Conclusion
A majority of prostate cancer studies present an underrepresentation of
the minority populations. This comprises a fundamental problem since
African-American patients have the highest risk of suffering from PCa
and the highest risk of tumor aggressiveness94.
There are known differences in the biological characteristics of
prostate tumors in AAM than in EAM48, so it is crucial
to improve the representation of AAM in prostate cancer studies in order
to better elucidate these biological differences. The current deficit in
African American participants in prostate cancer studies contributes to
a potential limitation of the predictive power of genomic applications
such as PRS or Decipher used to assess risk in PCa. As a result, there
could be gaps in recommendations that can be provided to this
population. Available genomic data on prostate cancer are also affected
by the underrepresentation of African-American men in germline and
somatic genetic studies of prostate cancer67. The lack
of sufficient inclusion may hinder the ability to translate findings to
clinical care and subsequently, the ability to offer personalized
treatment. These limitations might exacerbate the existing racial
disparities in prostate cancer outcomes.
While the reasons behind these disparities are multifactorial, it is
important to address them at all levels. Health disparities are often
attributed to the lack of socioeconomic resources for minorities that
usually reduce accessibility to healthcare92,95 The
difficulties in completing visits for clinical trials can also be
limited by the distance to cancer centers and the lack of transportation
support. Improving accessibility to studies is an important factor to
take into account, perhaps by increasing fund supporting the treatment,
housing, and transportation for underrepresented minorities who are
enrolled in a study.
Another barrier might be the lack of access to the information about the
studies and trials. Therefore, there should be efforts in improving the
understanding of the demographic makeup of institutional catchment areas
and increasing the community outreach to promote greater diversity in
study participation. It would also be necessary to establish national
support and dissemination programs for the trials that are being carried
out in each center and substantially increase attention to the
recruitment capacity of centers. Finally, there is a longstanding
mistrust between the African American population and the health care
system due to the mistreatment of African Americans in research studies
such as the Tuskegee Airmen Syphilis Study96 and the
Henrietta Lacks case97. This issue can be addressed by
improving the racial representation of health care providers since
patients from minority backgrounds are reported to be more likely to
enroll in research study when they are approached by providers from the
similar racial backgrounds98,99. In summary, more
efforts should be made to improve the diversity of patients included in
genomic and clinical studies to generate more evidence that will
ultimately help determine the best possible treatment for them.
References
1. Gandaglia G, Leni R, Bray F, et al. Epidemiology and Prevention of
Prostate Cancer. Eur Urol Oncol . 2021;4(6):877-892.
doi:10.1016/j.euo.2021.09.006
2. DeSantis CE, Siegel RL, Sauer AG, et al. Cancer statistics for
African Americans, 2016: Progress and opportunities in reducing racial
disparities. CA Cancer J Clin . 2016;66(4):290-308.
doi:10.3322/caac.21340
3. Chornokur G, Dalton K, Borysova ME, Kumar NB. Disparities at
presentation, diagnosis, treatment, and survival in African American
men, affected by prostate cancer. The Prostate .
2011;71(9):985-997. doi:10.1002/pros.21314
4. Thorpe RJ, Bruce MA, Howard DL, LaVeist TA. Race differences in
mobility status among prostate cancer survivors: The role of
socioeconomic status. Adv Cancer Res . 2020;146:103-114.
doi:10.1016/bs.acr.2020.01.006
5. Farrell J, Petrovics G, McLeod DG, Srivastava S. Genetic and
molecular differences in prostate carcinogenesis between African
American and Caucasian American men. Int J Mol Sci .
2013;14(8):15510-15531. doi:10.3390/ijms140815510
6. Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic
heterogeneity in prostate cancer. Nat Rev Urol . 2021;18(2):79-92.
doi:10.1038/s41585-020-00400-w
7. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome
after radical prostatectomy, external beam radiation therapy, or
interstitial radiation therapy for clinically localized prostate cancer.JAMA . 1998;280(11):969-974. doi:10.1001/jama.280.11.969
8. Partin AW, Kattan MW, Subong EN, et al. Combination of
prostate-specific antigen, clinical stage, and Gleason score to predict
pathological stage of localized prostate cancer. A multi-institutional
update. JAMA . 1997;277(18):1445-1451.
9. Eggener SE, Scardino PT, Walsh PC, et al. Predicting 15-year prostate
cancer specific mortality after radical prostatectomy. J Urol .
2011;185(3):869-875. doi:10.1016/j.juro.2010.10.057
10. Boehm K, Larcher A, Beyer B, et al. Identifying the Most Informative
Prediction Tool for Cancer-specific Mortality After Radical
Prostatectomy: Comparative Analysis of Three Commonly Used Preoperative
Prediction Models. Eur Urol . 2016;69(6):1038-1043.
doi:10.1016/j.eururo.2015.07.051
11. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide
association studies for human complex trait genetics. Genetics .
2011;187(2):367-383. doi:10.1534/genetics.110.120907
12. Byrne L, Toland AE. Polygenic Risk Scores in Prostate Cancer Risk
Assessment and Screening. Urol Clin North Am . 2021;48(3):387-399.
doi:10.1016/j.ucl.2021.03.007
13. Lambert SA, Abraham G, Inouye M. Towards clinical utility of
polygenic risk scores. Hum Mol Genet . 2019;28(R2):R133-R142.
doi:10.1093/hmg/ddz187
14. Dalela D, Löppenberg B, Sood A, Sammon J, Abdollah F. Contemporary
Role of the Decipher® Test in Prostate Cancer Management: Current
Practice and Future Perspectives. Rev Urol . 2016;18(1):1-9.
15. Mamidi TKK, Wu J, Hicks C. Interactions between Germline and Somatic
Mutated Genes in Aggressive Prostate Cancer. Prostate Cancer .
2019;2019:4047680. doi:10.1155/2019/4047680
16. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical
utility of polygenic risk scores. Nat Rev Genet .
2018;19(9):581-590. doi:10.1038/s41576-018-0018-x
17. Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses
of more than 140,000 men identify 63 new prostate cancer susceptibility
loci. Nat Genet . 2018;50(7):928-936.
doi:10.1038/s41588-018-0142-8
18. Benafif S, Kote-Jarai Z, Eeles RA, PRACTICAL Consortium. A Review of
Prostate Cancer Genome-Wide Association Studies (GWAS). Cancer
Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev
Oncol . 2018;27(8):845-857. doi:10.1158/1055-9965.EPI-16-1046
19. Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide
association meta-analysis of prostate cancer identifies new
susceptibility loci and informs genetic risk prediction. Nat
Genet . 2021;53(1):65-75. doi:10.1038/s41588-020-00748-0
20. Eeles RA, Olama AAA, Benlloch S, et al. Identification of 23 new
prostate cancer susceptibility loci using the iCOGS custom genotyping
array. Nat Genet . 2013;45(4):385-391, 391e1-2.
doi:10.1038/ng.2560
21. Sipeky C, Talala KM, Tammela TLJ, Taari K, Auvinen A, Schleutker J.
Prostate cancer risk prediction using a polygenic risk score. Sci
Rep . 2020;10(1):17075. doi:10.1038/s41598-020-74172-z
22. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after
Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer.N Engl J Med . 2016;375(15):1415-1424. doi:10.1056/NEJMoa1606220
23. Bill-Axelson A, Holmberg L, Garmo H, et al. Radical Prostatectomy or
Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J
Med . 2018;379(24):2319-2329. doi:10.1056/NEJMoa1807801
24. Bolla M, de Reijke TM, Van Tienhoven G, et al. Duration of androgen
suppression in the treatment of prostate cancer. N Engl J Med .
2009;360(24):2516-2527. doi:10.1056/NEJMoa0810095
25. Jones CU, Hunt D, McGowan DG, et al. Radiotherapy and short-term
androgen deprivation for localized prostate cancer. N Engl J Med .
2011;365(2):107-118. doi:10.1056/NEJMoa1012348
26. Bibbins-Domingo K, Grossman DC, Curry SJ. The US Preventive Services
Task Force 2017 Draft Recommendation Statement on Screening for Prostate
Cancer: An Invitation to Review and Comment. JAMA .
2017;317(19):1949-1950. doi:10.1001/jama.2017.4413
27. Na R, Labbate C, Yu H, et al. Single-Nucleotide Polymorphism–Based
Genetic Risk Score and Patient Age at Prostate Cancer Diagnosis.JAMA Netw Open . 2019;2(12):e1918145.
doi:10.1001/jamanetworkopen.2019.18145
28. Huynh-Le MP, Fan CC, Karunamuni R, et al. Polygenic hazard score is
associated with prostate cancer in multi-ethnic populations. Nat
Commun . 2021;12:1236. doi:10.1038/s41467-021-21287-0
29. Nordström T, Aly M, Eklund M, Egevad L, Grönberg H. A genetic score
can identify men at high risk for prostate cancer among men with
prostate-specific antigen of 1-3 ng/ml. Eur Urol .
2014;65(6):1184-1190. doi:10.1016/j.eururo.2013.07.005
30. Seibert TM, Fan CC, Wang Y, et al. Polygenic hazard score to guide
screening for aggressive prostate cancer: development and validation in
large scale cohorts. BMJ . 2018;360:j5757. doi:10.1136/bmj.j5757
31. Lecarpentier J, Silvestri V, Kuchenbaecker KB, et al. Prediction of
Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation
Carriers Using Polygenic Risk Scores. J Clin Oncol Off J Am Soc
Clin Oncol . 2017;35(20):2240-2250. doi:10.1200/JCO.2016.69.4935
32. Bree KK, Hensley PJ, Pettaway CA. Germline Mutations in African
American Men With Prostate Cancer: Incidence, Implications and
Diagnostic Disparities. Urology . 2022;163:148-155.
doi:10.1016/j.urology.2021.08.017
33. Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association
studies in Africans and African Americans: expanding the framework of
the genomics of human traits and disease. Public Health Genomics .
2015;18(1):40-51. doi:10.1159/000367962
34. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical
use of current polygenic risk scores may exacerbate health disparities.Nat Genet . 2019;51(4):584-591. doi:10.1038/s41588-019-0379-x
35. U.S. Cancer Statistics Data Visualizations Tool | CDC.
Published October 20, 2022. Accessed January 28, 2023.
https://www.cdc.gov/cancer/uscs/dataviz/index.htm
36. Fritsche LG, Ma Y, Zhang D, et al. On cross-ancestry cancer
polygenic risk scores. PLoS Genet . 2021;17(9):e1009670.
doi:10.1371/journal.pgen.1009670
37. Karunamuni RA, Huynh-Le MP, Fan CC, et al. African-specific
improvement of a polygenic hazard score for age at diagnosis of prostate
cancer. Int J Cancer . 2021;148(1):99-105. doi:10.1002/ijc.33282
38. Erho N, Crisan A, Vergara IA, et al. Discovery and validation of a
prostate cancer genomic classifier that predicts early metastasis
following radical prostatectomy. PloS One . 2013;8(6):e66855.
doi:10.1371/journal.pone.0066855
39. Klein EA, Yousefi K, Haddad Z, et al. A genomic classifier improves
prediction of metastatic disease within 5 years after surgery in
node-negative high-risk prostate cancer patients managed by radical
prostatectomy without adjuvant therapy. Eur Urol .
2015;67(4):778-786. doi:10.1016/j.eururo.2014.10.036
40. Jairath NK, Dal Pra A, Vince R, et al. A Systematic Review of the
Evidence for the Decipher Genomic Classifier in Prostate Cancer.Eur Urol . 2021;79(3):374-383. doi:10.1016/j.eururo.2020.11.021
41. Cooperberg MR, Erho N, Chan JM, et al. The Diverse Genomic Landscape
of Clinically Low-risk Prostate Cancer. Eur Urol .
2018;74(4):444-452. doi:10.1016/j.eururo.2018.05.014
42. Alshalalfa M, Crisan A, Vergara IA, et al. Clinical and genomic
analysis of metastatic prostate cancer progression with a background of
postoperative biochemical recurrence. BJU Int .
2015;116(4):556-567. doi:10.1111/bju.13013
43. Feng FY, Huang HC, Spratt DE, et al. Validation of a 22-Gene Genomic
Classifier in Patients With Recurrent Prostate Cancer: An Ancillary
Study of the NRG/RTOG 9601 Randomized Clinical Trial. JAMA Oncol .
2021;7(4):544-552. doi:10.1001/jamaoncol.2020.7671
44. Vince RA, Jiang R, Qi J, et al. Impact of Decipher Biopsy testing on
clinical outcomes in localized prostate cancer in a prospective
statewide collaborative. Prostate Cancer Prostatic Dis .
2022;25(4):677-683. doi:10.1038/s41391-021-00428-y
45. Gore JL, du Plessis M, Santiago-Jiménez M, et al. Decipher test
impacts decision making among patients considering adjuvant and salvage
treatment after radical prostatectomy: Interim results from the
Multicenter Prospective PRO-IMPACT study. Cancer .
2017;123(15):2850-2859. doi:10.1002/cncr.30665
46. Howard LE, Zhang J, Fishbane N, et al. Validation of a genomic
classifier for prediction of metastasis and prostate cancer-specific
mortality in African-American men following radical prostatectomy in an
equal access healthcare setting. Prostate Cancer Prostatic Dis .
2020;23(3):419-428. doi:10.1038/s41391-019-0197-3
47. Mahal BA, Alshalalfa M, Spratt DE, et al. Prostate Cancer
Genomic-risk Differences Between African-American and White Men Across
Gleason Scores. Eur Urol . 2019;75(6):1038-1040.
doi:10.1016/j.eururo.2019.01.010
48. Rayford W, Beksac AT, Alger J, et al. Comparative analysis of 1152
African-American and European-American men with prostate cancer
identifies distinct genomic and immunological differences. Commun
Biol . 2021;4(1):670. doi:10.1038/s42003-021-02140-y
49. Kensler KH, Awasthi S, Alshalalfa M, et al. Variation in Molecularly
Defined Prostate Tumor Subtypes by Self-identified Race. Eur Urol
Open Sci . 2022;40:19-26. doi:10.1016/j.euros.2022.03.014
50. Awasthi S, Grass GD, Torres-Roca J, et al. Genomic Testing in
Localized Prostate Cancer Can Identify Subsets of African Americans With
Aggressive Disease. J Natl Cancer Inst . 2022;114(12):1656-1664.
doi:10.1093/jnci/djac162
51. Gutowska-Ding MW, Deans ZC, Roos C, et al. One byte at a time:
evidencing the quality of clinical service next-generation sequencing
for germline and somatic variants. Eur J Hum Genet EJHG .
2020;28(2):202-212. doi:10.1038/s41431-019-0515-1
52. Brittain HK, Scott R, Thomas E. The rise of the genome and
personalised medicine. Clin Med Lond Engl . 2017;17(6):545-551.
doi:10.7861/clinmedicine.17-6-545
53. Nelan RL, Hayward MK, Jones JL. The growth of molecular diagnostics:
Stratified Medicine Programme, the 100,000 Genomes Project and the
future. Diagn Histopathol . 2017;23(10):458-467.
doi:10.1016/j.mpdhp.2017.09.001
54. Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS. Germline
and Somatic Mutations in Prostate Cancer for the Clinician. J Natl
Compr Cancer Netw JNCCN . 2019;17(5):515-521.
doi:10.6004/jnccn.2019.7307
55. Sokolova A, Cheng H. Germline Testing in Prostate Cancer: When and
Who to Test. Oncology . Published online October 20, 2021:645-653.
56. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer
syndromes. Oncogene . 2004;23(38):6445-6470.
doi:10.1038/sj.onc.1207714
57. Messina C, Cattrini C, Soldato D, et al. BRCA Mutations in Prostate
Cancer: Prognostic and Predictive Implications. J Oncol .
2020;2020:4986365. doi:10.1155/2020/4986365
58. Vietri MT, D’Elia G, Caliendo G, et al. Hereditary Prostate Cancer:
Genes Related, Target Therapy and Prevention. Int J Mol Sci .
2021;22(7):3753. doi:10.3390/ijms22073753
59. Maia S, Cardoso M, Pinto P, et al. Identification of Two Novel
HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients.PloS One . 2015;10(7):e0132728. doi:10.1371/journal.pone.0132728
60. Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced
prostate cancer. Nat Rev Urol . 2019;16(11):645-654.
doi:10.1038/s41585-019-0237-8
61. Cimadamore A, Lopez-Beltran A, Massari F, et al. Germline and
somatic mutations in prostate cancer: focus on defective DNA repair,
PARP inhibitors and immunotherapy. Future Oncol Lond Engl .
2020;16(5):75-80. doi:10.2217/fon-2019-0745
62. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with
metastatic castration-resistant prostate cancer with DNA repair gene
aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2
trial. Lancet Oncol . 2020;21(1):162-174.
doi:10.1016/S1470-2045(19)30684-9
63. Imyanitov E, Sokolenko A. Mechanisms of acquired resistance of
BRCA1/2-driven tumors to platinum compounds and PARP inhibitors.World J Clin Oncol . 2021;12(7):544-556.
doi:10.5306/wjco.v12.i7.544
64. Ledet EM, Burgess EF, Sokolova AO, et al. Comparison of germline
mutations in African American and Caucasian men with metastatic prostate
cancer. The Prostate . 2021;81(7):433-439. doi:10.1002/pros.24123
65. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene
Mutations in Men with Metastatic Prostate Cancer. N Engl J Med .
2016;375(5):443-453. doi:10.1056/NEJMoa1603144
66. Schumacher FR, Basourakos SP, Lewicki PJ, et al. Race and Genetic
Alterations in Prostate Cancer. JCO Precis Oncol .
2021;5:PO.21.00324. doi:10.1200/PO.21.00324
67. Koga Y, Song H, Chalmers ZR, et al. Genomic Profiling of Prostate
Cancers from Men with African and European Ancestry. Clin Cancer
Res Off J Am Assoc Cancer Res . 2020;26(17):4651-4660.
doi:10.1158/1078-0432.CCR-19-4112
68. Borno H, George DJ, Schnipper LE, Cavalli F, Cerny T, Gillessen S.
All Men Are Created Equal: Addressing Disparities in Prostate Cancer
Care. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet .
2019;39:302-308. doi:10.1200/EDBK_238879
69. Kamran SC, Xie J, Cheung ATM, et al. Tumor Mutations Across Racial
Groups in a Real-World Data Registry. JCO Precis Oncol .
2021;5:1654-1658. doi:10.1200/PO.21.00340
70. Na R, Zheng SL, Han M, et al. Germline Mutations in ATM and BRCA1/2
Distinguish Risk for Lethal and Indolent Prostate Cancer and are
Associated with Early Age at Death. Eur Urol . 2017;71(5):740-747.
doi:10.1016/j.eururo.2016.11.033
71. Plym A, Dióssy M, Szallasi Z, et al. DNA Repair Pathways and Their
Association With Lethal Prostate Cancer in African American and European
American Men. JNCI Cancer Spectr . 2022;6(1):pkab097.
doi:10.1093/jncics/pkab097
72. Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer.Asian J Androl . 2012;14(3):409-414. doi:10.1038/aja.2011.150
73. Matejcic M, Patel Y, Lilyquist J, et al. Pathogenic Variants in
Cancer Predisposition Genes and Prostate Cancer Risk in Men of African
Ancestry. JCO Precis Oncol . 2020;4:32-43. doi:10.1200/po.19.00179
74. Darst BF, Dadaev T, Saunders E, et al. Germline Sequencing DNA
Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate
Cancer. JNCI J Natl Cancer Inst . 2020;113(5):616-625.
doi:10.1093/jnci/djaa132
75. Raymond VM, Mukherjee B, Wang F, et al. Elevated risk of prostate
cancer among men with Lynch syndrome. J Clin Oncol Off J Am Soc
Clin Oncol . 2013;31(14):1713-1718. doi:10.1200/JCO.2012.44.1238
76. Zhen JT, Syed J, Nguyen KA, et al. Genetic testing for hereditary
prostate cancer: Current status and limitations. Cancer .
2018;124(15):3105-3117. doi:10.1002/cncr.31316
77. Rencsok EM, Bazzi LA, McKay RR, et al. Diversity of Enrollment in
Prostate Cancer Clinical Trials: Current Status and Future Directions.
Cancer Epidemiol Biomarkers Prev. 2020;29(7):1374-1380.
doi:10.1158/1055-9965.EPI-19-1616
78. Esdaille AR, Ibilibor C, Holmes A 2nd, Palmer NR, Murphy AB. Access
and Representation: A Narrative Review of the Disparities in Access to
Clinical Trials and Precision Oncology in Black men with Prostate
Cancer. Urology. 2022;163:90-98. doi:10.1016/j.urology.2021.09.004
79. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. A Phase
II Trial of Neoadjuvant Enoblituzumab (MGA271) in Men With Localized
Intermediate- and High-Risk Prostate Cancer. ClinicalTrials.gov
Identifier: NCT02923180. Updated December 9, 2022. Accessed February 12,
2023. https://clinicaltrials.gov/ct2/show/NCT02923180
80. Clovis Oncology, Inc. TRITON2: A Multicenter, Open-Label Phase 2
Study of Rucaparib in Patients With Metastatic Castration-Resistant
Prostate Cancer Associated With Homologous Recombination Deficiency.
ClinicalTrials.gov Identifier: NCT02952534. Updated July 6, 2022.
Accessed February 5, 2023.
https://clinicaltrials.gov/ct2/show/NCT02952534
81. AstraZeneca. A Phase III, Open Label, Randomized Study to Assess the
Efficacy and Safety of Olaparib (LynparzaTM) Versus Enzalutamide or
Abiraterone Acetate in Men With Metastatic Castration-Resistant Prostate
Cancer Who Have Failed Prior Treatment With a New Hormonal Agent and
Have Homologous Recombination Repair Gene Mutations (PROfound).
ClinicalTrials.gov Identifier: NCT029875432023. Updated January 30,
2023. Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/NCT02987543
82. Hoffmann-La Roche. A Phase III, Multicenter, Randomized Study of
Atezolizumab (Anti-PD-L1 Antibody) in Combination With Enzalutamide
Versus Enzalutamide Alone in Patients With Metastatic
Castration-Resistant Prostate Cancer After Failure of an Androgen
Synthesis Inhibitor and Failure of, Ineligibility for, or Refusal of a
Taxane Regimen (IMbassador250). ClinicalTrials.gov Identifier:
NCT03016312. Updated October 27, 2022. Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/NCT03016312.
83. Merck Sharp & Dohme LLC. A Phase II Study of Navarixin (MK-7123) in
Combination With Pembrolizumab (MK-3475) in Participants With Selected
Advanced/Metastatic Solid Tumors. ClinicalTrials.gov Identifier:
NCT03093428. Updated September 30, 2022. Accessed February 5, 2023.
https://clinicaltrials.gov/ct2/show/NCT03473925
84. Pfizer. TALAPRO-1: A phase 2, open-label, response rate study of
talazoparib in men with dna repair defects and metastatic
castration-resistant prostate cancer who previously received
taxane-based chemotherapy and progressed on at least 1 novel hormonal
agent (enzalutamide and/or abiraterone acetate/prednisone).
ClinicalTrials.gov Identifier: NCT03148795. Updated October 28, 2022.
Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/study/NCT03148795
85. Armstrong AJ. PD-L1 Inhibition as ChecKpoint Immunotherapy for
NeuroEndocrine Phenotype Prostate Cancer. Clinicaltrials.gov identifier:
NCT03179410 . Updated March 5, 2021. Accessed February 5, 2023.
86. Subudhi SK. A Pilot Trial to Explore the Link Between Immunological
Changes, Efficacy, Safety, and Tolerability of Durvalumab (MEDI4736)
Plus Tremelimumab in Chemotherapy-Naïve Men With Metastatic
Castration-Resistant Prostate Cancer (CRPC). ClinicalTrials.gov
Identifier: NCT03204812. Updated November 14, 2022. Accessed February 5,
2023. https://clinicaltrials.gov/ct2/show/NCT03204812
87. Bristol-Myers Squibb. A Phase 2 Study of Nivolumab in Combination
With Either Rucaparib, Docetaxel, or Enzalutamide in Men With
Castration-Resistant Metastatic Prostate Cancer. ClinicalTrials.gov
Identifier: NCT03338790. Updated October 7, 2022. Accessed February 12,
2023. https://clinicaltrials.gov/ct2/show/NCT03338790
88. Deol A. Phase II Trial of Immune Checkpoint Inhibitor With Anti-CD3
x Anti-HER2 Bispecific Antibody Armed Activated T Cells in Metastatic
Castrate Resistant Prostate Cancer. ClinicalTrials.gov Identifier:
NCT03406858. Updated November 15, 2022. Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/NCT03406858
89. Endocyte. Study of 177Lu-PSMA-617 In Metastatic Castrate-Resistant
Prostate Cancer - Study Results. ClinicalTrials.gov Identifier:
NCT03511664. Updated August 11, 2022. Accessed February 13, 2023.
https://clinicaltrials.gov/ct2/show/results/NCT03511664
90. Schweizer M. Bipolar Androgen Therapy Plus Olaparib in Patient With
Castration-Resistant Prostate Cancer. ClinicalTrials.gov Identifier:
NCT03516812. Updated October 21, 2022. Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/NCT03516812
91. AstraZeneca. An Open-Label, Multi-Drug, Multi-Center Phase II
Combination Study of AZD4635 in Patients With Prostate Cancer.
ClinicalTrials.gov Identifier: NCT04089553. Updated January 13, 2023.
Accessed February 12, 2023.
https://clinicaltrials.gov/ct2/show/NCT04089553
92. Vince R, Spratt DE. Drivers of racial disparities in prostate cancer
trial enrollment. Prostate Cancer Prostatic Dis .
2021;24(4):946-947. doi:10.1038/s41391-021-00427-z
93. Spratt DE, Osborne JR. Disparities in castration-resistant prostate
cancer trials. J Clin Oncol Off J Am Soc Clin Oncol .
2015;33(10):1101-1103. doi:10.1200/JCO.2014.58.1751
94. Pietro GD, Chornokur G, Kumar NB, Davis C, Park JY. Racial
Differences in the Diagnosis and Treatment of Prostate Cancer. Int
Neurourol J . 2016;20(Suppl 2):S112-119. doi:10.5213/inj.1632722.361
95. Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in
prostate cancer in the African American population with actionable ideas
and novel immunotherapies. Cancer Rep . 2021;4(5):e1340.
doi:10.1002/cnr2.134
96. Gamble VN. Under the shadow of Tuskegee: African Americans and
health care. Am J Public Health. 1997;87(11):1773-1778.
doi:10.2105/ajph.87.11.1773
97. Buseh AG, Stevens PE, Millon-Underwood S, Townsend L, Kelber ST.
Community leaders’ perspectives on engaging African Americans in
biobanks and other human genetics initiatives. J Community Genet .
2013;4(4):483-494. doi:10.1007/s12687-013-0155-z
98. McDonald JA, Vadaparampil S, Bowen D, et al. Intentions to donate to
a biobank in a national sample of African Americans. Public Health
Genomics . 2014;17(3):173-182. doi:10.1159/000360472
99. Diaz VA, Mainous AG 3rd, McCall AA, Geesey ME. Factors affecting
research participation in African American college students. Fam
Med . 2008;40(1):46-51.