Acknowledgements
This work is part of the project PSI2017-85600-P, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”; it has additionally been supported by the MDM-2017-0729-18-2M Maria de Maeztu Center of Excellence UBNeuro, funded by MCIN/AEI/ 10.13039/501100011033, and by the Excellence Research Group 2017SGR-974 funded by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya. ISM was supported by grant RYC-2013-12577, funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”. SS was supported by a grant for the recruitment of new research staff (FI-2019) from the Generalitat de Catalunya.

References

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus Predictability Reduces Responses in Primary Visual Cortex. Journal of Neuroscience , 30 (8), 2960–2966. https://doi.org/10.1523/JNEUROSCI.3730-10.2010
Baess, P., Horváth, J., Jacobsen, T., & Schröger, E. (2011). Selective suppression of self-initiated sounds in an auditory stream: An ERP study. Psychophysiology , 48 (9), 1276–1283. https://doi.org/10.1111/j.1469-8986.2011.01196.x
Bäß, P., Jacobsen, T., & Schröger, E. (2008). Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: Evidence for internal forward models with dynamic stimulation. International Journal of Psychophysiology ,70 (2), 137–143. https://doi.org/10.1016/j.ijpsycho.2008.06.005
Blakemore, S.-J., Wolpert, D., & Frith, C. (2000). Why canʼt you tickle yourself?: NeuroReport , 11 (11), R11–R16. https://doi.org/10.1097/00001756-200008030-00002
Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience , 1 (7), Article 7. https://doi.org/10.1038/2870
Boersma, P. (2002). Praat, a system for doing phonetics by computer.Glot International , 5 . https://dare.uva.nl/search?arno.record.id=109185
Bolt, N. K., & Loehr, J. D. (2021). Sensory Attenuation of the Auditory P2 Differentiates Self- from Partner-Produced Sounds during Joint Action. Journal of Cognitive Neuroscience , 33 (11), 2297–2310. https://doi.org/10.1162/jocn_a_01760
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision , 10 (4), 433–436. https://doi.org/10.1163/156856897X00357
Brown, & Palmer, C. (2012). Auditory–motor learning influences auditory memory for music. Memory & Cognition , 40 (4), 567–578. https://doi.org/10.3758/s13421-011-0177-x
Burnside, R., Fischer, A. G., & Ullsperger, M. (2019). The feedback-related negativity indexes prediction error in active but not observational learning. Psychophysiology , 56 (9), e13389. https://doi.org/10.1111/psyp.13389
Butler, A. J., James, T. W., & James, K. H. (2011). Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations. Journal of Cognitive Neuroscience , 23 (11), 3515–3528. https://doi.org/10.1162/jocn_a_00015
Chi, M. T. H. (2009). Active-Constructive-Interactive: A Conceptual Framework for Differentiating Learning Activities. Topics in Cognitive Science , 1 (1), 73–105. https://doi.org/10.1111/j.1756-8765.2008.01005.x
Cohen, R. L. (1989). Memory for action events: The power of enactment.Educational Psychology Review , 1 (1), 57–80. https://doi.org/10.1007/BF01326550
Craddock, M., Martinovic, J., & Lawson, R. (2011). An Advantage for Active versus Passive Aperture-Viewing in Visual Object Recognition.Perception , 40 (10), 1154–1163. https://doi.org/10.1068/p6974
Donchin, E. (1981). Surprise!… Surprise? Psychophysiology ,18 (5), 493–513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences ,11 (3), 357–427. https://doi.org/10.1017/S0140525X00058027
Elijah, R. B., Le Pelley, M. E., & Whitford, T. J. (2018). Act Now, Play Later: Temporal Expectations Regarding the Onset of Self-initiated Sensations Can Be Modified with Behavioral Training. Journal of Cognitive Neuroscience , 30 (8), 1145–1156. https://doi.org/10.1162/jocn_a_01269
Friedman, D., & Johnson Jr., R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review.Microscopy Research and Technique , 51 (1), 6–28. https://doi.org/10.1002/1097-0029(20001001)51:1<6::AID-JEMT2>3.0.CO;2-R
Gathercole, S. E., & Conway, M. A. (1988). Exploring long-term modality effects: Vocalization leads to best retention. Memory & Cognition , 16 (2), 110–119. https://doi.org/10.3758/BF03213478
Gentsch, A., & Schütz-Bosbach, S. (2011). I Did It: Unconscious Expectation of Sensory Consequences Modulates the Experience of Self-agency and Its Functional Signature. Journal of Cognitive Neuroscience , 23 (12), 3817–3828. https://doi.org/10.1162/jocn_a_00012
Grotheer, M., & Kovács, G. (2016). Can predictive coding explain repetition suppression? Cortex , 80 , 113–124. https://doi.org/10.1016/j.cortex.2015.11.027
Gureckis, T. M., & Markant. (2012). Self-Directed Learning: A Cognitive and Computational Perspective. Perspectives on Psychological Science , 7 (5), 464–481. https://doi.org/10.1177/1745691612454304
Han, N., Jack, B. N., Hughes, G., Elijah, R. B., & Whitford, T. J. (2021). Sensory attenuation in the absence of movement: Differentiating motor action from sense of agency. Cortex , 141 , 436–448. https://doi.org/10.1016/j.cortex.2021.04.010
Harman, K. L., Humphrey, G. K., & Goodale, M. A. (1999). Active manual control of object views facilitates visual recognition. Current Biology , 9 (22), 1315–1318. https://doi.org/10.1016/S0960-9822(00)80053-6
Hazemann, P., Audin, G., & Lille, F. (1975). Effect of voluntary self-paced movements upon auditory and somatosensory evoked potentials in man. Electroencephalography and Clinical Neurophysiology ,39 (3), 247–254. https://doi.org/10.1016/0013-4694(75)90146-7
Hillyard, S. A., & Kutas, M. (1983). Electrophysiology of cognitive processing. Annual Review of Psychology , 34 , 33–61. https://doi.org/10.1146/annurev.ps.34.020183.000341
Hommel, B. (2005). Perception in action: Multiple roles of sensory information in action control. Cognitive Processing , 6 (1), 3–14. https://doi.org/10.1007/s10339-004-0040-0
Horváth, J. (2013). Attenuation of auditory ERPs to action-sound coincidences is not explained by voluntary allocation of attention.Psychophysiology , 50 (3), 266–273. https://doi.org/10.1111/psyp.12009
Horváth, J. (2015). Action-related auditory ERP attenuation: Paradigms and hypotheses. Brain Research , 1626 , 54–65. https://doi.org/10.1016/j.brainres.2015.03.038
Horváth, J., & Burgyán, A. (2013). No evidence for peripheral mechanism attenuating auditory ERPs to self-induced tones.Psychophysiology , 50 (6), 563–569. https://doi.org/10.1111/psyp.12041
Horváth, J., Maess, B., Baess, P., & Tóth, A. (2012). Action–Sound Coincidences Suppress Evoked Responses of the Human Auditory Cortex in EEG and MEG. Journal of Cognitive Neuroscience , 24 (9), 1919–1931. https://doi.org/10.1162/jocn_a_00215
Hughes, G., Desantis, A., & Waszak, F. (2013a). Attenuation of auditory N1 results from identity-specific action-effect prediction.European Journal of Neuroscience , 37 (7), 1152–1158. https://doi.org/10.1111/ejn.12120
Hughes, G., Desantis, A., & Waszak, F. (2013b). Mechanisms of intentional binding and sensory attenuation: The role of temporal prediction, temporal control, identity prediction, and motor prediction.Psychological Bulletin , 139 (1), 133–151. https://doi.org/10.1037/a0028566
Hughes, G., & Waszak, F. (2011). ERP correlates of action effect prediction and visual sensory attenuation in voluntary action.NeuroImage , 56 (3), 1632–1640. https://doi.org/10.1016/j.neuroimage.2011.02.057
Ihme, K., & Zander, T. O. (2011). What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI. In S. D’Mello, A. Graesser, B. Schuller, & J.-C. Martin (Eds.), Affective Computing and Intelligent Interaction(pp. 447–456). Springer. https://doi.org/10.1007/978-3-642-24571-8_57
James, K. H., Humphrey, G. K., Vilis, T., Corrie, B., Baddour, R., & Goodale, M. A. (2002). “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment. Behavior Research Methods, Instruments, & Computers , 34 (3), 383–390. https://doi.org/10.3758/BF03195466
Kaiser, J., & Schütz-Bosbach, S. (2018). Sensory attenuation of self-produced signals does not rely on self-specific motor predictions.European Journal of Neuroscience , 47 (11), 1303–1310. https://doi.org/10.1111/ejn.13931
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding. Cognitive Processing , 8 (3), 159–166. https://doi.org/10.1007/s10339-007-0170-2
Kilteni, K., Engeler, P., & Ehrsson, H. H. (2020). Efference Copy Is Necessary for the Attenuation of Self-Generated Touch. IScience ,23 (2). https://doi.org/10.1016/j.isci.2020.100843
Kim, K., & Johnson, M. K. (2012). Extended self: Medial prefrontal activity during transient association of self and objects. Social Cognitive and Affective Neuroscience , 7 (2), 199–207. https://doi.org/10.1093/scan/nsq096
Klaffehn, A. L., Baess, P., Kunde, W., & Pfister, R. (2019). Sensory attenuation prevails when controlling for temporal predictability of self- and externally generated tones. Neuropsychologia ,132 , 107145. https://doi.org/10.1016/j.neuropsychologia.2019.107145
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception ,36 (14), 1–16.
Knolle, F., Schröger, E., Baess, P., & Kotz, S. A. (2012). The Cerebellum Generates Motor-to-Auditory Predictions: ERP Lesion Evidence.Journal of Cognitive Neuroscience , 24 (3), 698–706. https://doi.org/10.1162/jocn_a_00167
Knolle, F., Schröger, E., & Kotz, S. A. (2013). Prediction errors in self- and externally-generated deviants. Biological Psychology ,92 (2), 410–416. https://doi.org/10.1016/j.biopsycho.2012.11.017
Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. Learning & Behavior ,36 (3), 210–226. https://doi.org/10.3758/LB.36.3.210
Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The Development of Cognitive Skills To Support Inquiry Learning. Cognition and Instruction , 18 (4), 495–523. https://doi.org/10.1207/S1532690XCI1804_3
Kühn, S., Nenchev, I., Haggard, P., Brass, M., Gallinat, J., & Voss, M. (2011). Whodunnit? Electrophysiological Correlates of Agency Judgements.PLOS ONE , 6 (12), e28657. https://doi.org/10.1371/journal.pone.0028657
Lajoie, Y., Teasdale, N., Bard, C., & Fleury, M. (1996). Upright standing and gait: Are there changes in attentional requirements related to normal aging? Experimental Aging Research , 22 (2), 185–198. https://doi.org/10.1080/03610739608254006
Leotti, L. A., & Delgado, M. R. (2011). The Inherent Reward of Choice.Psychological Science , 22 (10), 1310–1318. https://doi.org/10.1177/0956797611417005
Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. Psychological Science , 12 (3), 230–237. https://doi.org/10.1111/1467-9280.00341
Lindenberger, U., Marsiske, M., & Baltes, P. B. (2000). Memorizing while walking: Increase in dual-task costs from young adulthood to old age. Psychology and Aging , 15 (3), 417–436. https://doi.org/10.1037//0882-7974.15.3.417
Liu, C. H., Ward, J., & Markall, H. (2007). The role of active exploration of 3D face stimuli on recognition memory of facial information. Journal of Experimental Psychology: Human Perception and Performance , 33 (4), 895–904. https://doi.org/10.1037/0096-1523.33.4.895
Luursema, J.-M., & Verwey, W. B. (2011). The contribution of dynamic exploration to virtual anatomical learning. Advances in Human-Computer Interaction , 2011 . https://doi.org/10.1155/2011/965342
MacDonald, P. A., & MacLeod, C. M. (1998). The influence of attention at encoding on direct and indirect remembering. Acta Psychologica , 98 (2), 291–310. https://doi.org/10.1016/S0001-6918(97)00047-4
MacLeod, C. M., Gopie, N., Hourihan, K. L., Neary, K. R., & Ozubko, J. D. (2010). The production effect: Delineation of a phenomenon.Journal of Experimental Psychology: Learning, Memory, and Cognition , 36 (3), 671–685. https://doi.org/10.1037/a0018785
Maidhof, C., Vavatzanidis, N., Prinz, W., Rieger, M., & Koelsch, S. (2010). Processing expectancy violations during music performance and perception: An ERP study. Journal of Cognitive Neuroscience ,22 (10), 2401–2413. https://doi.org/10.1162/jocn.2009.21332
Mama, Y., & Icht, M. (2016). Auditioning the distinctiveness account: Expanding the production effect to the auditory modality reveals the superiority of writing over vocalising. Memory (Hove, England) ,24 (1), 98–113. https://doi.org/10.1080/09658211.2014.986135
Markant, DuBrow, S., Davachi, L., & Gureckis, T. M. (2014). Deconstructing the effect of self-directed study on episodic memory.Memory & Cognition , 42 (8), 1211–1224. https://doi.org/10.3758/s13421-014-0435-9
Markant, & Gureckis, T. (2010). Category learning through active sampling. Proceedings of the 32nd Annual Conference of the Cognitive Science Society .
Markant, Ruggeri, A., Gureckis, T. M., & Xu, F. (2016). Enhanced Memory as a Common Effect of Active Learning. Mind, Brain, and Education , 10 (3), 142–152. https://doi.org/10.1111/mbe.12117
Mathias, B., Palmer, C., Perrin, F., & Tillmann, B. (2015). Sensorimotor Learning Enhances Expectations During Auditory Perception.Cerebral Cortex , 25 (8), 2238–2254. https://doi.org/10.1093/cercor/bhu030
Meijer, F., & Van der Lubbe, R. H. J. (2011). Active exploration improves perceptual sensitivity for virtual 3D objects in visual recognition tasks. Vision Research , 51 (23–24), 2431–2439. https://doi.org/10.1016/j.visres.2011.09.013
Miall, R. C., & Wolpert, D. M. (1996). Forward Models for Physiological Motor Control. Neural Networks , 9 (8), 1265–1279. https://doi.org/10.1016/S0893-6080(96)00035-4
Mifsud, N. G., Beesley, T., Watson, T. L., Elijah, R. B., Sharp, T. S., & Whitford, T. J. (2018). Attenuation of visual evoked responses to hand and saccade-initiated flashes. Cognition , 179 , 14–22. https://doi.org/10.1016/j.cognition.2018.06.005
Mifsud, N. G., Oestreich, L. K. L., Jack, B. N., Ford, J. M., Roach, B. J., Mathalon, D. H., & Whitford, T. J. (2016). Self-initiated actions result in suppressed auditory but amplified visual evoked components in healthy participants. Psychophysiology , 53 (5), 723–732. https://doi.org/10.1111/psyp.12605
Mifsud, N. G., & Whitford, T. J. (2017). Sensory attenuation of self-initiated sounds maps onto habitual associations between motor action and sound. Neuropsychologia , 103 , 38–43. https://doi.org/10.1016/j.neuropsychologia.2017.07.019
Molinaro, N., & Carreiras, M. (2010). Electrophysiological evidence of interaction between contextual expectation and semantic integration during the processing of collocations. Biological Psychology ,83 (3), 176–190. https://doi.org/10.1016/j.biopsycho.2009.12.006
Neszmélyi, B., & Horváth, J. (2017). Consequences matter: Self-induced tones are used as feedback to optimize tone-eliciting actions.Psychophysiology , 54 (6), 904–915. https://doi.org/10.1111/psyp.12845
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system.Psychological Bulletin , 131 (4), 510–532. https://doi.org/10.1037/0033-2909.131.4.510
O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience , 15 (12), Article 12. https://doi.org/10.1038/nn.3248
Oestreich, L. K. L., Mifsud, N. G., Ford, J. M., Roach, B. J., Mathalon, D. H., & Whitford, T. J. (2016). Cortical Suppression to Delayed Self-Initiated Auditory Stimuli in Schizotypy: Neurophysiological Evidence for a Continuum of Psychosis. Clinical EEG and Neuroscience , 47 (1), 3–10. https://doi.org/10.1177/1550059415581708
Ozubko, J. D., Gopie, N., & MacLeod, C. M. (2012). Production benefits both recollection and familiarity. Memory & Cognition ,40 (3), 326–338. https://doi.org/10.3758/s13421-011-0165-1
Paraskevoudi, N., & SanMiguel, I. (2021). Self-generation and sound intensity interactively modulate perceptual bias, but not perceptual sensitivity. Scientific Reports , 11 (1), Article 1. https://doi.org/10.1038/s41598-021-96346-z
Paraskevoudi, N., & SanMiguel, I. (2022). Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli. Psychophysiology ,n/a (n/a), e14156. https://doi.org/10.1111/psyp.14156
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision , 10 (4), 437–442. https://doi.org/10.1163/156856897X00366
Pinheiro, A. P., Schwartze, M., Gutierrez, F., & Kotz, S. A. (2019). When temporal prediction errs: ERP responses to delayed action-feedback onset. Neuropsychologia , 134 , 107200. https://doi.org/10.1016/j.neuropsychologia.2019.107200
Plancher, G., Barra, J., Orriols, E., & Piolino, P. (2013). The influence of action on episodic memory: A virtual reality study.Quarterly Journal of Experimental Psychology , 66 (5), 895–909. https://doi.org/10.1080/17470218.2012.722657
Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b.Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology , 118 (10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
Press, C., & Cook, R. (2015). Beyond action-specific simulation: Domain-general motor contributions to perception. Trends in Cognitive Sciences , 19 (4), 176–178. https://doi.org/10.1016/j.tics.2015.01.006
Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin , 89 (3), 506–540.
Protzak, J., Ihme, K., & Zander, T. O. (2013). A Passive Brain-Computer Interface for Supporting Gaze-Based Human-Machine Interaction. In C. Stephanidis & M. Antona (Eds.), Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion (pp. 662–671). Springer. https://doi.org/10.1007/978-3-642-39188-0_71
Reed, C. L., Siqi-Liu, A., Lydic, K., Lodge, M., Chitre, A., Denaro, C., Petropoulos, A., Joshi, J., Bukach, C. M., & Couperus, J. W. (2022). Selective contributions of executive function ability to the P3.International Journal of Psychophysiology , 176 , 54–61. https://doi.org/10.1016/j.ijpsycho.2022.03.004
Roehm, D., Bornkessel-Schlesewsky, I., Rösler, F., & Schlesewsky, M. (2007). To predict or not to predict: Influences of task and strategy on the processing of semantic relations. Journal of Cognitive Neuroscience , 19 (8), 1259–1274. https://doi.org/10.1162/jocn.2007.19.8.1259
Rummell, B. P., Klee, J. L., & Sigurdsson, T. (2016). Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons.Journal of Neuroscience , 36 (47), 12010–12026. https://doi.org/10.1523/JNEUROSCI.1564-16.2016
SanMiguel, I., Todd, J., & Schröger, E. (2013). Sensory suppression effects to self-initiated sounds reflect the attenuation of the unspecific N1 component of the auditory ERP. Psychophysiology ,50 (4), 334–343. https://doi.org/10.1111/psyp.12024
Saupe, K., Widmann, A., Trujillo-Barreto, N. J., & Schröger, E. (2013). Sensorial suppression of self-generated sounds and its dependence on attention. International Journal of Psychophysiology ,90 (3), 300–310. https://doi.org/10.1016/j.ijpsycho.2013.09.006
Schaefer, S., Lövdén, M., Wieckhorst, B., & Lindenberger, U. (2010). Cognitive performance is improved while walking: Differences in cognitive–sensorimotor couplings between children and young adults.European Journal of Developmental Psychology , 7 (3), 371–389. https://doi.org/10.1080/17405620802535666
Schäfer, E. W. P., & Marcus, M. M. (1973). Self-Stimulation Alters Human Sensory Brain Responses. Science , 181 (4095), 175–177. https://doi.org/10.1126/science.181.4095.175
Schmidt-Kassow, M., Deusser, M., Thiel, C., Otterbein, S., Montag, C., Reuter, M., Banzer, W., & Kaiser, J. (2013). Physical Exercise during Encoding Improves Vocabulary Learning in Young Female Adults: A Neuroendocrinological Study. PLoS ONE , 8 (5), e64172. https://doi.org/10.1371/journal.pone.0064172
Schmidt-Kassow, M., Heinemann, L. V., Abel, C., & Kaiser, J. (2013). Auditory–motor synchronization facilitates attention allocation.NeuroImage , 82 , 101–106. https://doi.org/10.1016/j.neuroimage.2013.05.111
Schmidt-Kassow, M., Kulka, A., Gunter, T. C., Rothermich, K., & Kotz, S. A. (2010). Exercising during learning improves vocabulary acquisition: Behavioral and ERP evidence. Neuroscience Letters ,482 (1), 40–44. https://doi.org/10.1016/j.neulet.2010.06.089
Schmidt-Kassow, M., Zink, N., Mock, J., Thiel, C., Vogt, L., Abel, C., & Kaiser, J. (2014). Treadmill walking during vocabulary encoding improves verbal long-term memory. Behavioral and Brain Functions ,10 (1), 24. https://doi.org/10.1186/1744-9081-10-24
Schulz, L. E., & Bonawitz, E. B. (2007). Serious fun: Preschoolers engage in more exploratory play when evidence is confounded.Developmental Psychology , 43 (4), 1045–1050. https://doi.org/10.1037/0012-1649.43.4.1045
Schulze, K., Vargha-Khadem, F., & Mishkin, M. (2012). Test of a motor theory of long-term auditory memory. Proceedings of the National Academy of Sciences of the United States of America , 109 (18), 7121–7125. https://doi.org/10.1073/pnas.1204717109
Shishkin, S. L., Nuzhdin, Y. O., Svirin, E. P., Trofimov, A. G., Fedorova, A. A., Kozyrskiy, B. L., & Velichkovsky, B. M. (2016). EEG Negativity in Fixations Used for Gaze-Based Control: Toward Converting Intentions into Actions with an Eye-Brain-Computer Interface.Frontiers in Neuroscience , 10 . https://www.frontiersin.org/articles/10.3389/fnins.2016.00528
Slobodenyuk, N. (2016). Towards cognitively grounded gaze-controlled interfaces. Personal and Ubiquitous Computing , 20 (6), 1035–1047. https://doi.org/10.1007/s00779-016-0970-4
Snyder, E., & Hillyard, S. A. (1976). Long-latency evoked potentials to irrelevant, deviant stimuli. Behavioral Biology , 16 (3), 319–331. https://doi.org/10.1016/s0091-6773(76)91447-4
Stenner, M.-P., Bauer, M., Sidarus, N., Heinze, H.-J., Haggard, P., & Dolan, R. J. (2014). Subliminal action priming modulates the perceived intensity of sensory action consequences. Cognition ,130 (2), 227–235. https://doi.org/10.1016/j.cognition.2013.11.008
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience , 11 (9), Article 9. https://doi.org/10.1038/nn.2163
Tomporowski, P. D., McCullick, B. A., & Pesce, C. (2015).Enhancing Children’s Cognition With Physical Activity Games . Human Kinetics.
Trewartha, K. M., Case, S., & Flanagan, J. R. (2015). Integrating actions into object location memory: A benefit for active versus passive reaching movements. Behavioural Brain Research , 279 , 234–239. https://doi.org/10.1016/j.bbr.2014.11.043
Turk, K. W., Elshaar, A. A., Deason, R. G., Heyworth, N. C., Nagle, C., Frustace, B., Flannery, S., Zumwalt, A., & Budson, A. E. (2018). Late Positive Component Event-related Potential Amplitude Predicts Long-term Classroom-based Learning. Journal of Cognitive Neuroscience ,30 (9), 1323–1329. https://doi.org/10.1162/jocn_a_01285
Twomey, D. M., Kelly, S. P., & O’Connell, R. G. (2016). Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports. Journal of Neuroscience , 36 (28), 7346–7352. https://doi.org/10.1523/JNEUROSCI.4162-15.2016
van Elk, M., Salomon, R., Kannape, O., & Blanke, O. (2014). Suppression of the N1 auditory evoked potential for sounds generated by the upper and lower limbs. Biological Psychology , 102 , 108–117. https://doi.org/10.1016/j.biopsycho.2014.06.007
Verleger, R., Cäsar, S., Siller, B., & Śmigasiewicz, K. (2017). On Why Targets Evoke P3 Components in Prediction Tasks: Drawing an Analogy between Prediction and Matching Tasks. Frontiers in Human Neuroscience , 11 . https://www.frontiersin.org/articles/10.3389/fnhum.2017.00497
Vespignani, F., Canal, P., Molinaro, N., Fonda, S., & Cacciari, C. (2010). Predictive mechanisms in idiom comprehension. Journal of Cognitive Neuroscience , 22 (8), 1682–1700. https://doi.org/10.1162/jocn.2009.21293
Voss, J. L., Warren, D. E., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. PNAS Proceedings of the National Academy of Sciences of the United States of America , 108 (31), E402–E409. https://doi.org/10.1073/pnas.1100225108
Winkler, I., Horváth, J., Weisz, J., & Trejo, L. J. (2009). Deviance detection in congruent audiovisual speech: Evidence for implicit integrated audiovisual memory representations. Biological Psychology , 82 (3), 281–292. https://doi.org/10.1016/j.biopsycho.2009.08.011
Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain Research , 1100 (1), 125–135. https://doi.org/10.1016/j.brainres.2006.05.019
Yang, H., Laforge, G., Stojanoski, B., Nichols, E. S., McRae, K., & Köhler, S. (2019). Late positive complex in event-related potentials tracks memory signals when they are decision relevant. Scientific Reports , 9 (1), Article 1. https://doi.org/10.1038/s41598-019-45880-y
Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders: Official Journal of the Movement Disorder Society , 23 (3), 329–342; quiz 472. https://doi.org/10.1002/mds.21720