Acknowledgements 
Authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), grant: ALLRP-2020-555211 and Apetito HFS Ltd. (Orléans, ON, CA) for providing puree samples.

REFERENCES

Ahmed, Sairam, S., & Urooj, A. In vitro hypoglycemic effects of selected dietary fiber sources. Journal of Food Science and Technology. 2010; 48: 285–289. https://doi.org/10.1007/s13197-010-0153-7
Alvarez, M. D., Jiménez, M. J., Olivares, M. D., Barrios, L., & Canet, W. Texture Perception Determined By Soy Protein Isolate and Inulin Addition in Potato Puree: Links With Mechanical and Microstructural Features. Journal of Texture Studies. 2012; 43: 361–374. https://doi.org/10.1111/j.1745-4603.2012.00347.x
Bhutkar, M. A., & Bhise, S. B. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci. 2012; 10: 457-462.
Cofrades, Bou, R., Flaiz, L., Garcimartín, A., Benedí, J., Mateos, R., Sánchez-Muniz, F. J., Olivero-David, R., & Jiménez-Colmenero, F. Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions. Journal of Food Science and Technology. 2017; 54: 1785–1793. https://doi.org/10.1007/s13197-017-2604-x
Colmenero, Ayo, M. ., & Carballo, J. Physicochemical properties of low sodium frankfurter with added walnut: effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Science. 2005; 69: 781–788. https://doi.org/10.1016/j.meatsci.2004.11.011
Colmenero, Carballo, J., & Solas, M. T. The effect of use of freeze-thawed pork on the properties of Bologna sausages with two fat levels. International Journal of Food Science & Technology. 1995; 30: 335–345. https://doi.org/10.1111/j.1365-2621.1995.tb01382.x
Felisberto, Galvão, M. T. E. L., Picone, C. S. F., Cunha, R. L., & Pollonio, M. A. R. Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. Food Science & Technology. 2015; 60: 148–155. https://doi.org/10.1016/j.lwt.2014.08.004
Franco, E. A. N., Sanches-Silva, A., Ribeiro-Santos, R., & de Melo, N. R. Psyllium (Plantago ovata Forsk): From evidence of health benefits to its food application. Trends in Food Science & Technology. 2020; 96: 166–175. https://doi.org/10.1016/j.tifs.2019.12.006
Gibb, McRorie, J., Russell, D. A., Hasselblad, V., & D’Alessio, D. A. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. The American Journal of Clinical Nutrition. 2015; 102: 1604–1614. https://doi.org/10.3945/ajcn.115.106989
Goesaert, Slade, L., Levine, H., & Delcour, J. A. Amylases and bread firming – an integrated view. Journal of Cereal Science. 2009; 50: 345–352. https://doi.org/10.1016/j.jcs.2009.04.010
Guo, Shang, H., Zhao, J., Zhang, H., & Chen, S. Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) Polysaccharide and its antioxidant and hypoglycemic activities. Process Biochemistry (1991). 2020; 92: 17–28. https://doi.org/10.1016/j.procbio.2020.03.005
Guo, X., Ye, X., Sun, Y., Wu, D., Wu, N., Hu, Y., & Chen, S. Ultrasound Effects on the Degradation Kinetics, Structure, and Antioxidant Activity of Sea Cucumber Fucoidan. Journal of Agricultural and Food Chemistry. 2014; 62: 1088–1095. https://doi.org/10.1021/jf404717y
Hadde, Mossel, B., Chen, J., & Prakash, S. The safety and efficacy of xanthan gum-based thickeners and their effect in modifying bolus rheology in the therapeutic medical management of dysphagia. Food Hydrocolloids for Health. 2021; 1: 100038–. https://doi.org/10.1016/j.fhfh.2021.100038
Hanson, O’Leary, M. T., & Smith, C. H. The Effect of Saliva on the Viscosity of Thickened Drinks. Dysphagia. 2011; 27: 10–19. https://doi.org/10.1007/s00455-011-9330-8
Hu, Wang, K., Han, L., Zhou, B., Yang, J., & Li, S. Pomegranate seed oil stabilized with ovalbumin glycated by inulin: Physicochemical stability and oxidative stability. Food Hydrocolloids. 2020; 102: 105602–. https://doi.org/10.1016/j.foodhyd.2019.105602
Keller, Chambers, L., Niezgoda, H., & Duizer, L. Issues associated with the use of modified texture foods. The Journal of Nutrition, Health & Aging. 2011; 16: 195–200. https://doi.org/10.1007/s12603-011-0160-z
Kumar, Y. Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International. 2021; 37: 296–312. https://doi.org/10.1080/87559129.2019.1704001
Lee, Li, D. S., Ilavsky, J., Kuzmenko, I., Jeng, G.-S., O’Donnell, M., & Pozzo, L. D.. Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS. Journal of Colloid and Interface Science. 2019; 536: 281–290. https://doi.org/10.1016/j.jcis.2018.10.047
Leong, T., Zhou, M., Kukan, N., Ashokkumar, M., & Martin, G. Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids. 2017; 63: 685–695. https://doi.org/10.1016/j.foodhyd.2016.10.017
Liu, & Lanier, T. C. Combined use of variable pressure scanning electron microscopy and confocal laser scanning microscopy best reveal microstructure of comminuted meat gels. Food Science & Technology. 2015; 62: 1027–1033. https://doi.org/10.1016/j.lwt.2015.02.001
Lu, Mao, L., Hou, Z., Miao, S., & Gao, Y. Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. Food Engineering Reviews. 2019; 11: 245–258. https://doi.org/10.1007/s12393-019-09194-z
Mao, & Miao, S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Engineering Reviews. 2015; 7: 439–451. https://doi.org/10.1007/s12393-015-9108-0
Maphosa, Y., & Jideani, V. A. Factors affecting the stability of emulsions stabilised by biopolymers. In: Karakuş, S, editors. Science and Technology Behind Nanoemulsions. London, United Kingdom: IntechOpen; 2018. p. 65-80.
Masood, R., & Miraftab, M. Psyllium: Current and Future Applications. Medical and healthcare textiles. Woodhead Publishing; 2010. p. 244-253.
N A Ismail, J Bakar, A Q Sazili, & M R Ismail-Fitry. Effect of different levels of fat, sodium chloride, and sodium tripolyphosphate on the physicochemical and microstructure properties of Jamnapari goat meat emulsion modelling system. International Food Research Journal. 2021; 28: 916–925.
Newman, Vilardell, N., Clavé, P., & Speyer, R. Effect of Bolus Viscosity on the Safety and Efficacy of Swallowing and the Kinematics of the Swallow Response in Patients with Oropharyngeal Dysphagia: White Paper by the European Society for Swallowing Disorders (ESSD). Dysphagia. 2016; 31: 232–249. https://doi.org/10.1007/s00455-016-9696-8
Nishinari, Turcanu, M., Nakauma, M., & Fang, Y. Role of fluid cohesiveness in safe swallowing. NPJ Science of Food. 2019; 3: 5–5. https://doi.org/10.1038/s41538-019-0038-8
Ou, Kwok, K., Li, Y., & Fu, L. In Vitro Study of Possible Role of Dietary Fiber in Lowering Postprandial Serum Glucose. Journal of Agricultural and Food Chemistry. 2001; 49: 1026–1029. https://doi.org/10.1021/jf000574n
Paglarini, Vidal, V. A. S., Ozaki, M. M., Ribeiro, A. P. B., Bernardinelli, O. D., Câmara, A. K. F. I., Herrero, A. M., Ruiz-Capillas, C., Sabadini, E., & Pollonio, M. A. R. Inulin gelled emulsion as a fat replacer and fiber carrier in healthier Bologna sausage. Food Science and Technology International. 2022; 28: 3–14. https://doi.org/10.1177/1082013220980586
Palanuvej, C. In Vitro Glucose Entrapment and Alpha-Glucosidase Inhibition of Mucilaginous Substances from Selected Thai Medicinal Plants. Scientia Pharmaceutica. 2009; 77: https://doi.org/10.3797/scipharm.0907-17
Picot, Subratty, A. H., & Mahomoodally, M. F. Inhibitory Potential of Five Traditionally Used Native Antidiabetic Medicinal Plants on α-Amylase, α-Glucosidase, Glucose Entrapment, and Amylolysis Kinetics In Vitro. Advances in Pharmacological Sciences. 2014; 2014: 739834–739834. https://doi.org/10.1155/2014/739834
Raymundo, A., Fradinho, P., & Nunes, M. C. Effect of Psyllium fibre content on the textural and rheological characteristics of biscuit and biscuit dough. Bioactive Carbohydrates and Dietary Fibre. 2014; 3: https://doi.org/10.1016/j.bcdf.2014.03.001
Saha, D., & Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of food science and technology. 2010; 47: 587–597. https://doi.org/10.1007/s13197-010-0162-6
Sarkar, A., Ademuyiwa, V., Stubley, S., Esa, N. H., Goycoolea, F. M., Qin, X., Gonzalez, F., & Olvera, C. Pickering emulsions co-stabilized by composite protein/ polysaccharide particle-particle interfaces: Impact on in vitro gastric stability. Food Hydrocolloids. 2018; 84: 282–291. https://doi.org/10.1016/j.foodhyd.2018.06.019
Sasegbon, A., & Hamdy, S. The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia. Neurogastroenterology and Motility. 2017; 29: e13100–n/a. https://doi.org/10.1111/nmo.13100
Seshadri, Sellers, C. R., & Kearney, M. H. Balancing Eating With Breathing: Community-Dwelling Older Adults’ Experiences of Dysphagia and Texture-Modified Diets. The Gerontologist. 2018; 58: 749–758. https://doi.org/10.1093/geront/gnw203
Souza, P. M. D. Application of microbial α-amylase in industry - A review. Brazilian Journal of Microbiology. 2010; 41: 850–861. https://doi.org/10.1590/S1517-83822010000400004
Sukkar, Maggi, N., Travalca Cupillo, B., & Ruggiero, C. Optimizing Texture Modified Foods for Oro-pharyngeal Dysphagia: A Difficult but Possible Target? Frontiers in Nutrition (Lausanne). 2018; 5: 68–68. https://doi.org/10.3389/fnut.2018.00068
Tagliaferri, Lauretani, F., Pelá, G., Meschi, T., & Maggio, M. The risk of dysphagia is associated with malnutrition and poor functional outcomes in a large population of outpatient older individuals. Clinical Nutrition (Edinburgh, Scotland). 2019; 38: 2684–2689. https://doi.org/10.1016/j.clnu.2018.11.022
Telagari, M., & Hullatti, K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian journal of pharmacology. 2015; 47: 425–429. https://doi.org/10.4103/0253-7613.161270
Tomasik, P., & Horton, D. Enzymatic conversions of starch. Advances in carbohydrate chemistry and biochemistry. Academic Press; 2012. p. 59-436.
Wang, Wang, X., Muhoza, B., Feng, T., Xia, S., & Zhang, X. Microwave combined with conduction heating effects on the tenderness, water distribution, and microstructure of pork belly. Innovative Food Science & Emerging Technologies. 2020;  62: 102344–. https://doi.org/10.1016/j.ifset.2020.102344
Werstuck, & Steel, Ms. Dysphagia Identification and Assessment in Adults in Primary Care Settings-A Canadian Study of Dietitians. Canadian Journal of Dietetic Practice and Research. 2021; 82: 84–89. https://doi.org/10.3148/cjdpr-2021-002
Xiong, Li, Q., Miao, S., Zhang, Y., Zheng, B., & Zhang, L. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum. Innovative Food Science & Emerging Technologies. 2019; 54: 225–234. https://doi.org/10.1016/j.ifset.2019.04.013
Xu, Xiong, Y., Li, Z., Luo, D., Wang, Z., Sun, Y., & Shah, B. R. Stability, microstructural and rheological properties of complex prebiotic emulsion stabilized by sodium caseinate with inulin and konjac glucomannan. Food Hydrocolloids. 2020; 105: 105772–. https://doi.org/10.1016/j.foodhyd.2020.105772
Yu, Perret, J., Parker, T., & Allen, K. G. Enzymatic modification to improve the water-absorbing and gelling properties of psyllium. Food Chemistry. 2003; 82: 243–248. https://doi.org/10.1016/S0308-8146(02)00520-4
Zhou, P., Wen, L., Ai, T., Liang, H., Li, J., & Li, B. A novel emulsion gel solely stabilized by the hot water extracted polysaccharide from psyllium husk: Self-healing plays a key role. Food Hydrocolloids. 2022; 130: 107718–. https://doi.org/10.1016/j.foodhyd.2022.107718
Zhu, Lu, H., Zhu, J., Zhang, M., & Yin, L. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles. Food Hydrocolloids. 2019;  91: 204–213. https://doi.org/10.1016/j.foodhyd.2019.01.029