References
Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013).
Influence of inoculation with plant growth promoting rhizobacteria
(PGPR) on tomato plant growth and nematode reproduction under greenhouse
conditions. Saudi Journal of Biological Sciences , 20(1), 57-61.
Antunes, P. M., Koch, A. M., Dunfield, K. E., Hart, M. M., Downing, A.,
Rillig, M. C., & Klironomos, J. N. (2009). Influence of commercial
inoculation with Glomus intraradices on the structure and functioning of
an AM fungal community from an agricultural site. Plant and
Soil , 317 (1), 257-266.
Bell, T. H., Kaminsky, L. M., Gugino, B. K., Carlson, J. E., Malik, R.
J., Hockett, K. L., & Trexler, R. V. (2019). Factoring ecological,
societal, and economic considerations into inoculant
development. Trends in Biotechnology , 37 (6), 572-573.
Bender, S. F., Wagg, C., & van der Heijden, M. G. (2016). An
underground revolution: biodiversity and soil ecological engineering for
agricultural sustainability. Trends in Ecology &
Evolution , 31 (6), 440-452.
Bhatia, N. P., Adholeya, A., & Sharma, A. (1998). Biomass production
and changes in soil productivity during long term cultivation ofProsopis juliflora (Swartz) DC inoculated with VA
mycorrhiza and Rhizobium spp . in a semi-arid
wasteland. Biology and Fertility of Soils , 26 (3), 208-214.
Canbolat, M. Y., Bilen, S., Çakmakçı, R., Şahin, F., & Aydın, A.
(2006). Effect of plant growth-promoting bacteria and soil compaction on
barley seedling growth, nutrient uptake, soil properties and rhizosphere
microflora. Biology and Fertility of Soils , 42, 350-357.
Chaudhary, V. B., Akland, K., Johnson, N. C., & Bowker, M. A. (2020).
Do soil inoculants accelerate dryland restoration? A simultaneous
assessment of biocrusts and mycorrhizal fungi. Restoration
Ecology , 28 , S115-S126.
Chaudhary, V., Rúa, M., Antoninka, A. et al MycoDB, a global
database of plant response to mycorrhizal fungi. Sci
Data 3, 160028 (2016).
https://doi.org/10.1038/sdata.2016.28
Coleine, C., Stajich, J. E., & Selbmann, L. (2022). Fungi are key
players in extreme ecosystems. Trends in Ecology & Evolution .
Devi, R., Kaur, T., Kour, D., & Yadav, A. N. (2022). Microbial
consortium of mineral solubilizing and nitrogen fixing bacteria for
plant growth promotion of amaranth (Amaranthus hypochondrius
L.). Biocatalysis and Agricultural Biotechnology , 43 ,
102404.
de Boer, W., Folman, L., Summerbell, R. & Boddy, L. (2005). Living in a
fungal world: impact of fungi on soil bacterial niche
development. FEMS Microbiol. Rev. , 29 , 795–811.
Emam, T. (2016). “Local Soil, but not Commercial AMF Inoculum,
Increases Native and Non-native Grass Growth at a Mine Restoration Site.Restoration Ecology 24 ; 35– 44.
Fang, C. (2022). Decreased temperature sensitivity of soil respiration
induced by warming slowed topsoil carbon turnover in a semi-arid
grassland. Applied Soil Ecology , 180 , 104620.
Farmer, M. J., Li, X., Feng, G., Zhao, B., Chatagnier, O., Gianinazzi,
S., Gianinazzi-Pearson V, van Tuinen, D. (2007). Molecular monitoring
of field-inoculated AMF to evaluate persistence in sweet potato crops in
China. Applied Soil Ecology , 35, 599–609
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology 37 (12): 4302-4315
Fierer, N., McCain, C. M., Meir, P., Zimmermann, M., Rapp, J. M.,
Silman, M. R., & Knight, R. (2011). Microbes do not follow the
elevational diversity patterns of plants and
animals. Ecology , 92 (4), 797-804.
Fierer, N. and Jackson, R. B. The diversity and biogeography of soil
bacterial communities. Proceedings of the National Academy of
Sciences, 103, 626–631 (2006).
Fox, J. L. (2015). Agricultural probiotics enter spotlight. Nature
Biotechnology , 33 (2), 122-123.
Garbeva, P. V., Van Veen, J. A., & Van Elsas, J. D. (2004). MICROBIAL
DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil
Type and Implications for Disease Suppressiveness. Annual review
of phytopathology , 42 , 243.
Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004).
Biodegradation of hydrocarbons in soil by microbial
consortium. International Biodeterioration & Biodegradation ,54 (1), 61-67.
Gu, Y., Dong, K., Geisen, S., Yang, W., Yan, Y., Gu, D., Lu, N.,
Borisjuk, N, Luo, Y., & Friman, V. P. (2020). The effect of microbial
inoculant origin on the rhizosphere bacterial community composition and
plant growth-promotion. Plant and Soil , 452 (1), 105-117.
Güsewell, S., & Gessner, M. O. (2009). N: P ratios influence litter
decomposition and colonization by fungi and bacteria in
microcosms. Functional Ecology , 23 (1), 211-219.
Hammarlund, S. P., & Harcombe, W. R. (2019). Refining the stress
gradient hypothesis in a microbial community. Proceedings of the
National Academy of Sciences , 116 (32), 15760-15762.
Hart, M. M., Antunes, P. M., Chaudhary, V. B., & Abbott, L. K. (2018).
Fungal inoculants in the field: Is the reward greater than the
risk?. Functional Ecology , 32 (1), 126-135.
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth,
S., & Egamberdieva, D. (2016). The interaction between arbuscular
mycorrhizal fungi and endophytic bacteria enhances plant growth of
Acacia gerrardii under salt stress. Frontiers in microbiology ,7 , 1089.
He, Q., Bertness, M. D., & Altieri, A. H. (2013). Global shifts towards
positive species interactions with increasing environmental
stress. Ecology letters , 16 (5), 695-706
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. &
Classen, A. T. (2017). Consistently inconsistent drivers of patterns of
microbial diversity and abundance at macroecological scales.Ecology, 98, 1757–1763.
Henriques, I. D., Aga, D. S., Mendes, P., O’Connor, S. K., & Love, N.
G. (2007). Metabolic footprinting: a new approach to identify
physiological changes in complex microbial communities upon exposure to
toxic chemicals. Environmental Science &
Technology , 41 (11), 3945-3951.
Herrera Paredes, S., Gao, T., Law, T. F., Finkel, O. M., Mucyn, T.,
Teixeira, P. J. P. L., González, M.E.F, Powers, M., Shank, E.A., Jones,
C. D., Jojic, V., Dangl, J. L. & Castrillo, G. (2018). Design of
synthetic bacterial communities for predictable plant
phenotypes. PLoS Biology , 16 (2), e2003962.
Herzberger, A. J., Meiners, S. J., Towey, J. B., Butts, P. A., &
Armstrong, D. L. (2015). Plant-microbe interactions change along a
tallgrass prairie restoration chronosequence. Restoration
Ecology , 23, 220–227
Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C.,
Karst, J., Koide, R. T., Pringle, A., Zabinski, C., Bever, J.D., Moore,
J. C., Wilson, G.W.T. Klironomos, J. N., & Umbanhowar, J. (2010). A
meta‐analysis of context‐dependency in plant response to inoculation
with mycorrhizal fungi. Ecology Letters , 13 (3), 394-407.
Islam, M. N., Germida, J. J., & Walley, F. L. (2021). Survival of a
commercial AM fungal inoculant and its impact on indigenous AM fungal
communities in field soils. Applied Soil Ecology , 166 ,
103979.
Jain, A., Singh, A., Singh, S., & Singh, H. B. (2015). Biological
management of Sclerotinia sclerotiorum in pea using plant growth
promoting microbial consortium. Journal of Basic
Microbiology , 55 (8), 961-972.
Jamily, A. S., Koyama, Y., Win, T. A., Toyota, K., Chikamatsu, S.,
Shirai, T., Uesugi, T., Murakami, H., Ishida, T., & Yasuhara, T.
(2019). Effects of inoculation with a commercial microbial inoculant
Bacillus subtilis C-3102 mixture on rice and barley growth and its
possible mechanism in the plant growth stimulatory effect. Journal
of Plant Protection Research , 59 (2).
Jarak, M., Mrkovački, N., Bjelić, D., Jošić, D., Hajnal-Jafari, T., &
Stamenov, D. (2012). Effects of plant growth promoting rhizobacteria on
maize in greenhouse and field trial. African Journal of
Microbiology Research , 6(27), 5683-5690.
Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., & Bell,
T. H. (2019). The inherent conflicts in developing soil microbial
inoculants. Trends in Biotechnology , 37 (2), 140-151.
Karban, R. (2011). The ecology and evolution of induced resistance
against herbivores. Functional Ecology , 25 (2), 339-347.
Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A.
(2021). Improved phosphorus uptake by wheat plant (Triticum aestivum L.)
with rhizosphere fluorescent pseudomonads strains under water-deficit
stress. Journal of Plant Growth Regulation , 40, 162-178.
Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting
rhizobacteria: drought stress alleviators to ameliorate crop production
in drylands. Annals of Microbiology , 66 , 35-42.
Kitz, F., Steinwandter, M., Traugott, M., & Seeber, J. (2015).
Increased decomposer diversity accelerates and potentially stabilises
litter decomposition. Soil Biology and Biochemistry , 83 ,
138-141.
Koziol, L., Schultz, P. A., Parsons, S., & Bever, J. D. (2022). Native
mycorrhizal fungi improve milkweed growth, latex, and establishment
while some commercial fungi may inhibit
them. Ecosphere , 13 (5), e4052.
Lai, W. A., Rekha, P. D., Arun, A. B., & Young, C. C. (2008). Effect of
mineral fertilizer, pig manure, and Azospirillum rugosum on
growth and nutrient contents of Lactuca sativa L . Biology
and fertility of Soils , 45(2), 155-164.
Lally, R. D., Galbally, P., Moreira, A. S., Spink, J., Ryan, D.,
Germaine, K. J., & Dowling, D. N. (2017). Application of endophytic
Pseudomonas fluorescens and a bacterial consortium to Brassica
napus can increase plant height and biomass under greenhouse and field
conditions. Frontiers in Plant Science , 8 , 2193.
Larimer, A. L., Bever, J. D., & Clay, K. (2012). Consequences of
simultaneous interactions of fungal endophytes and arbuscular
mycorrhizal fungi with a shared host
grass. Oikos , 121 (12), 2090-2096.
Mahapatra, S., Yadav, R., & Ramakrishna, W. (2022). Bacillus subtilis
impact on plant growth, soil health and environment: Dr. Jekyll and Mr.
Hyde. Journal of Applied Microbiology , 132 (5), 3543-3562.
Maron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O.,
Guigue, J., … & Ranjard, L. (2018). High microbial diversity promotes
soil ecosystem functioning. Applied and Environmental
Microbiology , 84 (9), e02738-17.
Middleton, E. L., S. Richardson, L. Koziol, C. E. Palmer, Z.
Yermakov, J. A. Henning, P. A. Schultz, and J. D. Bever. (2015). Locally
adapted arbuscular mycorrhizal fungi improve vigor and resistance to
herbivory of native prairie plant species.Ecosphere 6 : 276.
Moles, A. T. (2018). Being John Harper: Using evolutionary ideas to
improve understanding of global patterns in plant traits. Journal
of Ecology , 106 (1), 1-18.
Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz,
V. A., Gilbert, G. S., Maron, J. L. Mitchell, C. E., Parker, I. M.,
Power, A. G., Torchin, M. E. and Vázquez, D. P. (2007). Direct and
interactive effects of enemies and mutualists on plant performance: a
meta‐analysis. Ecology , 88 (4), 1021-1029.
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M., & Standish, R.
J. (2019). Benefits of mycorrhizal inoculation to ecological restoration
depend on plant functional type, restoration context and time.Fungal Ecology , 40 , 140-149.
Nguyen, J., Lara-Gutiérrez, J., & Stocker, R. (2021). Environmental
fluctuations and their effects on microbial communities, populations and
individuals. FEMS Microbiology Reviews , 45 (4), fuaa068.
Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil
biodiversity and carbon cycling: a review and synthesis of studies
examining diversity–function relationships. European Journal of
Soil Science , 62 (1), 105-116.
Noble, D. W., Lagisz, M., O’dea, R. E., & Nakagawa, S. (2017).
Nonindependence and sensitivity analyses in ecological and evolutionary
meta‐analyses. Molecular Ecology , 2410 – 2425.
Noble, D. W., Pottier, P., Lagisz, M., Burke, S., Drobniak, S. M.,
O’Dea, R. E., & Nakagawa, S. (2022). Meta-analytic approaches and
effect sizes to account for ‘nuisance heterogeneity’in comparative
physiology. Journal of Experimental
Biology , 225 (Suppl_1), jeb243225.
O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop
performance: issues and opportunities. Applied Microbiology and
Biotechnology , 100 (13), 5729-5746.
Onwuchekwa, N. E., Zwiazek, J. J., Quoreshi, A., & Khasa, D. P. (2014).
Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce
(Picea glauca) seedlings planted in oil sands reclaimed
areas. Mycorrhiza , 24 (6), 431-441.
Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.
M., Sarr, A. & Maron, P. A. (2013). Loss in microbial diversity affects
nitrogen cycling in soil. The ISME Journal , 7 (8),
1609-1619.
Pottier, P., Burke, S., Zhang, R. Y., Noble, D. W., Schwanz, L. E.,
Drobniak, S. M., & Nakagawa, S. (2022). Developmental plasticity in
thermal tolerance: Ontogenetic variation, persistence, and future
directions. Ecology Letters .
Rousk, J., & Bååth, E. (2011). Growth of saprotrophic fungi and
bacteria in soil. FEMS Microbiology Ecology , 78 (1), 17-30.
Rubin, R. L., van Groenigen, K. J., & Hungate, B. A. (2017). Plant
growth promoting rhizobacteria are more effective under drought: a
meta-analysis. Plant and Soil , 416 , 309-323.
Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act
as biostimulants in horticulture. Scientia Horticulturae , 196,
124-134.
Ryan, M. H., & Graham, J. H. (2018). Little evidence that farmers
should consider abundance or diversity of arbuscular mycorrhizal fungi
when managing crops. New Phytologist , 220 (4), 1092-1107.
Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P.,
& Mathimaran, N. (2018). Improving crop yield and nutrient use
efficiency via biofertilization—A global
meta-analysis. Frontiers in Plant Science , 8 , 2204.
Senior, A.M., Grueber, C.E., Kamiya, T., Lagisz, M., O’Dwyer, K.,
Santos, E.S.A. & Nakagawa, S. (2016). Heterogeneity in ecological and
evolutionary meta-analyses: its magnitude and implications.Ecology , 97, 3293–3299.
Shirmohammadi, E., Alikhani, H. A., Pourbabaei, A. A., & Etesami, H.
(2020). Improved phosphorus (P) uptake and yield of rainfed wheat fed
with P fertilizer by drought-tolerant phosphate-solubilizing fluorescent
pseudomonads strains: a field study in drylands. Journal of Soil
Science and Plant Nutrition , 20, 2195-2211.
Singh, B. K., Quince, C., Macdonald, C. A., Khachane, A., Thomas, N.,
Al‐Soud, W. A., Sørensen, S. J., He, Z., White, D., Sinclair, A.,
Crooks, B., Zhou, J. & Campbell, C. D. (2014). Loss of microbial
diversity in soils is coincident with reductions in some specialized
functions. Environmental Microbiology , 16(8), 2408-2420.
Soozandehfar, H., Maherali, H., & MacColl, K. (2023). Grassland
restoration increases mutualistic benefits that soil biota provide to
plants. https://doi.org/10.1086/724224
Spake, R., Mori, A.S., Beckmann, M., Martin, P.A., Christie, A.P.,
Duguid, M.C. et al. (2020). Implications of scale dependence for
cross-study syntheses of biodiversity differences. Ecology
Letters , 24 , 374–390.
Strickland, M. S., & Rousk, J. (2010). Considering fungal: bacterial
dominance in soils–methods, controls, and ecosystem
implications. Soil Biology and Biochemistry , 42 (9),
1385-1395.
Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C.
(2017). Perspectives and challenges of microbial application for crop
improvement. Frontiers in Plant Science , 8 , 49.
Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito,
K., … & Yoshida, K. (2018). Core microbiomes for sustainable
agroecosystems. Nature Plants 4 (5), 247–257.
Tsoi, R., Dai, Z., & You, L. (2019). Emerging strategies for
engineering microbial communities. Biotechnology
Advances , 37 (6), 107372.
van der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M.
(2008). The unseen 823 majority: Soil microbes as drivers of plant
diversity and productivity in terrestrial 824 ecosystems. Ecology
Letters , 11(3), 296–310.
van der Putten, W. H., Bradford, M. A., Brinkman, E. P., Voorde, T. F.
J. Van De, & Veen, G. F. (2016). Where , when and how plant – soil
feedback matters in a changing world. Functional Ecology , 30 (7)
1109–1121.
Verbruggen, E.,Kiers, E.T., Bakelaar, P. N.C., Röling, W. F. M., & van
der Heijden, M. G. A. (2012). Provision of contrasting ecosystem
services by soil communities from different agricultural fields.Plant and Soil , 350, 43
Waltz, E. (2017). A new crop of microbe start-ups raises big bucks,
takes on the establishment. Nature Biotechnology , 35 (12),
1120-1123.
Waring, B. G., Averill, C., & Hawkes, C. V. (2013). Differences in
fungal and bacterial physiology alter soil carbon and nitrogen cycling:
insights from meta‐analysis and theoretical models. Ecology
Letters , 16 (7), 887-894.
Wickham H. ggplot2. Cham: Springer International Publishing; 2016.
Xing, J., Jia, X., Wang, H., Ma, B., Falcao Salles, J., & Xu, J.
(2021). The legacy of bacterial invasions on soil native communities.Environmental Microbiology , 23 (2), 669-681.
Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant
growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF)
inoculation on oats in saline-alkali soil contaminated by petroleum to
enhance phytoremediation. Environmental Science and Pollution
Research , 22 (1), 598-608.
Yu, L., Zhang, H., Zhang, W., Liu, K., Liu, M., & Shao, X. (2022).
Cooperation between arbuscular mycorrhizal fungi and plant
growth-promoting bacteria and their effects on plant growth and soil
quality. PeerJ , 10 , e13080.
Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S.,
Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic bacterial
communities associated with roots and leaves of plants growing in
Chilean extreme environments. Scientific Reports , 9 (1),
1-12.
Zhou, Z., Wang, C., & Luo, Y. (2020). Meta-analysis of the impacts of
global change factors on soil microbial diversity and
functionality. Nature Communications , 11 (1), 1-10.
Zhu, Y., Wang, Z., Wang, J., Wang, Z., & Zhou, J. (2014). Plant
growth-promoting rhizobacteria improve shoot morphology and
photosynthesis in dryland spring wheat. WIT Trans Built
Environ , 145 , 343-350.
Figure 1: Effect size of microbial inoculation on plant growth in
drylands. Panel A demonstrates the overall effect of all microbial
inoculants on plant growth while Panel B compares the effect sizes
between native and commercial inoculants on plant growth. Panel C
compares the effect sizes between inoculating a single microbial strain
and inoculating multiple microbial strains. Panel D compares the effect
sizes of inoculating with fungi and inoculating with bacteria on plant
growth in dryland systems. The thicker horizontal line next to the
meta-analytic mean shows the confidence interval at 95 % while the
thinner horizontal line shows the 95 % prediction intervals (where you
expect individual effect sizes to be within this range). The letter K
represents the number of observations used for the analysis while the
number in parenthesis represents the total number of studies from which
the data was collected. An effect size of zero means there is no
treatment effect compared to the control while an effect size less or
greater than zero means there is a negative or positive effect on plant
growth respectively.