7. References
1. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annual review of cell and developmental biology . 2015;31:523-552. doi:10.1146/annurev-cellbio-100814-125620
2. Iqbal M, Audette M, Petropoulos S, Gibb W, Matthews S. Placental drug transporters and their role in fetal protection. Placenta . 2012;33(3):137-142. doi:10.1016/j.placenta.2012.01.008
3. Liu L, Liu X. Contributions of drug transporters to blood-placental barrier. Drug Transporters in Drug Disposition, Effects and Toxicity . 2019:505-548. doi:10.1007/978-981-13-7647-4_11
4. Yamashita M, Markert UR. Overview of Drug Transporters in Human Placenta. International Journal of Molecular Sciences . 2021;22(23):13149. doi:10.3390/ijms222313149
5. Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: a small transporter subfamily with great relevance to human pathophysiology, drug discovery, and diagnostics. Slas Discovery . 2019;24(2):89-110. doi:10.1177/2472555218812821
6. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharmaceutical research . 2007;24(7):1227-1251. doi:10.1007/s11095-007-9254-z
7. Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2.American Journal of Physiology-Cell Physiology . 2004;287(2):C263-C269. doi:10.1152/ajpcell.00333.2003
8. Grube M, Zu Schwabedissen HM, Draber K, et al. Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug metabolism and disposition . 2005;33(1):31-37. doi:10.1124/dmd.104.001560
9. Bai M, Zeng Q, Chen Y, et al. Maternal Plasma L-Carnitine Reduction During Pregnancy Is Mainly Attributed to OCTN2-Mediated Placental Uptake and Does Not Result in Maternal Hepatic Fatty Acid β-Oxidation Decline.Drug Metabolism and Disposition . 2019;47(6):582-591. doi:10.1124/dmd.119.086439
10. Shekhawat PS, Yang H-S, Bennett MJ, et al. Carnitine Content and Expression of Mitochondrial β-Oxidation Enzymes in Placentas of Wild-type (OCTN2+/+) and OCTN2 Null (OCTN2−/−) Mice. Pediatric research . 2004;56(3):323-328. doi:10.1203/01.PDR.0000134252.02876.55
11. Shekhawat PS, Sonne S, Matern D, Ganapathy V. Embryonic lethality in mice due to carnitine transporter OCTN2 defect and placental carnitine deficiency. Placenta . 2018;69:71-73. doi:10.1016/j.placenta.2018.06.312
12. Tschirka J, Kreisor M, Betz J, Gründemann D. Substrate selectivity check of the ergothioneine transporter. Drug Metabolism and Disposition . 2018;46(6):779-785. doi:10.1124/dmd.118.080440
13. Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions.International Journal of Molecular Sciences . 2022;23(2):914. doi:10.3390/ijms23020914
14. Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. SLAS Discovery . 2013;18(8):851-867. doi:10.1177/1087057113493006
15. Pochini L, Scalise M, Galluccio M, Indiveri C. Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system.Life sciences . 2012;91(21-22):1013-1016. doi:10.1016/j.lfs.2012.04.027
16. Karahoda R, Ceckova M, Staud F. The inhibitory effect of antiretroviral drugs on the L-carnitine uptake in human placenta.Toxicology and applied pharmacology . 2019;368:18-25. doi:10.1016/j.taap.2019.02.002
17. Drenberg CD, Gibson AA, Pounds SB, et al. OCTN1 Is a High-Affinity Carrier of Nucleoside AnaloguesNucleoside Transport by OCTN1.Cancer research . 2017;77(8):2102-2111. doi:10.1158/0008-5472.CAN-16-2548
18. Zeng Q, Bai M, Li C, et al. Multiple drug transporters contribute to the placental transfer of emtricitabine. Antimicrobial agents and chemotherapy . 2019;63(8):e00199-19. doi:10.1128/AAC.00199-19
19. Bai M, Ma Z, Sun D, et al. Multiple drug transporters mediate the placental transport of sulpiride. Archives of Toxicology . 2017;91:3873-3884. doi:10.1007/s00204-017-2008-8
20. Derricott H, Jones RL, Greenwood SL, Batra G, Evans MJ, Heazell AE. Characterizing villitis of unknown etiology and inflammation in stillbirth. The American journal of pathology . 2016;186(4):952-961. doi:10.1016/j.ajpath.2015.12.010
21. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. New England journal of medicine . 2000;342(20):1500-1507. doi:10.1056/NEJM200005183422007
22. Harmon AC, Cornelius DC, Amaral LM, et al. The role of inflammation in the pathology of preeclampsia. Clinical science . 2016;130(6):409-419. doi:10.1042/CS20150702
23. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. American journal of obstetrics and gynecology . 2018;218(2):S745-S761. doi:10.1016/j.ajog.2017.11.577
24. Nadeau-Vallée M, Obari D, Palacios J, et al. Sterile inflammation and pregnancy complications: a review. Reproduction . 2016;152(6):R277-R292. doi:10.1530/REP-16-0453
25. Zhang J-M, An J. Cytokines, inflammation and pain.International anesthesiology clinics . 2007;45(2):27. doi:10.1097/AIA.0b013e318034194e
26. Goldstein JA, Gallagher K, Beck C, Kumar R, Gernand AD. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease. Frontiers in immunology . 2020;11:531543. doi:10.3389/fimmu.2020.531543
27. Singh S, Sahu K, Singh C, Singh A. Lipopolysaccharide induced altered signaling pathways in various neurological disorders.Naunyn-Schmiedeberg’s Archives of Pharmacology . 2022;395(3):285-294. doi:10.1007/s00210-021-02198-9
28. Baker BC, Heazell AE, Sibley C, et al. Hypoxia and oxidative stress induce sterile placental inflammation in vitro. Scientific reports . 2021;11(1):1-14. doi:10.1038/s41598-021-86268-1
29. Patel S. Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Current allergy and asthma reports . 2018;18:1-12. doi:10.1007/s11882-018-0817-3
30. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell metabolism . 2011;13(1):11-22. doi:10.1016/j.cmet.2010.12.008
31. Parris KM, Amabebe E, Cohen MC, Anumba DO. Placental microbial–metabolite profiles and inflammatory mechanisms associated with preterm birth. Journal of Clinical Pathology . 2021;74(1):10-18. doi:10.1136/jclinpath-2020-206536
32. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol . 2021;128(1):4-8. doi:10.1111/bcpt.13492
33. Audette M, Greenwood S, Sibley C, et al. Dexamethasone stimulates placental system A transport and trophoblast differentiation in term villous explants. Placenta . 2010;31(2):97-105. doi:10.1016/j.placenta.2009.11.016
34. Siman C, Sibley C, Jones C, Turner M, Greenwood S. The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology . 2001;280(4):R1116-R1122. doi:10.1152/ajpregu.2001.280.4.R1116
35. Majerczyk D, Ayad EG, Brewton KL, Saing P, Hart PC. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Bioscience Reports . 2022;42(11):BSR20220713. doi:10.1042/BSR20220713
36. Brynge M, Gardner RM, Sjöqvist H, Lee BK, Dalman C, Karlsson H. Maternal Levels of Cytokines in Early Pregnancy and Risk of Autism Spectrum Disorders in Offspring. Frontiers in Public Health . 2022;10doi:10.3389/fpubh.2022.917563
37. Nold C, Barros A, Rogi C, et al. Concentration of vaginal and systemic cytokines obtained early in pregnancy and their impact on preterm birth. The Journal of Maternal-Fetal & Neonatal Medicine . 2022;35(25):9271-9276. doi:10.1080/14767058.2022.2026916
38. Keenan‐Devlin LS, Smart BP, Grobman W, et al. The intersection of race and socioeconomic status is associated with inflammation patterns during pregnancy and adverse pregnancy outcomes. American Journal of Reproductive Immunology . 2022;87(3):e13489. doi:10.1111/aji.13489
39. Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNγ-producing γ/δ T cells accumulate in the fetal brain following intrauterine inflammation. Frontiers in Immunology . 2021;12:741518. doi:10.3389/fimmu.2021.741518
40. Petrovic V, Kojovic D, Cressman A, Piquette-Miller M. Maternal bacterial infections impact expression of drug transporters in human placenta. International immunopharmacology . 2015;26(2):349-356. doi:10.1016/j.intimp.2015.04.020
41. Evseenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metabolism and Disposition . 2007;35(4):595-601. doi:10.1124/dmd.106.011478
42. do Imperio GE, Bloise E, Javam M, et al. Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cellular Physiology and Biochemistry . 2018;45(2):591-604. doi:10.1159/000487100
43. Mirdamadi K, Kwok J, Nevo O, Berger H, Piquette-Miller M. Impact of Th-17 Cytokines on the Regulation of Transporters in Human Placental Explants. Pharmaceutics . 2021;13(6):881. doi:10.3390/pharmaceutics13060881
44. Tokuhiro S, Yamada R, Chang X, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature genetics . 2003;35(4):341-348. doi:10.1038/ng1267
45. Lin Z, Nelson L, Franke A, et al. OCTN1 variant L503F is associated with familial and sporadic inflammatory bowel disease. Journal of Crohn’s and Colitis . 2010;4(2):132-138. doi:10.1016/j.crohns.2009.09.003
46. Pochini L, Scalise M, Galluccio M, Pani G, Siminovitch KA, Indiveri C. The human OCTN1 (SLC22A4) reconstituted in liposomes catalyzes acetylcholine transport which is defective in the mutant L503F associated to the Crohn’s disease. Biochimica et Biophysica Acta (BBA)-Biomembranes . 2012;1818(3):559-565. doi:10.1016/j.bbamem.2011.12.014
47. Girardin M, Dionne S, Goyette P, et al. Expression and functional analysis of intestinal organic cation/L-carnitine transporter (OCTN) in Crohn’s disease. Journal of Crohn’s and Colitis . 2012;6(2):189-197. doi:10.1016/j.crohns.2011.08.003
48. Peltekova VD, Wintle RF, Rubin LA, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease.Nature genetics . 2004;36(5):471-475. doi:10.1038/ng1339
49. Palmieri O, Latiano A, Valvano R, et al. Variants of OCTN1–2 cation transporter genes are associated with both Crohn’s disease and ulcerative colitis. Alimentary pharmacology & therapeutics . 2006;23(4):497-506. doi:10.1111/j.1365-2036.2006.02780.x
50. Fujiya M, Inaba Y, Musch MW, Hu S, Kohgo Y, Chang EB. Cytokine regulation of OCTN2 expression and activity in small and large intestine. Inflammatory bowel diseases . 2011;17(4):907-916. doi:10.1002/ibd.21444
51. Li P, Wang Y, Luo J, et al. Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochemical Pharmacology . 2020;178:114115. doi:10.1016/j.bcp.2020.114115
52. Maeda T, Hirayama M, Kobayashi D, Miyazawa K, Tamai I. Mechanism of the regulation of organic cation/carnitine transporter 1 (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. Drug metabolism and disposition . 2007;35(3):394-401. doi:10.1124/dmd.106.012112
53. Li D, Qi C, Zhou J, et al. LPS-induced inflammation delays the transportation of ASP+ due to down-regulation of OCTN1/2 in alveolar epithelial cells. Journal of Drug Targeting . 2020;28(4):437-447. doi:10.1080/1061186X.2019.1678169
54. Ling B, Alcorn J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Research in veterinary science . 2010;89(2):200-202. doi:10.1016/j.rvsc.2010.03.004
55. Shinozaki Y, Furuichi K, Toyama T, et al. Impairment of the carnitine/organic cation transporter 1–ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease.Kidney international . 2017;92(6):1356-1369. doi:10.1016/j.kint.2017.04.032
56. Shimizu T, Masuo Y, Takahashi S, Nakamichi N, Kato Y. Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice. Drug Metabolism and Pharmacokinetics . 2015;30(3):231-239. doi:10.1016/j.dmpk.2015.02.003
57. Azizieh FY, Raghupathy RG. Tumor necrosis factor-α and pregnancy complications: a prospective study. Medical principles and practice . 2015;24(2):165-170. doi:10.1159/000369363
58. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biology of reproduction . 2009;80(5):848-859. doi:10.1095/biolreprod.108.073353
59. Pijnenborg R, Luyten C, Vercruysse L, Keith Jr J, Van Assche FA. Cytotoxic effects of tumour necrosis factor (TNF)-α and interferon-γ on cultured human trophoblast are modulated by fibronectin. Molecular human reproduction . 2000;6(7):635-641. doi:10.1093/molehr/6.7.635
60. Otun HA, Lash GE, Innes BA, et al. Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion. Journal of reproductive immunology . 2011;88(1):1-11. doi:10.1016/j.jri.2010.10.003
61. Aggarwal R, Jain AK, Mittal P, Kohli M, Jawanjal P, Rath G. Association of pro‐and anti‐inflammatory cytokines in preeclampsia.Journal of clinical laboratory analysis . 2019;33(4):e22834. doi:10.1002/jcla.22834
62. Romanowska-Próchnicka K, Felis-Giemza A, Olesińska M, Wojdasiewicz P, Paradowska-Gorycka A, Szukiewicz D. The role of tnf-α and anti-tnf-α agents during preconception, pregnancy, and breastfeeding.International Journal of Molecular Sciences . 2021;22(6):2922. doi:10.3390/ijms22062922
63. Peraçoli JC, Rudge MVC, Peraçoli MTS. Tumor necrosis factor‐alpha in gestation and puerperium of women with gestational hypertension and pre‐eclampsia. American Journal of Reproductive Immunology . 2007;57(3):177-185. doi:10.1111/j.1600-0897.2006.00455.x
64. Pantham P, Aye ILH, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta . 2015;36(7):709-715. doi:10.1016/j.placenta.2015.04.006
65. Christian LM, Porter K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: effects of maternal body mass index. Cytokine . 2014;70(2):134-140. doi:10.1016/j.cyto.2014.06.018
66. Knöfler M, Mösl B, Bauer S, Griesinger G, Husslein P. TNF-α/TNFRI in primary and immortalized first trimester cytotrophoblasts.Placenta . 2000;21(5-6):525-535. doi:10.1053/plac.1999.0501
67. Almeida MPO, Ferro EAV, Briceño MPP, Oliveira MC, Barbosa BF, Silva NM. Susceptibility of human villous (BeWo) and extravillous (HTR-8/SVneo) trophoblast cells to Toxoplasma gondii infection is modulated by intracellular iron availability. Parasitology research . 2019;118(5):1559-1572. doi:10.1007/s00436-019-06257-2
68. Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR-8/SVneo cell line contains a mixed population of cells. Placenta . 2017;50:1-7. doi:10.1016/j.placenta.2016.12.007
69. Vardhana PA, Illsley NP. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta . 2002;23(8-9):653-660. doi:10.1053/plac.2002.0857
70. Eaton B, Sooranna S. Transport of large neutral amino acids into BeWo cells. Placenta . 2000;21(5-6):558-564. doi:10.1053/plac.2000.0507
71. Jones H, Ashworth C, Page K, McArdle H. Expression and adaptive regulation of amino acid transport system A in a placental cell line under amino acid restriction. Reproduction . 2006;131(5):951-960. doi:10.1530/rep.1.00808
72. Heaton SJ, Eady JJ, Parker ML, et al. The use of BeWo cells as an in vitro model for placental iron transport. American Journal of Physiology-Cell Physiology . 2008;295(5):C1445-C1453. doi:10.1152/ajpcell.00286.2008
73. Tupova L, Hirschmugl B, Sucha S, et al. Interplay of drug transporters P-glycoprotein (MDR1), MRP1, OATP1A2 and OATP1B3 in passage of maraviroc across human placenta. Biomedicine & Pharmacotherapy . 2020;129:110506. doi:10.1016/j.biopha.2020.110506
74. Console L, Scalise M, Tonazzi A, Giangregorio N, Indiveri C. Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter.Scientific reports . 2018;8(1):1-9. doi:10.1038/s41598-018-22170-7
75. Shtrichman R, Samuel CE. The role of gamma interferon in antimicrobial immunity. Current opinion in microbiology . 2001;4(3):251-259. doi:10.1016/s1369-5274(00)00199-5
76. Park JS, Gamboni-Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. American Journal of Physiology-Cell Physiology . 2006;290(3):C917-C924. doi:10.1152/ajpcell.00401.2005
77. Tangerås LH, Silva GB, Stødle GS, et al. Placental inflammation by HMGB1 activation of TLR4 at the syncytium. Placenta . 2018;72:53-61. doi:10.1016/j.placenta.2018.10.011
78. Wang B, Koga K, Osuga Y, et al. High mobility group box 1 (HMGB1) levels in the placenta and in serum in preeclampsia. American Journal of Reproductive Immunology . 2011;66(2):143-148. doi:10.1111/j.1600-0897.2010.00975.x