Conclusion
A majority of prostate cancer studies present an underrepresentation of the minority populations. This comprises a fundamental problem since African-American patients have the highest risk of suffering from PCa and the highest risk of tumor aggressiveness94.
There are known differences in the biological characteristics of prostate tumors in AAM than in EAM48, so it is crucial to improve the representation of AAM in prostate cancer studies in order to better elucidate these biological differences. The current deficit in African American participants in prostate cancer studies contributes to a potential limitation of the predictive power of genomic applications such as PRS or Decipher used to assess risk in PCa. As a result, there could be gaps in recommendations that can be provided to this population. Available genomic data on prostate cancer are also affected by the underrepresentation of African-American men in germline and somatic genetic studies of prostate cancer67. The lack of sufficient inclusion may hinder the ability to translate findings to clinical care and subsequently, the ability to offer personalized treatment. These limitations might exacerbate the existing racial disparities in prostate cancer outcomes.
While the reasons behind these disparities are multifactorial, it is important to address them at all levels. Health disparities are often attributed to the lack of socioeconomic resources for minorities that usually reduce accessibility to healthcare92,95 The difficulties in completing visits for clinical trials can also be limited by the distance to cancer centers and the lack of transportation support. Improving accessibility to studies is an important factor to take into account, perhaps by increasing fund supporting the treatment, housing, and transportation for underrepresented minorities who are enrolled in a study.
Another barrier might be the lack of access to the information about the studies and trials. Therefore, there should be efforts in improving the understanding of the demographic makeup of institutional catchment areas and increasing the community outreach to promote greater diversity in study participation. It would also be necessary to establish national support and dissemination programs for the trials that are being carried out in each center and substantially increase attention to the recruitment capacity of centers. Finally, there is a longstanding mistrust between the African American population and the health care system due to the mistreatment of African Americans in research studies such as the Tuskegee Airmen Syphilis Study96 and the Henrietta Lacks case97. This issue can be addressed by improving the racial representation of health care providers since patients from minority backgrounds are reported to be more likely to enroll in research study when they are approached by providers from the similar racial backgrounds98,99. In summary, more efforts should be made to improve the diversity of patients included in genomic and clinical studies to generate more evidence that will ultimately help determine the best possible treatment for them.
References
1. Gandaglia G, Leni R, Bray F, et al. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol . 2021;4(6):877-892. doi:10.1016/j.euo.2021.09.006
2. DeSantis CE, Siegel RL, Sauer AG, et al. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J Clin . 2016;66(4):290-308. doi:10.3322/caac.21340
3. Chornokur G, Dalton K, Borysova ME, Kumar NB. Disparities at presentation, diagnosis, treatment, and survival in African American men, affected by prostate cancer. The Prostate . 2011;71(9):985-997. doi:10.1002/pros.21314
4. Thorpe RJ, Bruce MA, Howard DL, LaVeist TA. Race differences in mobility status among prostate cancer survivors: The role of socioeconomic status. Adv Cancer Res . 2020;146:103-114. doi:10.1016/bs.acr.2020.01.006
5. Farrell J, Petrovics G, McLeod DG, Srivastava S. Genetic and molecular differences in prostate carcinogenesis between African American and Caucasian American men. Int J Mol Sci . 2013;14(8):15510-15531. doi:10.3390/ijms140815510
6. Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol . 2021;18(2):79-92. doi:10.1038/s41585-020-00400-w
7. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer.JAMA . 1998;280(11):969-974. doi:10.1001/jama.280.11.969
8. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA . 1997;277(18):1445-1451.
9. Eggener SE, Scardino PT, Walsh PC, et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol . 2011;185(3):869-875. doi:10.1016/j.juro.2010.10.057
10. Boehm K, Larcher A, Beyer B, et al. Identifying the Most Informative Prediction Tool for Cancer-specific Mortality After Radical Prostatectomy: Comparative Analysis of Three Commonly Used Preoperative Prediction Models. Eur Urol . 2016;69(6):1038-1043. doi:10.1016/j.eururo.2015.07.051
11. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics . 2011;187(2):367-383. doi:10.1534/genetics.110.120907
12. Byrne L, Toland AE. Polygenic Risk Scores in Prostate Cancer Risk Assessment and Screening. Urol Clin North Am . 2021;48(3):387-399. doi:10.1016/j.ucl.2021.03.007
13. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet . 2019;28(R2):R133-R142. doi:10.1093/hmg/ddz187
14. Dalela D, Löppenberg B, Sood A, Sammon J, Abdollah F. Contemporary Role of the Decipher® Test in Prostate Cancer Management: Current Practice and Future Perspectives. Rev Urol . 2016;18(1):1-9.
15. Mamidi TKK, Wu J, Hicks C. Interactions between Germline and Somatic Mutated Genes in Aggressive Prostate Cancer. Prostate Cancer . 2019;2019:4047680. doi:10.1155/2019/4047680
16. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet . 2018;19(9):581-590. doi:10.1038/s41576-018-0018-x
17. Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet . 2018;50(7):928-936. doi:10.1038/s41588-018-0142-8
18. Benafif S, Kote-Jarai Z, Eeles RA, PRACTICAL Consortium. A Review of Prostate Cancer Genome-Wide Association Studies (GWAS). Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol . 2018;27(8):845-857. doi:10.1158/1055-9965.EPI-16-1046
19. Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet . 2021;53(1):65-75. doi:10.1038/s41588-020-00748-0
20. Eeles RA, Olama AAA, Benlloch S, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet . 2013;45(4):385-391, 391e1-2. doi:10.1038/ng.2560
21. Sipeky C, Talala KM, Tammela TLJ, Taari K, Auvinen A, Schleutker J. Prostate cancer risk prediction using a polygenic risk score. Sci Rep . 2020;10(1):17075. doi:10.1038/s41598-020-74172-z
22. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer.N Engl J Med . 2016;375(15):1415-1424. doi:10.1056/NEJMoa1606220
23. Bill-Axelson A, Holmberg L, Garmo H, et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J Med . 2018;379(24):2319-2329. doi:10.1056/NEJMoa1807801
24. Bolla M, de Reijke TM, Van Tienhoven G, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med . 2009;360(24):2516-2527. doi:10.1056/NEJMoa0810095
25. Jones CU, Hunt D, McGowan DG, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med . 2011;365(2):107-118. doi:10.1056/NEJMoa1012348
26. Bibbins-Domingo K, Grossman DC, Curry SJ. The US Preventive Services Task Force 2017 Draft Recommendation Statement on Screening for Prostate Cancer: An Invitation to Review and Comment. JAMA . 2017;317(19):1949-1950. doi:10.1001/jama.2017.4413
27. Na R, Labbate C, Yu H, et al. Single-Nucleotide Polymorphism–Based Genetic Risk Score and Patient Age at Prostate Cancer Diagnosis.JAMA Netw Open . 2019;2(12):e1918145. doi:10.1001/jamanetworkopen.2019.18145
28. Huynh-Le MP, Fan CC, Karunamuni R, et al. Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nat Commun . 2021;12:1236. doi:10.1038/s41467-021-21287-0
29. Nordström T, Aly M, Eklund M, Egevad L, Grönberg H. A genetic score can identify men at high risk for prostate cancer among men with prostate-specific antigen of 1-3 ng/ml. Eur Urol . 2014;65(6):1184-1190. doi:10.1016/j.eururo.2013.07.005
30. Seibert TM, Fan CC, Wang Y, et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ . 2018;360:j5757. doi:10.1136/bmj.j5757
31. Lecarpentier J, Silvestri V, Kuchenbaecker KB, et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J Clin Oncol Off J Am Soc Clin Oncol . 2017;35(20):2240-2250. doi:10.1200/JCO.2016.69.4935
32. Bree KK, Hensley PJ, Pettaway CA. Germline Mutations in African American Men With Prostate Cancer: Incidence, Implications and Diagnostic Disparities. Urology . 2022;163:148-155. doi:10.1016/j.urology.2021.08.017
33. Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics . 2015;18(1):40-51. doi:10.1159/000367962
34. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities.Nat Genet . 2019;51(4):584-591. doi:10.1038/s41588-019-0379-x
35. U.S. Cancer Statistics Data Visualizations Tool | CDC. Published October 20, 2022. Accessed January 28, 2023. https://www.cdc.gov/cancer/uscs/dataviz/index.htm
36. Fritsche LG, Ma Y, Zhang D, et al. On cross-ancestry cancer polygenic risk scores. PLoS Genet . 2021;17(9):e1009670. doi:10.1371/journal.pgen.1009670
37. Karunamuni RA, Huynh-Le MP, Fan CC, et al. African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. Int J Cancer . 2021;148(1):99-105. doi:10.1002/ijc.33282
38. Erho N, Crisan A, Vergara IA, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PloS One . 2013;8(6):e66855. doi:10.1371/journal.pone.0066855
39. Klein EA, Yousefi K, Haddad Z, et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol . 2015;67(4):778-786. doi:10.1016/j.eururo.2014.10.036
40. Jairath NK, Dal Pra A, Vince R, et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer.Eur Urol . 2021;79(3):374-383. doi:10.1016/j.eururo.2020.11.021
41. Cooperberg MR, Erho N, Chan JM, et al. The Diverse Genomic Landscape of Clinically Low-risk Prostate Cancer. Eur Urol . 2018;74(4):444-452. doi:10.1016/j.eururo.2018.05.014
42. Alshalalfa M, Crisan A, Vergara IA, et al. Clinical and genomic analysis of metastatic prostate cancer progression with a background of postoperative biochemical recurrence. BJU Int . 2015;116(4):556-567. doi:10.1111/bju.13013
43. Feng FY, Huang HC, Spratt DE, et al. Validation of a 22-Gene Genomic Classifier in Patients With Recurrent Prostate Cancer: An Ancillary Study of the NRG/RTOG 9601 Randomized Clinical Trial. JAMA Oncol . 2021;7(4):544-552. doi:10.1001/jamaoncol.2020.7671
44. Vince RA, Jiang R, Qi J, et al. Impact of Decipher Biopsy testing on clinical outcomes in localized prostate cancer in a prospective statewide collaborative. Prostate Cancer Prostatic Dis . 2022;25(4):677-683. doi:10.1038/s41391-021-00428-y
45. Gore JL, du Plessis M, Santiago-Jiménez M, et al. Decipher test impacts decision making among patients considering adjuvant and salvage treatment after radical prostatectomy: Interim results from the Multicenter Prospective PRO-IMPACT study. Cancer . 2017;123(15):2850-2859. doi:10.1002/cncr.30665
46. Howard LE, Zhang J, Fishbane N, et al. Validation of a genomic classifier for prediction of metastasis and prostate cancer-specific mortality in African-American men following radical prostatectomy in an equal access healthcare setting. Prostate Cancer Prostatic Dis . 2020;23(3):419-428. doi:10.1038/s41391-019-0197-3
47. Mahal BA, Alshalalfa M, Spratt DE, et al. Prostate Cancer Genomic-risk Differences Between African-American and White Men Across Gleason Scores. Eur Urol . 2019;75(6):1038-1040. doi:10.1016/j.eururo.2019.01.010
48. Rayford W, Beksac AT, Alger J, et al. Comparative analysis of 1152 African-American and European-American men with prostate cancer identifies distinct genomic and immunological differences. Commun Biol . 2021;4(1):670. doi:10.1038/s42003-021-02140-y
49. Kensler KH, Awasthi S, Alshalalfa M, et al. Variation in Molecularly Defined Prostate Tumor Subtypes by Self-identified Race. Eur Urol Open Sci . 2022;40:19-26. doi:10.1016/j.euros.2022.03.014
50. Awasthi S, Grass GD, Torres-Roca J, et al. Genomic Testing in Localized Prostate Cancer Can Identify Subsets of African Americans With Aggressive Disease. J Natl Cancer Inst . 2022;114(12):1656-1664. doi:10.1093/jnci/djac162
51. Gutowska-Ding MW, Deans ZC, Roos C, et al. One byte at a time: evidencing the quality of clinical service next-generation sequencing for germline and somatic variants. Eur J Hum Genet EJHG . 2020;28(2):202-212. doi:10.1038/s41431-019-0515-1
52. Brittain HK, Scott R, Thomas E. The rise of the genome and personalised medicine. Clin Med Lond Engl . 2017;17(6):545-551. doi:10.7861/clinmedicine.17-6-545
53. Nelan RL, Hayward MK, Jones JL. The growth of molecular diagnostics: Stratified Medicine Programme, the 100,000 Genomes Project and the future. Diagn Histopathol . 2017;23(10):458-467. doi:10.1016/j.mpdhp.2017.09.001
54. Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS. Germline and Somatic Mutations in Prostate Cancer for the Clinician. J Natl Compr Cancer Netw JNCCN . 2019;17(5):515-521. doi:10.6004/jnccn.2019.7307
55. Sokolova A, Cheng H. Germline Testing in Prostate Cancer: When and Who to Test. Oncology . Published online October 20, 2021:645-653.
56. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene . 2004;23(38):6445-6470. doi:10.1038/sj.onc.1207714
57. Messina C, Cattrini C, Soldato D, et al. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications. J Oncol . 2020;2020:4986365. doi:10.1155/2020/4986365
58. Vietri MT, D’Elia G, Caliendo G, et al. Hereditary Prostate Cancer: Genes Related, Target Therapy and Prevention. Int J Mol Sci . 2021;22(7):3753. doi:10.3390/ijms22073753
59. Maia S, Cardoso M, Pinto P, et al. Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients.PloS One . 2015;10(7):e0132728. doi:10.1371/journal.pone.0132728
60. Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol . 2019;16(11):645-654. doi:10.1038/s41585-019-0237-8
61. Cimadamore A, Lopez-Beltran A, Massari F, et al. Germline and somatic mutations in prostate cancer: focus on defective DNA repair, PARP inhibitors and immunotherapy. Future Oncol Lond Engl . 2020;16(5):75-80. doi:10.2217/fon-2019-0745
62. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol . 2020;21(1):162-174. doi:10.1016/S1470-2045(19)30684-9
63. Imyanitov E, Sokolenko A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors.World J Clin Oncol . 2021;12(7):544-556. doi:10.5306/wjco.v12.i7.544
64. Ledet EM, Burgess EF, Sokolova AO, et al. Comparison of germline mutations in African American and Caucasian men with metastatic prostate cancer. The Prostate . 2021;81(7):433-439. doi:10.1002/pros.24123
65. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med . 2016;375(5):443-453. doi:10.1056/NEJMoa1603144
66. Schumacher FR, Basourakos SP, Lewicki PJ, et al. Race and Genetic Alterations in Prostate Cancer. JCO Precis Oncol . 2021;5:PO.21.00324. doi:10.1200/PO.21.00324
67. Koga Y, Song H, Chalmers ZR, et al. Genomic Profiling of Prostate Cancers from Men with African and European Ancestry. Clin Cancer Res Off J Am Assoc Cancer Res . 2020;26(17):4651-4660. doi:10.1158/1078-0432.CCR-19-4112
68. Borno H, George DJ, Schnipper LE, Cavalli F, Cerny T, Gillessen S. All Men Are Created Equal: Addressing Disparities in Prostate Cancer Care. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Annu Meet . 2019;39:302-308. doi:10.1200/EDBK_238879
69. Kamran SC, Xie J, Cheung ATM, et al. Tumor Mutations Across Racial Groups in a Real-World Data Registry. JCO Precis Oncol . 2021;5:1654-1658. doi:10.1200/PO.21.00340
70. Na R, Zheng SL, Han M, et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur Urol . 2017;71(5):740-747. doi:10.1016/j.eururo.2016.11.033
71. Plym A, Dióssy M, Szallasi Z, et al. DNA Repair Pathways and Their Association With Lethal Prostate Cancer in African American and European American Men. JNCI Cancer Spectr . 2022;6(1):pkab097. doi:10.1093/jncics/pkab097
72. Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer.Asian J Androl . 2012;14(3):409-414. doi:10.1038/aja.2011.150
73. Matejcic M, Patel Y, Lilyquist J, et al. Pathogenic Variants in Cancer Predisposition Genes and Prostate Cancer Risk in Men of African Ancestry. JCO Precis Oncol . 2020;4:32-43. doi:10.1200/po.19.00179
74. Darst BF, Dadaev T, Saunders E, et al. Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. JNCI J Natl Cancer Inst . 2020;113(5):616-625. doi:10.1093/jnci/djaa132
75. Raymond VM, Mukherjee B, Wang F, et al. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol Off J Am Soc Clin Oncol . 2013;31(14):1713-1718. doi:10.1200/JCO.2012.44.1238
76. Zhen JT, Syed J, Nguyen KA, et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer . 2018;124(15):3105-3117. doi:10.1002/cncr.31316
77. Rencsok EM, Bazzi LA, McKay RR, et al. Diversity of Enrollment in Prostate Cancer Clinical Trials: Current Status and Future Directions. Cancer Epidemiol Biomarkers Prev. 2020;29(7):1374-1380. doi:10.1158/1055-9965.EPI-19-1616
78. Esdaille AR, Ibilibor C, Holmes A 2nd, Palmer NR, Murphy AB. Access and Representation: A Narrative Review of the Disparities in Access to Clinical Trials and Precision Oncology in Black men with Prostate Cancer. Urology. 2022;163:90-98. doi:10.1016/j.urology.2021.09.004
79. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. A Phase II Trial of Neoadjuvant Enoblituzumab (MGA271) in Men With Localized Intermediate- and High-Risk Prostate Cancer. ClinicalTrials.gov Identifier: NCT02923180. Updated December 9, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT02923180
80. Clovis Oncology, Inc. TRITON2: A Multicenter, Open-Label Phase 2 Study of Rucaparib in Patients With Metastatic Castration-Resistant Prostate Cancer Associated With Homologous Recombination Deficiency. ClinicalTrials.gov Identifier: NCT02952534. Updated July 6, 2022. Accessed February 5, 2023. https://clinicaltrials.gov/ct2/show/NCT02952534
81. AstraZeneca. A Phase III, Open Label, Randomized Study to Assess the Efficacy and Safety of Olaparib (LynparzaTM) Versus Enzalutamide or Abiraterone Acetate in Men With Metastatic Castration-Resistant Prostate Cancer Who Have Failed Prior Treatment With a New Hormonal Agent and Have Homologous Recombination Repair Gene Mutations (PROfound). ClinicalTrials.gov Identifier: NCT029875432023. Updated January 30, 2023. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT02987543
82. Hoffmann-La Roche. A Phase III, Multicenter, Randomized Study of Atezolizumab (Anti-PD-L1 Antibody) in Combination With Enzalutamide Versus Enzalutamide Alone in Patients With Metastatic Castration-Resistant Prostate Cancer After Failure of an Androgen Synthesis Inhibitor and Failure of, Ineligibility for, or Refusal of a Taxane Regimen (IMbassador250). ClinicalTrials.gov Identifier: NCT03016312. Updated October 27, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT03016312.
83. Merck Sharp & Dohme LLC. A Phase II Study of Navarixin (MK-7123) in Combination With Pembrolizumab (MK-3475) in Participants With Selected Advanced/Metastatic Solid Tumors. ClinicalTrials.gov Identifier: NCT03093428. Updated September 30, 2022. Accessed February 5, 2023. https://clinicaltrials.gov/ct2/show/NCT03473925
84. Pfizer. TALAPRO-1: A phase 2, open-label, response rate study of talazoparib in men with dna repair defects and metastatic castration-resistant prostate cancer who previously received taxane-based chemotherapy and progressed on at least 1 novel hormonal agent (enzalutamide and/or abiraterone acetate/prednisone). ClinicalTrials.gov Identifier: NCT03148795. Updated October 28, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/study/NCT03148795
85. Armstrong AJ. PD-L1 Inhibition as ChecKpoint Immunotherapy for NeuroEndocrine Phenotype Prostate Cancer. Clinicaltrials.gov identifier: NCT03179410 . Updated March 5, 2021. Accessed February 5, 2023.
86. Subudhi SK. A Pilot Trial to Explore the Link Between Immunological Changes, Efficacy, Safety, and Tolerability of Durvalumab (MEDI4736) Plus Tremelimumab in Chemotherapy-Naïve Men With Metastatic Castration-Resistant Prostate Cancer (CRPC). ClinicalTrials.gov Identifier: NCT03204812. Updated November 14, 2022. Accessed February 5, 2023. https://clinicaltrials.gov/ct2/show/NCT03204812
87. Bristol-Myers Squibb. A Phase 2 Study of Nivolumab in Combination With Either Rucaparib, Docetaxel, or Enzalutamide in Men With Castration-Resistant Metastatic Prostate Cancer. ClinicalTrials.gov Identifier: NCT03338790. Updated October 7, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT03338790
88. Deol A. Phase II Trial of Immune Checkpoint Inhibitor With Anti-CD3 x Anti-HER2 Bispecific Antibody Armed Activated T Cells in Metastatic Castrate Resistant Prostate Cancer. ClinicalTrials.gov Identifier: NCT03406858. Updated November 15, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT03406858
89. Endocyte. Study of 177Lu-PSMA-617 In Metastatic Castrate-Resistant Prostate Cancer - Study Results. ClinicalTrials.gov Identifier: NCT03511664. Updated August 11, 2022. Accessed February 13, 2023. https://clinicaltrials.gov/ct2/show/results/NCT03511664
90. Schweizer M. Bipolar Androgen Therapy Plus Olaparib in Patient With Castration-Resistant Prostate Cancer. ClinicalTrials.gov Identifier: NCT03516812. Updated October 21, 2022. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT03516812
91. AstraZeneca. An Open-Label, Multi-Drug, Multi-Center Phase II Combination Study of AZD4635 in Patients With Prostate Cancer. ClinicalTrials.gov Identifier: NCT04089553. Updated January 13, 2023. Accessed February 12, 2023. https://clinicaltrials.gov/ct2/show/NCT04089553
92. Vince R, Spratt DE. Drivers of racial disparities in prostate cancer trial enrollment. Prostate Cancer Prostatic Dis . 2021;24(4):946-947. doi:10.1038/s41391-021-00427-z
93. Spratt DE, Osborne JR. Disparities in castration-resistant prostate cancer trials. J Clin Oncol Off J Am Soc Clin Oncol . 2015;33(10):1101-1103. doi:10.1200/JCO.2014.58.1751
94. Pietro GD, Chornokur G, Kumar NB, Davis C, Park JY. Racial Differences in the Diagnosis and Treatment of Prostate Cancer. Int Neurourol J . 2016;20(Suppl 2):S112-119. doi:10.5213/inj.1632722.361
95. Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep . 2021;4(5):e1340. doi:10.1002/cnr2.134
96. Gamble VN. Under the shadow of Tuskegee: African Americans and health care. Am J Public Health. 1997;87(11):1773-1778. doi:10.2105/ajph.87.11.1773
97. Buseh AG, Stevens PE, Millon-Underwood S, Townsend L, Kelber ST. Community leaders’ perspectives on engaging African Americans in biobanks and other human genetics initiatives. J Community Genet . 2013;4(4):483-494. doi:10.1007/s12687-013-0155-z
98. McDonald JA, Vadaparampil S, Bowen D, et al. Intentions to donate to a biobank in a national sample of African Americans. Public Health Genomics . 2014;17(3):173-182. doi:10.1159/000360472
99. Diaz VA, Mainous AG 3rd, McCall AA, Geesey ME. Factors affecting research participation in African American college students. Fam Med . 2008;40(1):46-51.