References
Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F., & Estonba, A. (2016). Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Marine Biology , 163 (7), 149. https://doi.org/10.1007/s00227-016-2920-0
Alldredge, A. L. (1984). The Quantitative Significance of Gelatinous Zooplankton as Pelagic Consumers. In M. J. R. Fasham (Éd.), Flows of Energy and Materials in Marine Ecosystems (p. 407‑433). Springer US. https://doi.org/10.1007/978-1-4757-0387-0_16
Andersen, V., & Sardou, J. (1992). The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 1. Euphausiids, mysids, decapods and fishes.Journal of Plankton Research , 14 (8), 1129‑1154. https://doi.org/10.1093/plankt/14.8.1129
Andersen, V., Sardou, J., & Nival, P. (1992). The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids. Journal of Plankton Research , 14 (8), 1155‑1169. https://doi.org/10.1093/plankt/14.8.1155
Anderson, M. J. (2001). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences , 58 (3), 626‑639. https://doi.org/10.1139/f01-004
Angel. (1983). A review of the progress of research on halocyprid and other oceanic planktonic ostracods 1972-1982. Applications of Ostracoda. , 529‑548.
Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal , 6 (2), Art. 2. https://doi.org/10.1038/ismej.2011.119
Barton, A. D., Pershing, A. J., Litchman, E., Record, N. R., Edwards, K. F., Finkel, Z. V., Kiørboe, T., & Ward, B. A. (2013). The biogeography of marine plankton traits. Ecology Letters , 16 (4), 522‑534. https://doi.org/10.1111/ele.12063
Bellisario, B., Camisa, F., Abbattista, C., & Cimmaruta, R. (2019). A network approach to identify bioregions in the distribution of Mediterranean amphipods associated with Posidonia oceanica meadows.PeerJ , 7 , e6786. https://doi.org/10.7717/peerj.6786
Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology , 5 , 219. https://doi.org/10.3389/fmicb.2014.00219
Bérubé, D., & Jébrak, M. (1999). High precision boundary fractal analysis for shape characterization. Computers and Geosciences ,25 , 1059‑1071. https://doi.org/10.1016/S0098-3004(99)00067-9
Biard, T., Stemmann, L., Picheral, M., Mayot, N., Vandromme, P., Hauss, H., Gorsky, G., Guidi, L., Kiko, R., & Not, F. (2016). In situ imaging reveals the biomass of giant protists in the global ocean.Nature , 532 (7600), Art. 7600. https://doi.org/10.1038/nature17652
Blanco-Bercial, L. (2020). Metabarcoding Analyses and Seasonality of the Zooplankton Community at BATS. Frontiers in Marine Science ,7 . https://doi.org/10.3389/fmars.2020.00173
Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs ,27 (4), 325‑349. https://doi.org/10.2307/1942268
Brinton, E. (1962). The distribution of Pacific euphausiids. https://escholarship.org/uc/item/6db5n157
Brisbin, M., Brunner, O. D., Grossmann, M. M., & Mitarai, S. (2020). Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnology and Oceanography, 65(12), 2953‑2965. https://doi.org/10.1002/lno.11567
Brun, P., Payne, M. R., & Kiørboe, T. (2017). A trait database for marine copepods. Earth System Science Data , 9 (1), 99‑113. https://doi.org/10.5194/essd-9-99-2017
Brüsin, M., Svensson, P. A., & Hylander, S. (2016). Individual changes in zooplankton pigmentation in relation to ultraviolet radiation and predator cues. Limnology and Oceanography , 61 (4), 1337‑1344. https://doi.org/10.1002/lno.10303
Bucklin, A., Peijnenburg, K., Kosobokova, K., O’Brien, T., Blanco-Bercial, L., Cornils, A., Falkenhaug, T., Hopcroft, R., Hosia, A., Laakmann, S., Li, C., Martell, L., Questel, J., Wall-Palmer, D., Minxiao, W., Wiebe, P., & Weydmann, A. (2021). Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology , 168 . https://doi.org/10.1007/s00227-021-03887-y
Bucklin, A., Yeh, H. D., Questel, J. M., Richardson, D. E., Reese, B., Copley, N. J., & Wiebe, P. H. (2019). Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf.ICES Journal of Marine Science , 76 (4), 1162‑1176. https://doi.org/10.1093/icesjms/fsz021
Castellani, C., & Edwards, M. (2017). Marine Plankton : A practical guide to ecology, methodology, and taxonomy . Oxford University Press.
Cattell, R. B. (1966). The Scree Test For The Number Of Factors.Multivariate Behavioral Research , 1 (2), 245‑276. https://doi.org/10.1207/s15327906mbr0102_10
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust : An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software , 61 , 1‑36. https://doi.org/10.18637/jss.v061.i06
Chen, T., Zhang, Y., Song, S., Liu, Y., Sun, X., & Li, C. (2021). Diversity and seasonal variation of marine phytoplankton in Jiaozhou Bay, China revealed by morphological observation and metabarcoding.Journal of Oceanology and Limnology , 40 . https://doi.org/10.1007/s00343-021-0457-7
Chust, G., Vogt, M., Benedetti, F., Nakov, T., Villéger, S., Aubert, A., Vallina, S. M., Righetti, D., Not, F., Biard, T., Bittner, L., Benoiston, A.-S., Guidi, L., Villarino, E., Gaborit, C., Cornils, A., Buttay, L., Irisson, J.-O., Chiarello, M., … Ayata, S.-D. (2017). Mare Incognitum : A Glimpse into Future Plankton Diversity and Ecology Research. Frontiers in Marine Science , 4 . https://www.frontiersin.org/article/10.3389/fmars.2017.00068
Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology , 18 (1), 117‑143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Cordier, T., Forster, D., Dufresne, Y., Martins, C. I. M., Stoeck, T., & Pawlowski, J. (2018). Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring.Molecular Ecology Resources , 18 (6), 1381‑1391. https://doi.org/10.1111/1755-0998.12926
Cowen, R., & Guigand, C. (2008). In situ Ichthyoplankton Imaging System(ISIIS) : System design and preliminary results. Limnology and Oceanography: Methods , 6 . https://doi.org/10.4319/lom.2008.6.126
Da Silva, O. (2021). Structure de l’écosystème planctonique : Apport des données à haut débit de séquençage et d’imagerie [Thesis, Sorbonne université]. In Http://www.theses.fr . http://www.theses.fr/2021SORUS183
David James and Kurt Hornik. (2020). chron : Chronological Objects which Can Handle Dates and Times . https://CRAN.R-project.org/package=chron
Deevey, G. B. (1971). The Annual Cycle in Quantity and Composition of the Zooplankton of the Sargasso Sea Off Bermuda. I. the Upper 500 M1.Limnology and Oceanography , 16 (2), 219‑240. https://doi.org/10.4319/lo.1971.16.2.0219
Deevey, G. B., & Brooks, A. L. (1977). Copepods of the Sargasso Sea off Bermuda : Species Composition, and Vertical and Seasonal Distribution Between the Surface and 2000 M. Bulletin of Marine Science ,27 (2), 256‑291.
de Vera, A., & Seapy, R. R. (2006). Atlanta selvagensis, a new species of heteropod molluscfrom the Northeastern Atlantic Ocean(Gastropoda : Carinarioidea). Vieraea Folia Scientiarum Biologicarum Canariensium , 34 (Vieraea 34), 45‑54. https://doi.org/10.31939/vieraea.2006.34.06
Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas-Márquez, J., Michaud, B., Montes, E., Muller-Karger, F., & Breitbart, M. (2018). Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods , 16 (4), 209‑221.
Dufrêne, M., Legendre, P., 1997. Species Assemblages and Indicator Species:the Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 67, 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Durkin, C. A., Cetinić, I., Estapa, M., Ljubešić, Z., Mucko, M., Neeley, A., & Omand, M. (2022). Tracing the path of carbon export in the ocean though DNA sequencing of individual sinking particles. The ISME Journal , 1‑11. https://doi.org/10.1038/s41396-022-01239-2
Edgar, R. C. (2016). UNOISE2 : Improved error-correction for Illumina 16S and ITS amplicon sequencing (p. 081257). bioRxiv. https://doi.org/10.1101/081257
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27 (16), 2194‑2200. https://doi.org/10.1093/bioinformatics/btr381
Ershova, E. A., Wangensteen, O. S., Descoteaux, R., Barth-Jensen, C., & Præbel, K. (2021). Metabarcoding as a quantitative tool for estimating biodiversity and relative biomass of marine zooplankton. ICES Journal of Marine Science , 78 (9), 3342‑3355. https://doi.org/10.1093/icesjms/fsab171
Fonseca, V. G., Carvalho, G. R., Nichols, B., Quince, C., Johnson, H. F., Neill, S. P., Lambshead, J. D., Thomas, W. K., Power, D. M., & Creer, S. (2014). Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecology and Biogeography , 23 (11), 1293‑1302. https://doi.org/10.1111/geb.12223
Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., & Creer, S. (2010). Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications ,1 (1), Art. 1. https://doi.org/10.1038/ncomms1095
Gabor Csardi & Tamas Nepusz. (2006). The igraph software package for complex network research [R]. https://igraph.org
Goetze, E. (2011). Population Differentiation in the Open Sea : Insights from the Pelagic Copepod Pleuromamma xiphias. Integrative and Comparative Biology , 51 (4), 580‑597. https://doi.org/10.1093/icb/icr104
González, H. E., & Smetacek, V. (1994). The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Marine Ecology-progress Series - MAR ECOL-PROGR SER , 113 , 233‑246. https://doi.org/10.3354/meps113233
Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., Cawood, A., Pesant, S., García-Comas, C., & Prejger, F. (2010). Digital zooplankton image analysis using the ZooScan integrated system. Journal of Plankton Research , 32 (3), 285‑303. https://doi.org/10.1093/plankt/fbp124
Harrell Jr, F. E., & Dupon, C. (contributed several functions and maintains latex. (2022). Hmisc : Harrell Miscellaneous (4.7-0). https://CRAN.R-project.org/package=Hmisc
Harvey, J. B. J., Johnson, S. B., Fisher, J. L., Peterson, W. T., & Vrijenhoek, R. C. (2017). Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages.Journal of Experimental Marine Biology and Ecology , 487 , 113‑126. https://doi.org/10.1016/j.jembe.2016.12.002
Hays, G. C., Proctor, C. A., John, A. W. G., & Warner, A. J. (1994). Interspecific differences in the diel vertical migration of marine copepods : The implications of size, color, and morphology.Limnology and Oceanography , 39 (7), 1621‑1629. https://doi.org/10.4319/lo.1994.39.7.1621
Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life : Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences , 270 (suppl_1), S96‑S99. https://doi.org/10.1098/rsbl.2003.0025
Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics , 6 (2), 65‑70.
Huo, S., Li, X., Xi, B., Zhang, H., Ma, C., & He, Z. (2020). Combining morphological and metabarcoding approaches reveals the freshwater eukaryotic phytoplankton community. Environmental Sciences Europe , 32 (1), 37. https://doi.org/10.1186/s12302-020-00321-w
Ibarbalz, F. M., Henry, N., Brandão, M. C., Martini, S., Busseni, G., Byrne, H., Coelho, L. P., Endo, H., Gasol, J. M., Gregory, A. C., Mahé, F., Rigonato, J., Royo-Llonch, M., Salazar, G., Sanz-Sáez, I., Scalco, E., Soviadan, D., Zayed, A. A., Zingone, A., … Zinger, L. (2019). Global Trends in Marine Plankton Diversity across Kingdoms of Life.Cell , 179 (5), 1084-1097.e21. https://doi.org/10.1016/j.cell.2019.10.008
Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L., & Stemmann, L. (2022). Machine Learning for the Study of Plankton and Marine Snow from Images. Annual Review of Marine Science ,14 (1), 277‑301. https://doi.org/10.1146/annurev-marine-041921-013023
Ivory, J. A., Steinberg, D. K., & Latour, R. J. (2019). Diel, seasonal, and interannual patterns in mesozooplankton abundance in the Sargasso Sea. ICES Journal of Marine Science , 76 (1), 217‑231. https://doi.org/10.1093/icesjms/fsy117
Johnsen, S. (2014). Hide and seek in the open sea : Pelagic camouflage and visual countermeasures. Annual Review of Marine Science ,6 , 369‑392. https://doi.org/10.1146/annurev-marine-010213-135018
Johnsen, S., & Widder, E. A. (1998). Transparency and Visibility of Gelatinous Zooplankton from the Northwestern Atlantic and Gulf of Mexico. Biological Bulletin , 195 (3), 337‑348. https://doi.org/10.2307/1543145
Kaeriyama, H., & Ikeda, T. (2002). Vertical distribution and population structure of the three dominant planktonic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific . 9.
Kassambara, A. (2020). ggpubr : « ggplot2 » Based Publication Ready Plots (0.4.0). https://CRAN.R-project.org/package=ggpubr
Kassambara, A. (2021). rstatix : Pipe-Friendly Framework for Basic Statistical Tests (0.7.0). https://CRAN.R-project.org/package=rstatix
Kelly, T. B., Davison, P. C., Goericke, R., Landry, M. R., Ohman, M. D., & Stukel, M. R. (2019). The Importance of Mesozooplankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web. Frontiers in Marine Science , 6 . https://doi.org/10.3389/fmars.2019.00508
Kiørboe, T. (1997). Population regulation and role of mesozooplankton in shaping marine pelagic food webs. Hydrobiologia , 363 (1), 13‑27. https://doi.org/10.1023/A:1003173721751
Kiørboe, T. (2013). Zooplankton body composition. Limnology and Oceanography , 58 (5), 1843‑1850. https://doi.org/10.4319/lo.2013.58.5.1843
Kiørboe, T., Andersen, A., Langlois, V. J., & Jakobsen, H. H. (2010). Unsteady motion : Escape jumps in planktonic copepods, their kinematics and energetics. Journal of The Royal Society Interface ,7 (52), 1591‑1602. https://doi.org/10.1098/rsif.2010.0176
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How quantitative is metabarcoding : A meta-analytical approach. Molecular Ecology , 28 (2), 420‑430. https://doi.org/10.1111/mec.14920
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software ,25 , 1‑18. https://doi.org/10.18637/jss.v025.i01
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia ,129 (2), 271‑280. https://doi.org/10.1007/s004420100716
Legendre, P., & Legendre, L. (2012). Chapter 9—Ordination in reduced space. In P. Legendre & L. Legendre (Éds.), Developments in Environmental Modelling (Vol. 24, p. 425‑520). Elsevier. https://doi.org/10.1016/B978-0-444-53868-0.50009-5
Lejzerowicz, F., Gooday, A. J., Barrenechea Angeles, I., Cordier, T., Morard, R., Apothéloz-Perret-Gentil, L., Lins, L., Menot, L., Brandt, A., Levin, L. A., Martinez Arbizu, P., Smith, C. R., & Pawlowski, J. (2021). Eukaryotic Biodiversity and Spatial Patterns in the Clarion-Clipperton Zone and Other Abyssal Regions : Insights From Sediment DNA and RNA Metabarcoding. Frontiers in Marine Science ,0 . https://doi.org/10.3389/fmars.2021.671033
Levitus, S. (1982). Climatological Atlas of the World Ocean . U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal of Plankton Research , 35 (3), 473‑484. https://doi.org/10.1093/plankt/fbt019
Lobón, C.M., Bouquet, J.-M., Reeve, M., Novac, A., Acuña, J.L., Thompson, E.M., Troedsson, C., 2013. Response of the pelagic tunicate appendicularian, Oikopleura dioica to controlled simulations of a strong bloom condition: A bottom-up perspective. Limnol. Oceanogr. 58, 215–226. https://doi.org/10.4319/lo.2013.58.1.0215
Lochhead, J. H., 1968. The feeding and swimming of Conchoecia (Crustacea, Ostracoda). Biol. Bull. 134:456 – 464. https://doi.org/10.2307/1539863
Lomas, M., Steinberg, D. K., T, D., Carlson, C., Nelson, N., Condon, R., & Bates, N. (2010). Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation. Biogeosciences , 7 .
Lomas, M. W., Bates, N. R., Johnson, R. J., Knap, A. H., Steinberg, D. K., & Carlson, C. A. (2013). Two decades and counting : 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea.Deep Sea Research Part II: Topical Studies in Oceanography ,93 , 16‑32. https://doi.org/10.1016/j.dsr2.2013.01.008
Lüskow, F., Neitzel, P., Miller, M. J., Marohn, L., Wysujack, K., Freese, M., Pohlmann, J.-D., & Hanel, R. (2019). Distribution and abundance of net-captured calycophoran siphonophores and other gelatinous zooplankton in the Sargasso Sea European eel spawning area.Marine Biodiversity , 49 (5), 2333‑2349. https://doi.org/10.1007/s12526-019-00971-x
Maas, A. E., Gossner, H., Smith, M. J., & Blanco-Bercial, L. (2021). Use of optical imaging datasets to assess biogeochemical contributions of the mesozooplankton. Journal of Plankton Research ,43 (3), 475‑491. https://doi.org/10.1093/plankt/fbab037
MacNeil, L., Desai, D. K., Costa, M., & LaRoche, J. (2022). Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf. Scientific Reports ,12 (1), Art. 1. https://doi.org/10.1038/s41598-022-17313-w
Madin, L. P., Horgan, E. F., & Steinberg, D. K. (2001). Zooplankton at the Bermuda Atlantic Time-series Study (BATS) station : Diel, seasonal and interannual variation in biomass, 1994–1998. Deep Sea Research Part II: Topical Studies in Oceanography , 48 (8), 2063‑2082. https://doi.org/10.1016/S0967-0645(00)00171-5
Martini, S., Larras, F., Boyé, A., Faure, E., Aberle, N., Archambault, P., Bacouillard, L., Beisner, B. E., Bittner, L., Castella, E., Danger, M., Gauthier, O., Karp‐Boss, L., Lombard, F., Maps, F., Stemmann, L., Thiébaut, E., Usseglio‐Polatera, P., Vogt, M., … Ayata, S.-D. (2021). Functional trait-based approaches as a common framework for aquatic ecologists. Limnology and Oceanography , 66 (3), 965‑994. https://doi.org/10.1002/lno.11655
Matthews, S. A., Goetze, E., & Ohman, M. D. (2021). Recommendations for interpreting zooplankton metabarcoding and integrating molecular methods with morphological analyses. ICES Journal of Marine Science ,78 (9), 3387‑3396. https://doi.org/10.1093/icesjms/fsab107
McHardy, R. A., & Bary, B. McK. (1965). Diurnal and Seasonal Changes in Distribution of Two Planktonic Ostracods, Conchoecia elegans and Conchoecia alata minor. Journal of the Fisheries Research Board of Canada , 22 (3), 823‑840. https://doi.org/10.1139/f65-072
Mifsud, C. (2001). A mysterious, living, ‘giant’ Gymnosomata species near the Maltese Islands (Gastropoda, Opisthobranchia) .65 , 57‑60.
Monferrer, N., Biard, T., Sandin, M. M., Lombard, F., Picheral, M., Elineau, A., Guidi, L., Leynaert, A., Tréguer, P. J., & Not, F. (2022). Siliceous Rhizaria abundances and diversity in the Mediterranean Sea assessed by combined imaging and metabarcoding approaches.Frontiers in Marine Science , 9 . https://www.frontiersin.org/articles/10.3389/fmars.2022.895995
Motoda, S. (1959). DEVICES OF SIMPLE PLANKTON APPARATUS . 40.
Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method : Which Algorithms Implement Ward’s Criterion ? | SpringerLink . https://link.springer.com/article/10.1007/s00357-014-9161-z
Neuwirth, E. (2022). RColorBrewer : ColorBrewer Palettes(1.1-3). https://CRAN.R-project.org/package=RColorBrewer
Newman, M. E. J. (2006). Modularity and community structure in networks.Proceedings of the National Academy of Sciences , 103 (23), 8577‑8582. https://doi.org/10.1073/pnas.0601602103
Oksanen, J., Kindt, R., Legendre, P., Hara, B., Simpson, G., Solymos, P., Henry, M., Stevens, H., Maintainer, H., & Oksanen@oulu, jari. (2009). The vegan Package .
Orenstein, E. C., Ayata, S.-D., Maps, F., Becker, É. C., Benedetti, F., Biard, T., de Garidel-Thoron, T., Ellen, J. S., Ferrario, F., Giering, S. L. C., Guy-Haim, T., Hoebeke, L., Iversen, M. H., Kiørboe, T., Lalonde, J.-F., Lana, A., Laviale, M., Lombard, F., Lorimer, T., … Irisson, J.-O. (2022). Machine learning techniques to characterize functional traits of plankton from image data.Limnology and Oceanography , 67 (8), 1647‑1669. https://doi.org/10.1002/lno.12101
Paffenhöfer, G.-A., Mazzocchi, M. G., & Tzeng, M. W. (2006). Living on the edge : Feeding of subtropical open ocean copepods. Marine Ecology , 27 (2), 99‑108. https://doi.org/10.1111/j.1439-0485.2006.00086.x
Picheral, M., Colin, S., & Irisson, J. O. (2017). EcoTaxa, a tool for the taxonomic classification of images. URL Httpecotaxa Obs-Vlfr Fr .
Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., & Gorsky, G. (2010). The Underwater Vision Profiler 5 : An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnology And Oceanography-Methods , 8 , 462‑473. https://doi.org/10.4319/lom.2010.8.462
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project : Improved data processing and web-based tools.Nucleic Acids Research , 41 (D1), D590‑D596. https://doi.org/10.1093/nar/gks1219
Quéré, C. L., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., & Wolf-Gladrow, D. (2005). Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology , 11 (11), 2016‑2040. https://doi.org/10.1111/j.1365-2486.2005.1004.x
Rey, A., Corell, J., & Rodriguez-Ezpeleta, N. (2020).Metabarcoding to Study Zooplankton Diversity (p. 252‑263). https://doi.org/10.1201/9781351021821-14
Roe, H. S. J., James, P. T., & Thurston, M. H. (1984). The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 6. Medusae, ctenophores, amphipods and euphausiids.Progress in Oceanography , 13 (3), 425‑460. https://doi.org/10.1016/0079-6611(84)90015-6
Romagnan, J.-B., Aldamman, L., Gasparini, S., Nival, P., Aubert, A., Jamet, J. L., & Stemmann, L. (2016). High frequency mesozooplankton monitoring : Can imaging systems and automated sample analysis help us describe and interpret changes in zooplankton community composition and size structure — An example from a coastal site. Journal Of Marine Systems , 162 , 18‑28. https://doi.org/10.1016/j.jmarsys.2016.03.013
Rombouts, I., Beaugrand, G., Ibanez, F., Gasparini, S., Chiba, S., & Legendre, L. (2010). A multivariate approach to large-scale variation in marine planktonic copepod diversity and its environmental correlates.Limnology and Oceanography , 55 (5), 2219‑2229. https://doi.org/10.4319/lo.2010.55.5.2219
Sampei, M., Forest, A., Sasaki, H. et al. Attenuation of the vertical flux of copepod fecal pellets under Arctic sea ice: evidence for an active detrital food web in winter. Polar Biol 32, 225–232 (2009). https://doi.org/10.1007/s00300-008-0523-z
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur : Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology , 75 (23), 7537‑7541. https://doi.org/10.1128/AEM.01541-09
Schnetzer, A., & Steinberg, D. (2002). Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea . https://doi.org/10.3354/MEPS234071
Sha, Y., Zhang, H., Lee, M., Björnerås, C., Škerlep, M., Gollnisch, R., Herzog, S. D., Ekelund Ugge, G., Vinterstare, J., Hu, N., Pärssinen, V., Hulthén, K., Nilsson, P. A., Rengefors, K., Brönmark, C., Langerhans, R. B., & Hansson, L.-A. (2021). Diel vertical migration of copepods and its environmental drivers in subtropical Bahamian blue holes.Aquatic Ecology , 55 (4), 1157‑1169. https://doi.org/10.1007/s10452-020-09807-4
Slowikowski, K., Schep, A., Hughes, S., Dang, T. K., Lukauskas, S., Irisson, J.-O., Kamvar, Z. N., Ryan, T., Christophe, D., Hiroaki, Y., Gramme, P., Abdol, A. M., Barrett, M., Cannoodt, R., Krassowski, M., Chirico, M., & Aphalo, P. (2021). ggrepel : Automatically Position Non-Overlapping Text Labels with « ggplot2 » (0.9.1). https://CRAN.R-project.org/package=ggrepel
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology , 15 (1), 72‑101. https://doi.org/10.2307/1412159
Stamieszkin, K., Pershing, A. J., Record, N. R., Pilskaln, C. H., Dam, H. G., & Feinberg, L. R. (2015). Size as the master trait in modeled copepod fecal pellet carbon flux. Limnology and Oceanography ,60 (6), 2090‑2107. https://doi.org/10.1002/lno.10156
Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin, L. P., & Michaels, A. F. (2000). Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers , 47 (1), 137‑158. https://doi.org/10.1016/S0967-0637(99)00052-7
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., & Knap, A. H. (2001). Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS) : A decade-scale look at ocean biology and biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography , 48 (8), 1405‑1447. https://doi.org/10.1016/S0967-0645(00)00148-X
Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Science , 9 (1), 413‑444. https://doi.org/10.1146/annurev-marine-010814-015924
Steinberg, D. K., Lomas, M. W., & Cope, J. S. (2012). Long-term increase in mesozooplankton biomass in the Sargasso Sea : Linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochemical Cycles , 26 (1). https://doi.org/10.1029/2010GB004026
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari, T., & Karl, D. M. (2008). Bacterial vs. Zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnology and Oceanography , 53 (4), 1327‑1338. https://doi.org/10.4319/lo.2008.53.4.1327
Stone, J. P., & Steinberg, D. K. (2016). Salp contributions to vertical carbon flux in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers , 113 , 90‑100. https://doi.org/10.1016/j.dsr.2016.04.007
Strathmann, R. R. (2006). Versatile ciliary behaviour in capture of particles by the bryozoan cyphonautes larva. Acta Zoologica ,87 (1), 83‑89. https://doi.org/10.1111/j.1463-6395.2006.00224.x
Svensen, C., & Nejstgaard, J. C. (2003). Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. Journal of Plankton Research , 25 (8), 917‑926.
Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A., & Maas, A. E. (2021). Diel metabolic patterns in a migratory oceanic copepod. Journal of Experimental Marine Biology and Ecology, 545, 151643. https://doi.org/10.1016/j.jembe.2021.151643
Ursella, L., Cardin, V., Batistić, M., Garić, R., & Gačić, M. (2018). Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Progress in Oceanography ,167 , 78‑96. https://doi.org/10.1016/j.pocean.2018.07.004
Uye, S., & Kaname, K. (1994). Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan.Journal of Oceanography , 50 , 43‑49. https://doi.org/10.1007/BF02233855
Vilgrain, L., Maps, F., Basedow, S., Trudnowska, E., Madoui, M.-A., Niehoff, B., & Ayata, S.-D. (2022). Copepods’ true colors : Astaxanthin pigmentation as an indicator of fitness. Ecosphere .
Vilgrain, L., Maps, F., Picheral, M., Babin, M., Aubry, C., Irisson, J.-O., & Ayata, S.-D. (2021). Trait-based approach using in situ copepod images reveals contrasting ecological patterns across an Arctic ice melt zone. Limnology and Oceanography , 66 (4), 1155‑1167. https://doi.org/10.1002/lno.11672
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional!Oikos , 116 (5), 882‑892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse.Journal of Open Source Software , 4 (43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., & RStudio. (2021).ggplot2 : Create Elegant Data Visualisations Using the Grammar of Graphics (3.3.5). https://CRAN.R-project.org/package=ggplot2
Wilke, C. O. (2020). cowplot : Streamlined Plot Theme and Plot Annotations for « ggplot2 » (1.1.1). https://CRAN.R-project.org/package=cowplot
[dataset] Perhirin, M.; Gossner, H.; Godfrey, J.; Johnson, R. J.; Blanco-Bercial, L.; Ayata, S-D. (publication year): Environmental CTD data at time series station BATS from March-2016 till May-2017. PANGAEA, https://doi.org/10.1594/PANGAEA.960033
[dataset] Perhirin, M.; Gossner, H.; Godfrey, J.; Johnson, R. J.; Blanco-Bercial, L.; Ayata, S-D. (publication year): Total flux, particulate carbon and nitrogen from surface-tethered sediment traps at time series station BATS from March-2016 till May-2017. PANGAEA, https://doi.org/10.1594/PANGAEA.960038