoparasitic copepod infecting the mouth cavity of stream
salmonid. Ecological Research , 36, 1015–1027.
Hasegawa, R., Ayer, C.G., Umatani, Y., Miura, K., Ukumura, M., Katahira,
H. & Koizumi, I. (2022a) Potential negative effects and heterogeneous
distribution of a parasitic copepod Salmincola edwardsii(Copepoda: Lernaeopodidae) on Southern Asian Dolly VardenSalvelinus curilus in Hokkaido, Japan. Parasitology.
International , 87, 102529.
Hasegawa, R., Katahira, H. & Koizumi, I. (2022b) Salmincola
markewitschi (Copepoda: Lernaeopodidae) or S. carpionis ? A
requirement for taxonomic revision due to their high morphological
variations. Folia Parasitologica, 69, 025.
Hiramatsu, N., Fukada, H., Kitamura, M., Shimizu, M., Fuda, H.,
Kobayashi, K. & Hara, A. (2001) Serum Immunoglobulin M (IgM) in
Sakhalin Taimen (Hucho perryi ). Aquaculture Science, 49,
347–355.
Hosoya, K (2013) Salmonidae. In: Fishes of Japan with pictorial keys to
the species, 3rd edition. Nakabo (ed). Tokai University Press, Hadano,
pp 362–367 (In Japanese).
Hedger, R.D., Diserud, O.H., Sandlund, O.T., Saksgård, L., Ugedal, O. &
Bremset, G. (2018) Bias in estimates of electrofishing capture
probability of juvenile Atlantic salmon. Fisheries Research , 208,
286–295.
Hudson, P.J., Dobson, A.P. & Newborn, D. (1998) Prevention of
population cycles by parasite removal. Science, 282, 2256–2258.
Hudson, P.J., Dobson, A.P. & Lafferty, K.D. (2006) Is a healthy
ecosystem one that is rich in parasites? Trends in Ecology &
Evolution, 21, 381–385.
Jakob, E.M., Marshall, S.D. & Uetz, G.W. (1996) Estimating fitness: a
comparison of body condition indices. Oikos, 77, 61–67.
Kabata, Z. (1969) Revision of the genus Salmincola Wilson, 1915
(Copepoda: Lernaeopodidae). Journal of Fisheries Board on Canada ,
26, 2987–3041.
Kabata, Z. & Cousens, B. (1977) Host–parasite relationships between
sockeye salmon, Oncorhynchus nerka , and Salmincola
californiensis (Copepoda: Lernaeopodidae). Journal of the
Fisheries Board of Canada , 34, 191–202.
Krohn, M.M. & Boisclair, D. (1994) Use of stereo video system to
stimate the energy expenditure of free-swimming fish. Canadian
Journal of Fisheries and Aquatic Sciences , 51, 1119–1127.
Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo,
L., Boch, C. A. et al. (2008) Ecosystem energetic implications of
parasite and free-living biomass in three estuaries. Nature, 454,
515–518.
Lafferty, K.D., Dobson, A.P. & Kuris, A.M. (2006) Parasites dominate
food web links. Proceedings of the National Academy of Sciences ,
103, 11211–11216.
Larsson, S. (2005) Thermal preference of Arctic charr, Salvelinus
alpinus , and brown trout, Salmo trutta –implications for their
niche segregation. Environmental Biology of Fishes, 73, 89–96.
Laake, J.L., Johnson, D.S. & Conn, P.B. (2013) Marked: An R package for
maximum-likelihood and MCMC analysis of capture-recapture data.Methods in Ecology & Evolution , 4, 885–890.
Lebreton, J.D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992)
Modeling survival and testing biological hypotheses using marked
animals: a unified approach with case studies. Ecological
Monograph , 62, 67–118.
Lefcheck, J.S. (2016) piecewiseSEM: Piecewise structural equation
modelling in r for ecology, evolution, and systematics. Methods in
Ecology & Evolution , 7, 573–579.
Lochmiller, R.L. (1996) Immunocompetence and animal population
regulation. Oikos , 76, 594–602.
Mayo-Hernandez, E., Serrano, E., Penalver, J., Garcia-Ayala, A., De
Ybáñez, R.R. & Munoz, P. (2015) The European eel may tolerate multiple
infections at a low biological cost. Parasitology , 142, 968–977.
Monzyk, F.R., Friesen, T.A. & Romer, J.D. (2015) Infection of juvenile
salmonids by Salmincola californiensis (Copepoda: Lernaeopodidae)
in reservoirs and streams of the Willamette River basin, Oregon.Transactions of the American Fisheries Society, 144, 891–902.
Morita, K. (2001) The growth history of anadromous white-spotted charr
in northern Japan: a comparison between river and sea life.Journal of Fish Biology , 59, 1556–1565.
Morita, K., Morita, S.H. & Yamamoto, S. (2009) Effects of habitat
fragmentation by damming on salmonid fishes: lessons from white-spotted
charr in Japan. Ecological Research , 24, 711–722.
Morita, K., Morita, S.H. & Nagasawa, T. (2011) Seasonal changes in
stream salmonid population densities in two tributaries of a boreal
river in northern Japan. Ichthyological Research , 58, 134–142.
Nagasawa, K., Watanabe, J.R., Kimura, S. & Hara, A. (1994) Infection ofSalmincola stellatus (Copepoda: Lernaeopodidae) on Sakhalin
taimen Hucho perryi reared in Hokkaido. Bulletin of
Fisheries Sciences, Hokkaido University, 45, 109–112.
Nagasawa, K., Ikuta, K., Nakamura, H., Shikama, T. & Kitamura, S.
(1998). Occurrence and effects of the parasitic copepod Salmincola
carpionis on salmonids in the Nikko District, central Japan.Journal of Marine System , 15, 269–272.
Nakano, S. (1995) Competitive interactions for foraging microhabitats in
a size-structured interspecific dominance hierarchy of two sympatric
stream salmonids in a natural habitat. Canadian Journal of
Zoology, 73, 1845–1854.
Nakano, S., Kitano, F. & Maekawa, K. (1996) Potential fragmentation and
loss of thermal habitats for charrs in the Japanese archipelago due to
climatic warming. Freshwater Biology, 36, 711–722.
Neilson, J.D. (1992) Sources of error in otolith microstructure
examination. Otolith microstructure examination and analysis.Canadian Journal of Fisheries and Aquatic Sciences, 117,
115–125.
Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A.J.,
Thomson, N.R. et al. (2010) Antagonistic coevolution accelerates
molecular evolution. Nature, 464, 275–278.
Pedersen, A.B. & Greives, T.J. (2008) The interaction of parasites and
resources cause crashes in a wild mouse population. Journal Animal
Ecology , 77, 370–377.
Peterson, R.H., Sutterlin, A.M. & Metcalfe, J.L. (1979) Temperature
preference of several species of Salmo and Salvelinus and some of their
hybrids. Journal of the Fisheries Board on Canada , 36,
1137–1140.
Poulin, R. (2011) Evolutionary ecology of parasites. 2nd edition.
Princeton University Press, Princeton.
R Core Team (2021) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riley, S.C. & Fausch, K.D. (1992) Underestimation of trout population
size by maximum-likelihood removal estimates in small streams.North American Journal Fisheries Management, 12, 768–776.
Sala-Bozano, M., Van Oosterhout, C. & Mariani, S. (2012) Impact of a
mouth parasite in a marine fish differs between geographical areas.Biological Journal of the Linnean Society , 105, 842–852.
Sanchez, C.A., Becker, D.J., Teitelbaum, C.S., Barriga, P., Brown, L.M.,
Majewska, A. et al. (2018) On the relationship between body condition
and parasite infection in wildlife: a review and meta-analysis.Ecology Letters , 21, 1869–1884.
Saunders, W.C., Fausch, K.D. & White, G.C. (2011) Accurate estimation
of salmonid abundance in small streams using nighttime removal
electrofishing: an evaluation using marked fish. North American
Journal of Fisheries Management , 31, 403–415.
Sheldon, B.C. & Verhulst, S. (1996) Ecological immunology: costly
parasite defences and trade-offs in evolutionary ecology. Trends
in Ecology & Evolution, 11, 317–321.
Shipley, B. (2009) Confirmatory path analysis in a generalized
multilevel context. Ecology , 90, 363–368.
Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S.,
Paterson, S. & Begon, M. (2010) Species interactions in a parasite
community drive infection risk in a wildlife population. Science ,
330, 243–246.
Temple, S.A. (1987) Do predators always capture substandard individuals
disproportionately from prey populations? Ecology , 68, 669–674.
Terui, A., Ooue, K., Urabe, H. & Nakamura, F. (2017) Parasite infection
induces size-dependent host dispersal: consequences for parasite
persistence. Proceedings of the Royal Society B, 284, 20171491.
Vicente, J., Fierro, Y., Martinez, M. & Gortazar, C. (2004) Long-term
epidemiology, effect on body condition and interspecific interactions of
concomitant infection by nasopharyngeal bot fly larvae
(Cephenemyia auribarbis and Pharyngomyia picta , Oestridae)
in a population of Iberian red deer (Cervus elaphus hispanicus ).Parasitology , 129, 349–361.
Watz, J., Otsuki, Y., Nagatsuka, K., Hasegawa, K. & Koizumi, I. (2019)
Temperature‐dependent competition between juvenile salmonids in small
streams. Freshwater Biology, 64, 1534–1541.
White, G.C., Burnham, K. P., Otis, D.L. & Anderson, D.R. (1978) User’s
manual for program CAPTURE. Logan, Utah: Utah State University Press.
White, C.F., Gray, M.A., Kidd, K.A., Duffy, M.S., Lento, J. & Monk,
W.A. (2020) Prevalence and intensity of Salmincola edwardsii in
brook trout in northwest New Brunswick, Canada. Journal of Aquatic
Animal Health , 32, 11–20.
Wilder, S.M., Raubenheimer, D. & Simpson, S.J. (2016) Moving beyond
body condition indices as an estimate of fitness in ecological and
evolutionary studies. Functional Ecology , 30, 108–115.