References
Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences , 20(1), 57-61.
Antunes, P. M., Koch, A. M., Dunfield, K. E., Hart, M. M., Downing, A., Rillig, M. C., & Klironomos, J. N. (2009). Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant and Soil317 (1), 257-266.
Bell, T. H., Kaminsky, L. M., Gugino, B. K., Carlson, J. E., Malik, R. J., Hockett, K. L., & Trexler, R. V. (2019). Factoring ecological, societal, and economic considerations into inoculant development. Trends in Biotechnology37 (6), 572-573.
Bender, S. F., Wagg, C., & van der Heijden, M. G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution31 (6), 440-452.
Bhatia, N. P., Adholeya, A., & Sharma, A. (1998). Biomass production and changes in soil productivity during long term cultivation ofProsopis juliflora (Swartz) DC inoculated with VA mycorrhiza and Rhizobium spp . in a semi-arid wasteland. Biology and Fertility of Soils , 26 (3), 208-214.
Canbolat, M. Y., Bilen, S., Çakmakçı, R., Şahin, F., & Aydın, A. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils , 42, 350-357.
Chaudhary, V. B., Akland, K., Johnson, N. C., & Bowker, M. A. (2020). Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi. Restoration Ecology28 , S115-S126.
Chaudhary, V., Rúa, M., Antoninka, A. et al MycoDB, a global database of plant response to mycorrhizal fungi. Sci Data  3,  160028 (2016). https://doi.org/10.1038/sdata.2016.28
Coleine, C., Stajich, J. E., & Selbmann, L. (2022). Fungi are key players in extreme ecosystems. Trends in Ecology & Evolution .
Devi, R., Kaur, T., Kour, D., & Yadav, A. N. (2022). Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology43 , 102404.
de Boer, W., Folman, L., Summerbell, R. & Boddy, L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev.29 , 795–811.
Emam, T. (2016). “Local Soil, but not Commercial AMF Inoculum, Increases Native and Non-native Grass Growth at a Mine Restoration Site.Restoration Ecology  24 ; 35– 44.
Fang, C. (2022). Decreased temperature sensitivity of soil respiration induced by warming slowed topsoil carbon turnover in a semi-arid grassland. Applied Soil Ecology180 , 104620.
Farmer, M. J., Li, X., Feng, G., Zhao, B., Chatagnier, O., Gianinazzi, S.,  Gianinazzi-Pearson V, van Tuinen, D. (2007). Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Applied Soil Ecology , 35, 599–609
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315
Fierer, N., McCain, C. M., Meir, P., Zimmermann, M., Rapp, J. M., Silman, M. R., & Knight, R. (2011). Microbes do not follow the elevational diversity patterns of plants and animals. Ecology92 (4), 797-804.
Fierer, N. and Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103, 626–631 (2006).
Fox, J. L. (2015). Agricultural probiotics enter spotlight. Nature Biotechnology33 (2), 122-123.
Garbeva, P. V., Van Veen, J. A., & Van Elsas, J. D. (2004). MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual review of phytopathology42 , 243.
Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation ,54 (1), 61-67.
Gu, Y., Dong, K., Geisen, S., Yang, W., Yan, Y., Gu, D., Lu, N., Borisjuk, N, Luo, Y., & Friman, V. P. (2020). The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil452 (1), 105-117.
Güsewell, S., & Gessner, M. O. (2009). N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology23 (1), 211-219.
Hammarlund, S. P., & Harcombe, W. R. (2019). Refining the stress gradient hypothesis in a microbial community. Proceedings of the National Academy of Sciences116 (32), 15760-15762.
Hart, M. M., Antunes, P. M., Chaudhary, V. B., & Abbott, L. K. (2018). Fungal inoculants in the field: Is the reward greater than the risk?. Functional Ecology32 (1), 126-135.
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth, S., & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in microbiology ,7 , 1089.
He, Q., Bertness, M. D., & Altieri, A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecology letters16 (5), 695-706
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. (2017). Consistently inconsistent drivers of patterns of microbial diversity and abundance at macroecological scales.Ecology, 98, 1757–1763.
Henriques, I. D., Aga, D. S., Mendes, P., O’Connor, S. K., & Love, N. G. (2007). Metabolic footprinting: a new approach to identify physiological changes in complex microbial communities upon exposure to toxic chemicals. Environmental Science & Technology41 (11), 3945-3951.
Herrera Paredes, S., Gao, T., Law, T. F., Finkel, O. M., Mucyn, T., Teixeira, P. J. P. L., González, M.E.F, Powers, M., Shank, E.A., Jones, C. D., Jojic, V., Dangl, J. L. & Castrillo, G. (2018). Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology16 (2), e2003962.
Herzberger, A. J., Meiners, S. J., Towey, J. B., Butts, P. A., & Armstrong, D. L. (2015). Plant-microbe interactions change along a tallgrass prairie restoration chronosequence. Restoration Ecology , 23, 220–227
Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C., Karst, J., Koide, R. T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J. C., Wilson, G.W.T. Klironomos, J. N., & Umbanhowar, J. (2010). A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters13 (3), 394-407.
Islam, M. N., Germida, J. J., & Walley, F. L. (2021). Survival of a commercial AM fungal inoculant and its impact on indigenous AM fungal communities in field soils. Applied Soil Ecology166 , 103979.
Jain, A., Singh, A., Singh, S., & Singh, H. B. (2015). Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. Journal of Basic Microbiology55 (8), 961-972.
Jamily, A. S., Koyama, Y., Win, T. A., Toyota, K., Chikamatsu, S., Shirai, T., Uesugi, T., Murakami, H., Ishida, T., & Yasuhara, T. (2019). Effects of inoculation with a commercial microbial inoculant Bacillus subtilis C-3102 mixture on rice and barley growth and its possible mechanism in the plant growth stimulatory effect. Journal of Plant Protection Research59 (2).
Jarak, M., Mrkovački, N., Bjelić, D., Jošić, D., Hajnal-Jafari, T., & Stamenov, D. (2012). Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research , 6(27), 5683-5690.
Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., & Bell, T. H. (2019). The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology37 (2), 140-151.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology25 (2), 339-347.
Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved phosphorus uptake by wheat plant (Triticum aestivum L.) with rhizosphere fluorescent pseudomonads strains under water-deficit stress. Journal of Plant Growth Regulation , 40, 162-178.
Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology66 , 35-42.
Kitz, F., Steinwandter, M., Traugott, M., & Seeber, J. (2015). Increased decomposer diversity accelerates and potentially stabilises litter decomposition. Soil Biology and Biochemistry83 , 138-141.
Koziol, L., Schultz, P. A., Parsons, S., & Bever, J. D. (2022). Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere13 (5), e4052.
Lai, W. A., Rekha, P. D., Arun, A. B., & Young, C. C. (2008). Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L . Biology and fertility of Soils , 45(2), 155-164.
Lally, R. D., Galbally, P., Moreira, A. S., Spink, J., Ryan, D., Germaine, K. J., & Dowling, D. N. (2017). Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Frontiers in Plant Science8 , 2193.
Larimer, A. L., Bever, J. D., & Clay, K. (2012). Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos121 (12), 2090-2096.
Mahapatra, S., Yadav, R., & Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology132 (5), 3543-3562.
Maron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., … & Ranjard, L. (2018). High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology84 (9), e02738-17.
Middleton, E. L., S. Richardson, L. Koziol, C. E. Palmer, Z. Yermakov, J. A. Henning, P. A. Schultz, and J. D. Bever. (2015). Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species.Ecosphere  6 : 276.
Moles, A. T. (2018). Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology106 (1), 1-18.
Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., Maron, J. L. Mitchell, C. E., Parker, I. M., Power, A. G., Torchin, M. E. and Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta‐analysis. Ecology , 88 (4), 1021-1029.
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M., & Standish, R. J. (2019). Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time.Fungal Ecology , 40 , 140-149.
Nguyen, J., Lara-Gutiérrez, J., & Stocker, R. (2021). Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiology Reviews45 (4), fuaa068.
Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science62 (1), 105-116.
Noble, D. W., Lagisz, M., O’dea, R. E., & Nakagawa, S. (2017). Nonindependence and sensitivity analyses in ecological and evolutionary meta‐analyses. Molecular Ecology , 2410 – 2425.
Noble, D. W., Pottier, P., Lagisz, M., Burke, S., Drobniak, S. M., O’Dea, R. E., & Nakagawa, S. (2022). Meta-analytic approaches and effect sizes to account for ‘nuisance heterogeneity’in comparative physiology. Journal of Experimental Biology225 (Suppl_1), jeb243225.
O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology100 (13), 5729-5746.
Onwuchekwa, N. E., Zwiazek, J. J., Quoreshi, A., & Khasa, D. P. (2014). Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas. Mycorrhiza24 (6), 431-441.
Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A. & Maron, P. A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal7 (8), 1609-1619.
Pottier, P., Burke, S., Zhang, R. Y., Noble, D. W., Schwanz, L. E., Drobniak, S. M., & Nakagawa, S. (2022). Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecology Letters .
Rousk, J., & Bååth, E. (2011). Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology78 (1), 17-30.
Rubin, R. L., van Groenigen, K. J., & Hungate, B. A. (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil416 , 309-323.
Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae , 196, 124-134.
Ryan, M. H., & Graham, J. H. (2018). Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytologist220 (4), 1092-1107.
Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science8 , 2204.
Senior, A.M., Grueber, C.E., Kamiya, T., Lagisz, M., O’Dwyer, K., Santos, E.S.A. & Nakagawa, S. (2016). Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications.Ecology , 97, 3293–3299.
Shirmohammadi, E., Alikhani, H. A., Pourbabaei, A. A., & Etesami, H. (2020). Improved phosphorus (P) uptake and yield of rainfed wheat fed with P fertilizer by drought-tolerant phosphate-solubilizing fluorescent pseudomonads strains: a field study in drylands. Journal of Soil Science and Plant Nutrition , 20, 2195-2211.
Singh, B. K., Quince, C., Macdonald, C. A., Khachane, A., Thomas, N., Al‐Soud, W. A., Sørensen, S. J., He, Z., White, D., Sinclair, A., Crooks, B., Zhou, J. & Campbell, C. D. (2014). Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology , 16(8), 2408-2420.
Soozandehfar, H., Maherali, H., & MacColl, K. (2023). Grassland restoration increases mutualistic benefits that soil biota provide to plants. https://doi.org/10.1086/724224
Spake, R., Mori, A.S., Beckmann, M., Martin, P.A., Christie, A.P., Duguid, M.C. et al. (2020). Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecology Letters24 , 374–390.
Strickland, M. S., & Rousk, J. (2010). Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry42 (9), 1385-1395.
Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science8 , 49.
Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., … & Yoshida, K. (2018). Core microbiomes for sustainable agroecosystems. Nature Plants 4 (5), 247–257.
Tsoi, R., Dai, Z., & You, L. (2019). Emerging strategies for engineering microbial communities. Biotechnology Advances37 (6), 107372.
van der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen 823 majority: Soil microbes as drivers of plant diversity and productivity in terrestrial 824 ecosystems. Ecology Letters , 11(3), 296–310.
van der Putten, W. H., Bradford, M. A., Brinkman, E. P., Voorde, T. F. J. Van De, & Veen, G. F. (2016). Where , when and how plant – soil feedback matters in a changing world. Functional Ecology , 30 (7) 1109–1121.
Verbruggen, E.,Kiers, E.T., Bakelaar, P. N.C., Röling, W. F. M., & van der Heijden, M. G. A. (2012). Provision of contrasting ecosystem services by soil communities from different agricultural fields.Plant and Soil , 350, 43
Waltz, E. (2017). A new crop of microbe start-ups raises big bucks, takes on the establishment. Nature Biotechnology35 (12), 1120-1123.
Waring, B. G., Averill, C., & Hawkes, C. V. (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta‐analysis and theoretical models. Ecology Letters16 (7), 887-894.
Wickham H. ggplot2. Cham: Springer International Publishing; 2016.
Xing, J., Jia, X., Wang, H., Ma, B., Falcao Salles, J., & Xu, J. (2021). The legacy of bacterial invasions on soil native communities.Environmental Microbiology , 23 (2), 669-681.
Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research , 22 (1), 598-608.
Yu, L., Zhang, H., Zhang, W., Liu, K., Liu, M., & Shao, X. (2022). Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality. PeerJ10 , e13080.
Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Scientific Reports9 (1), 1-12.
Zhou, Z., Wang, C., & Luo, Y. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications11 (1), 1-10.
Zhu, Y., Wang, Z., Wang, J., Wang, Z., & Zhou, J. (2014). Plant growth-promoting rhizobacteria improve shoot morphology and photosynthesis in dryland spring wheat. WIT Trans Built Environ145 , 343-350.
Figure 1: Effect size of microbial inoculation on plant growth in drylands. Panel A demonstrates the overall effect of all microbial inoculants on plant growth while Panel B compares the effect sizes between native and commercial inoculants on plant growth. Panel C compares the effect sizes between inoculating a single microbial strain and inoculating multiple microbial strains. Panel D compares the effect sizes of inoculating with fungi and inoculating with bacteria on plant growth in dryland systems. The thicker horizontal line next to the meta-analytic mean shows the confidence interval at 95 % while the thinner horizontal line shows the 95 % prediction intervals (where you expect individual effect sizes to be within this range). The letter K represents the number of observations used for the analysis while the number in parenthesis represents the total number of studies from which the data was collected. An effect size of zero means there is no treatment effect compared to the control while an effect size less or greater than zero means there is a negative or positive effect on plant growth respectively.