References
Allen, K., Corre, M.D., Tjoa, A. & Veldkamp, E. (2015). Nutrient leaching losses in lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia. PLoS One , 10, e0133325.
Azhar, A., Hartke, T.R., Böttges, L., Lang, T., Larasati, A., Novianti, N., et al. (2022). Rainforest conversion to cash crops reduces abundance, biomass and species richness of parasitoid wasps in Sumatra, Indonesia. Agric. For. Entomol. , 1–10.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature , 515, 505–511.
Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O’Connor, M.I., et al. (2018). Energy Flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. , 33, 186–197.
Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., et al. (2014). Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. , 5, 1–7.
Barnes, A.D., Weigelt, P., Jochum, M., Ott, D., Hodapp, D., Haneda, N.F., et al. (2016). Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. , 371, 20150279.
Basset, Y. (2001). Invertebrates in the canopy of tropical rain forests: How much do we really know? Plant Ecol. , 153, 87–107.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Brose, U., Archambault, P., Barnes, A.D., Bersier, L.F., Boy, T., Canning-Clode, J., et al. (2019). Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. , 3, 919–927.
Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. & Scheu, S. (2008). Foraging theory predicts predator-prey energy fluxes.J. Anim. Ecol. , 77, 1072–1078.
Brown, J.H. (2004). Toward a metabolic theory of ecology.Ecology , 85, 1771–1789.
Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing, A.L., Sankaran, M., et al. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature , 443, 989–992.
Chahartaghi, M., Langel, R., Scheu, S. & Ruess, L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol. Biochem. , 37, 1718–1725.
Chaudhary, A., Burivalova, Z., Koh, L.P. & Hellweg, S. (2016). Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. , 6, 1–10.
Clough, Y., Krishna, V. V., Corre, M.D., Darras, K., Denmead, L.H., Meijide, A., et al. (2016). Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. , 7, 13137.
Corley, R.H.V. & Tinker, P.B. (2015). Growth, Flowering and Yield. In:The Oil Palm . John Wiley & Sons, Ltd, pp. 89–137.
Cucherousset, J. & Villéger, S. (2015). Quantifying the multiple facets of isotopic diversity: New metrics for stable isotope ecology.Ecol. Indic. , 56, 152–160.
Darras, K.F.A., Corre, M.D., Formaglio, G., Tjoa, A., Potapov, A., Brambach, F., et al. (2019). Reducing fertilizer and avoiding herbicides in oil palm plantations—ecological and economic valuations.Front. For. Glob. Chang. , 2, 65.
Drescher, J., Rembold, K., Allen, K., Beckscha, P., Buchori, D., Clough, Y., et al. (2016). Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. B , 371, 20150275.
Ellwood, M.D.F. & Foster, W.A. (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature , 429, 549–551.
Erdmann, G., Otte, V., Langel, R., Scheu, S. & Maraun, M. (2007). The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation. Exp. Appl. Acarol. , 41, 1–10.
Erwin, T.L. (1983). Tropical forest canopies: the last biotic frontier.Bull. Entomol. Soc. Am. , 29, 14–20.
Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brühl, C.A., Donald, P.F., et al. (2008). How will oil palm expansion affect biodiversity? Trends Ecol. Evol. , 23, 538–545.
Gauzens, B., Barnes, A., Giling, D.P., Hines, J., Jochum, M., Lefcheck, J.S., et al. (2019). fluxweb: An R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. , 10, 270–279.
Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature , 478, 378–381.
Gora, E.M., Lucas, J.M. & Yanoviak, S.P. (2019). Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems , 22, 1206–1219.
Greathead, D.J. (1983). The multi-million dollar weevil that pollinates oil palms. Antenna , 7, 105–107.
Guillaume, T., Kotowska, M.M., Hertel, D., Knohl, A., Krashevska, V., Murtilaksono, K., et al. (2018). Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat. Commun. , 9, 2388.
Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science , 342, 850–854.
Harrison, R.D. & Swinfield, T. (2015). Restoration of logged humid tropical forests: An experimental programme at harapan rainforest, Indonesia. Trop. Conserv. Sci. , 8, 4–16.
Hunt, H.W. & Wall, D.H. (2002). Modelling the effects of loss of soil biodiversity on ecosystem function. Glob. Chang. Biol. , 8, 33–50.
Hyodo, F., Matsumoto, T., Takematsu, Y., Kamoi, T., Fukuda, D., Nakagawa, M., et al. (2010). The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. J. Trop. Ecol. , 26, 205–214.
Jochum, M., Barnes, A.D., Brose, U., Gauzens, B. & Sünnemann, M. (2021). For flux ’s sake : General considerations for energy-flux calculations in ecological communities. Ecol. Evol. , 11, 12948–12969.
Juniyanti, L., Purnomo, H., Kartodihardjo, H. & Prasetyo, L.B. (2021). Understanding the driving forces and actors of land change due to forestry and agricultural practices in Sumatra and Kalimantan: A systematic review. Land , 10, 463.
Kasmiatun, Hartke, T.R., Buchori, D., Hidayat, P., Siddikah, F., Amrulloh, R., et al. (2022). Rainforest conversion to smallholder cash crops leads to varying declines of beetles (Coleoptera) on Sumatra.Biotropica , 1–13.
Kotowska, M.M., Leuschner, C., Triadiati, T., Meriem, S. & Hertel, D. (2015). Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).Glob. Chang. Biol. , 21, 3620–3634.
Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N.F., et al. (2020). Variation in community level trophic niches of soil microarthropods with conversion of tropical rainforest into plantations systems as indicted by stable isotopes (15N, 13C). Front. Ecol. Evol. , 9, 1–10.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. , 82, 1–26.
Lang, B., Ehnes, R.B., Brose, U. & Rall, B.C. (2017). Temperature and consumer type dependencies of energy flows in natural communities.Oikos , 126, 1717–1725.
Laurance, W.F., Sayer, J. & Cassman, K.G. (2014). Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. , 29, 107–116.
Manning, P., Van Der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., et al. (2018). Redefining ecosystem multifunctionality.Nat. Ecol. Evol. , 2, 427–436.
Maraun, M., Erdmann, G., Fischer, B.M., Pollierer, M.M., Norton, R.A., Schneider, K., et al. (2011). Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biol. Biochem. , 43, 877–882.
Margono, B.A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M.C. (2014). Primary forest cover loss in Indonesia over 2000-2012.Nat. Clim. Chang. , 4, 730–735.
van der Merwe, N.J. & Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. , 18, 249–259.
Nakamura, A., Kitching, R.L., Cao, M., Creedy, T.J., Fayle, T.M., Freiberg, M., et al. (2017). Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. , 32, 438–451.
Nazarreta, R., Hartke, T.R., Hidayat, P., Scheu, S., Buchori, D. & Drescher, J. (2020). Rainforest conversion to smallholder plantations of rubber or oil palm leads to species loss and community shifts in canopy ants (Hymenoptera: Formicidae). Myrmecological News , 30, 175–186.
Novotny, V., Drozd, P., Miller, S.E., Kulfan, M., Janda, M., Basset, Y.,et al. (2006). Why are there so many species of herbivorous insects in tropical rainforests? Science , 313, 1115–1118.
Novotny, V., Miller, S.E., Baje, L., Balagawi, S., Basset, Y., Cizek, L., et al. (2010). Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J. Anim. Ecol. , 79, 1193–1203.
O’Neill, R. V. (1969). Indirect estimation of energy fluxes in animal food webs. J. Theor. Biol. , 22, 284–290.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2021). nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme. R-project .
Pollierer, M.M., Langel, R., Scheu, S. & Maraun, M. (2009). Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and13C/12C). Soil Biol. Biochem. , 41, 1221–1226.
Potapov, A., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. (2019a). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems.J. Anim. Ecol. , 88, 1845–1859.
Potapov, A.M. (2022). Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol. Rev. , 97, 1691–711.
Potapov, A.M., Scheu, S. & Tiunov, A. V. (2019b). Trophic consistency of supraspecific taxa in below‐ground invertebrate communities: Comparison across lineages and taxonomic ranks. Funct. Ecol. , 33, 1172–1183.
Le Provost, G., Thiele, J., Westphal, C., Penone, C., Allan, E., Neyret, M., et al. (2021). Contrasting responses of above- and belowground diversity to multiple components of land-use intensity.Nat. Commun. , 12, 3918.
Ramos, D., Hartke, T.R., Buchori, D., Dupérré, N., Hidayat, P., Lia, M.,et al. (2022). Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders.PeerJ , 10, e13898.
Reineking, A., Langel, R. & Schikowski, J. (1993).15N, 13C-on-line measurements with an elemental analyser (Carlo Erba, NA 1500), a modified trapping box and a gas isotope mass spectrometer (Finnigan, MAT 251). Isot. Isot. Environ. Heal. Stud. , 29, 169–174.
Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G. (2009). Emerging horizons in biodiversity and ecosystem functioning research.Trends Ecol. Evol. , 24, 505–514.
Rembold, K., Mangopo, H., Tjitrosoedirdjo, S.S. & Kreft, H. (2017). Plant diversity, forest dependency, and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. , 213, 234–242.
Rip, J.M.K. & Mccann, K.S. (2011). Cross-ecosystem differences in stability and the principle of energy flux. Ecol. Lett. , 14, 733–740.
Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. & Firth, D. (2019). Package ‘MASS’ (Version 7.3-51.4). Cran-R Proj.
De Ruiter, P.C., Van Veen, J.A., Moore, J.C., Brussaard, L. & Hunt, H.W. (1993). Calculation of nitrogen mineralization in soil food webs.Plant Soil , 157, 263–273.
Sanders, D., Thébault, E., Kehoe, R. & Frank van Veen, F.J. (2018). Trophic redundancy reduces vulnerability to extinction cascades.Proc. Natl. Acad. Sci. U. S. A. , 115, 2419–2424.
Seibold, S., Cadotte, M.W., MacIvor, J.S., Thorn, S. & Müller, J. (2018). The necessity of multitrophic approaches in community ecology.Trends Ecol. Evol. , 33, 754–764.
Sibhatu, K.T., Steinhübel, L., Siregar, H., Qaim, M. & Wollni, M. (2022). Spatial heterogeneity in smallholder oil palm production.For. Policy Econ. , 139, 102731.
Soliveres, S., Van Der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., et al. (2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature , 536, 456–459.
Susanti, W.I.W.I., Pollierer, M.M.M., Widyastuti, R., Scheu, S. & Potapov, A. (2019). Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. , 9, 9027–9039.
Tilman, D., Isbell, F. & Cowles, J.M. (2014). Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. , 45, 471–493.
Tiunov, A. V. (2007). Stable isotopes of carbon and nitrogen in soil ecological studies. Biol. Bull. , 34, 395–407.
Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., et al.(2022). Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biol. Biochem. , 169, 108656.
Zemp, D.C., Ehbrecht, M., Seidel, D., Ammer, C., Craven, D., Erkelenz, J., et al. (2019). Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agric. Ecosyst. Environ. , 283, 106564.
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. (2022). Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel.Elife , 11, 1–24.