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Abstract: In this study, multiple-input single-output based non-orthogonal multiple access (MISO-NOMA) with hybrid5

beamforming (HBF) (MISO-NOMA-HBF) and beamforming neural network (BFNN) for cell edge user (CEU) are6

integrated (termed as MISO-NOMA-HBF-BFNN) for mmWave based beyond 5G cellular communication system to7

support multiple users simultaneously and provide significantly improved user channel capacities and sum channel8

capacity (SC) as well. Simulation results illustrated the effectiveness of the proposed MISO-NOMA-HBF-BFNN scheme9

over the existing MISO-NOMA with HBF and MISO-OMA with HBF-BFNN based schemes in case of user capacities10

and SC as well.11

Key words: Beamforming neural network, beyond 5G, deep learning, hybrid beamforming, non-orthogonal multiple12

access, sum capacity, user capacity.13

1. Introduction14

Recently, the research community has paid attention to non-orthogonal multiple access (NOMA) for providing15

multiple users with an ample data rate [1]. A number of studies have been conducted on increasing the channel16

capacity for the power domain downlink NOMA [1-2]. By utilizing the successive interference cancellation (SIC)17

technique, a user with good channel conditions can decode their corresponding signal while direct decoding can18

be performed on the user side with relatively worse channel conditions. Due to the limited number of resources19

(time/frequency/code), existing orthogonal multiple access (OMA) techniques (TDMA/FDMA/CDMA) can20

face severe challenges when used beyond 5G (B5G) cellular communication systems [3]. Additional resource21

utilization can degrade the user capacities as well as the sum capacity (SC) of OMA-based cellular communi-22

cation systems which can be overcome by the power domain NOMA. Moreover, NOMA and millimeter wave23

(mmWave) provide a solution for B5G cellular communication because mmWaves can provide ultra-high chan-24

nel capacities and NOMA can simultaneously support multiple access for multiple users [4]. So, a suitable25

multiuser, high user capacity, and imperfect channel state information (CSI) based solution for mmWave based26

B5G cellular communication is required. Moreover, multiple-input-single-output-based hybrid beamforming27
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(MISO-HBF) is a suitable solution for mmWave systems [13]. But the narrow beam channel provides coverage1

for a single user in the case of the conventional MISO-HBF scheme. To provide the multiuser access of the2

conventional MISO-HBF based scheme, NOMA is integrated with MISO-HBF (termed as MISO-NOMA-HBF)3

in this study for mmWave based cellular communication. Furthermore, the optimization of the analog precoder4

in the case of the HBF is a challenging issue [11-12]. Among different significant present works, analog beam-5

forming has some difficulties due to its phase-shifter-based architecture [10-12]. In addition, analog precoders6

have a limited pre-defined codebook, hence manifold optimization, element-wise iterative algorithms, and ana-7

log beamformer optimization techniques have been proposed in previous research [10-11]. However, perfect8

CSI has been considered for those previous cases. Present studies on intelligent cellular communication have9

illustrated that the use of the deep learning (DL) technique is able to solve complex beamforming optimization10

for the users in the case of downlink MISO-HBF and imperfect CSI. Inspired by previous works, beamforming11

neural networks (BFNN) can optimize the analog precoder of the MISO-NOMA-HBF scheme depending on the12

imperfect CSI, channel condition, and the SINR of CEU to improve the user capacities as well as sum capacity13

(SC) [13]. The main contributions of this study are explained as follows:14

• In this study, MISO-HBF is integrated with NOMA to provide multi-user access.15

• MISO-NOMA-HBF is integrated with DL-based BFNN for CEU, which is termed as MISO-NOMA-HBF-16

BFNN to enhance the user capacities as well as SC for mmWave based B5G cellular communication.17

• The user channel capacities and SC of the proposed MISO-NOMA-HBF-BFNN scheme are compared and18

evaluated with existing schemes (e.g., MISO-NOMA-HBF[13], and MISO-OMA-HBF-BFNN).19

• The impacts of the different pilot to noise ratio (PNR) over the user capacities and SC of the proposed20

MISO-NOMA-HBF-BFNN scheme are also compared and evaluated with existing schemes [13].21

• The effects of less accurate estimated channel paths over the user capacities and SC of the proposed22

scheme are also compared and evaluated with existing schemes as well [13].23

• Using simulation results, the performance improvement of the proposed scheme compared to other existing24

schemes are explicitly analyzed.25

2. System Model26

A narrow band downlink (DL) MISO-NOMA-HBF-BFNN was considered on a mmWave system which illus-27

trated in Fig. 1. HBF consists of digital and analog precoders. As observed in Fig. 1, a two user based28

single cell scenario was considered with a single base station as source (S ). The S consists of one RF chain29

and N number of transmit antennae. The cell center user (CCU) is situated near the S , which is marked as30

UE1 . The cell edge user (CEU) is situated near the cell edge, is marked as UE2 in Fig. 1. Moreover, d1 and31

d2 are the distance of UE1 and UE2 from S , simultaneously. The superimposed signal A is simultaneously32

transmitted towards the users, which is multiplied by a scalar digital precoder vD and then by an N×1 analog33

precoder vRF along with phase shifters. The precoded and superimposed signal (A =
√
p1Px1+

√
p2Px2 ) can34

be represented by following equation:35

χ = vRF vDA, (1)

Where x1 , and x2 are the data symbols for UE1 and UE2 , respectively. p1 and p2 represent the power36

allocation for UE1 , and UE2 , respectively. In addition, P is the total transmitted power from S , where37
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p1 + p2 = 1 and p1 < p2 . To perform the optimization technique effectively, a self-defined lambda layer1

is included at the end of the BFNN optimization technique. Because of the ’sigmoid’ activation function, α22

symbolizes the real input value within the range (0,1) [13]. Therefore, the complex output value can be expressed3

by the following equation:4

vRF = ej.2πα2 = cos(2πα2) + j.sin(2πα2), (2)

where j =
√
−1, 2πα2 is corresponding to the phases of vRF . The superimposed signal is transmitted

Figure 1. System model of proposed MISO-NOMA-HBF-BFNN scheme.

Figure 2. Principle of BFNN based MISO-NOMA-HBF for CEU.

5

through the MISO mmWave channel. Where hH
k is the channel response between S and the respective user6

(kϵ{1, 2}). A well-known Saleh-Valenzuela mmWave channel model, which was considered for hH
k , consists of7

one line-of-sight (LOS) path and L − 1 number of non line-of-sight (NLOS) paths. The channel response can8

be represented by the following equation [13-15]:9

hH
k =

√
N

L

L∑
l=1

αkl
aHl (ϕl

t), (3)

where αl is the complex gain of the lth path and at(ϕ
l
t) represents the antenna array response vector at10

S , with ϕl
t representing the departure azimuth angle related to the path l . l = 1 represents a LOS component11

in hH
k . The received signal at UE1 and UE2 can be expressed by the following equations:12

y1 = hH
1 vRF vDA+ n1, (4)

y2 = hH
2 vRF vDA+ n2, (5)

where nk is the additive complex Gaussian noise that fulfills the circularly symmetric characteristics with13

covariance σ2
k and zero mean [13]. Since analog beamforming consists of analog phase shifters, a multi-layer14
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NN in which the network S is trained to UE2 communication links is not a perfect solution [16-17]. A unique1

BFNN technique is considered for the channel between S and UE2 of the proposed MISO-NOMA-HBF-BFNN2

scheme in this study. Because the path loss between S and UE2 is higher than the path loss between S and3

UE1 due to d1 < d2 . This BFNN was considered to solve Eq. (9). The specific considerations and the design4

approach of the BFNN technique are given in below:5

• BFNN Input: The BFNN is considered to train the S to the UE2 link and generate an optimized analog6

BF vector (vRF ) instead of training the entire communication link. Moreover, h2est and γ2est are fed7

as inputs to the considered BFNN technique for the proposed MISO-NOMA-HBF-BFNN scheme. Where8

h2est is the estimated channel parameter from S to UE2 .9

• Lambda layer: To perform the optimization technique effectively, a self-defined lambda layer is included at10

the end of the BFNN optimization technique. Because of the ’sigmoid’ activation function, α2 symbolizes11

the real input value within the range (0,1) [13]. Therefore, the complex output value can be expressed by12

the following equation:13

vRF = ej.2πα2 = cos(2πα2) + j.sin(2πα2), (6)

where j =
√
−1, 2πα2 is corresponding to the phases of vRF .14

• Loss function: The loss function due to the considered BFNN can be derived as follows [13]:15

Loss =
1

M

M∑
m=1

log2(1 +
γ2m
N

||hH
2mvRF,m||2), (7)

Where M represents the total number of samples for training, and γ2m , h2m , and vRF,m represent16

the SINR, CSI, and output analog BF (vRF ) associated with the mth sample, respectively. The loss17

reduction is related to the increase of the average channel capacity of the UE2 [13].18

Based on the above considerations, the BFNN for UE2 is shown in Fig. 2. The design approach consists19

of two stages. According to the system model, the channel samples are produced randomly during the offline20

training stage. Afterward, a practical mmWave channel estimation is performed to obtain the partial CSI21

at S . A traditional mmWave channel estimator was considered in this study. In this case, the S estimates22

the channel between S and UE2 by transferring the beamformers along with pilot symbols as a hierarchical23

codebook. Furthermore, S receives the feedback from the decision of UE2 based on y2 . SINR estimation γ2est24

and the estimated channel of UE2 (h2est ) are then fed to the BFNN as inputs. γ2 = γ2est was considered25

in this study. Afterwards, the optimized vRF,m are generated using the considered BFNN. The optimization26

is performed by minimizing the loss function. Furthermore, the SINR values and the channel samples were27

randomly generated by the simulation. The samples, along with the SINR values, are utilized to calculate the28

loss. Thus, the loss of UE2 can be assured to converge according to the local optimal beamformer, as well as29

an appropriate learning rate. According to [13], the conventional channel estimation algorithm is utilized for30

obtaining h2est based on the pilot signal. The pilot-to-noise power ratio (PNR) is assumed as as an indicator31

of the channel estimation level. Moreover, PNR is not same as SNR since the power of pilot signal and that of32

the data signal can be set to be different in practical systems. In the traditional HBF algorithms, h2 is directly33

replaced by h2est when calculating the BF coefficients. The channel estimation is treated as the input of the34
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BFNN considering a perfect CSI. Therefore, the BFNN is trained appropriately to deal with the ideal capacity1

with perfect CSI to determine the errors due to channel estimation.2

The same channel estimation technique for the mmWave channel was used in the case of S during the3

online deployment stage. To achieve the optimized vRF , the estimated channel h2est was then transferred4

to the BFNN. Perfect CSI is necessary at the offline training stage to calculate the loss. Every parameter5

of the considered BFNN for UE2 should be properly set and the BFNN should be properly trained to deal6

with imperfect CSI, which is treated as an input and transferred directly to the output towards the analog7

beamformer during online deployment [13].8

Table 1. Parameters of BFNN for CEU
Layer Name Function No. of Params. O/P Dim.

Input Layer \ 0 129 × 1

Dense Layer 1 reLu 33024 256 × 1

Dense Layer 2 reLu 32896 128 × 1

Dense Layer 3 sigmoid 8256 64 ×1

Lambda Layer \ 0 64 × 1

In the case of the BFNN structure, a MISO system with N = 64 was considered, which is shown9

in Table. I. The detailed parameters of the BFNN, such as the layer name, output dimensions (O/P Dim.),10

activation function (Function), and trainable parameters of the individual layers (No. of Params.), are described11

in Table. I. According to Fig. 2, h2est is fed into the input of the BFNN. However, the considered BFNN is12

a neural network which deals with real values only. Thus, the real part and the imaginary segment of h2est13

are concatenated along with γ2est , which is also used as input for the BFNN. Moreover, γ2est is an input14

vector with real values and dimension (2N + 1)× 1. The dense layers of the BFNN were set to 256, 128, and15

64 neurons, accordingly [13]. A batch normalized layer preceded each and every dense layer for convergence16

[13]. The Lambda layer performed the modulus operation on the final output of the BFNN. In this study, the17

training, testing, and validation sets contained 105 , 104 , and 104 samples, respectively [13].18

3. Channel Capacity19

3.1. Capacity of MISO-NOMA-HBF-BFNN20

The signal to interference and noise ratio (SINR) of UE1 and UE2 are expressed as γ1 and γ2 , respectively.21

γ1 and γ2 can be expressed as follows for the proposed scheme:22

γ1 = p1||hH
1 vRF vD||2ρ, (8)

23

γ2 =
p2||hH

2 vRF vD||2ρ
p2||hH

2 vRF vD||2ρ+ 1
, (9)

Where ρ = P
σ2 is the transmit signal-to-noise ratio (SNR). The channel capacity of UE1 is expressed as C124

and the channel capacity of UE2 can be expressed as C2 . The user channel capacities can be expressed by the25

following equations:26

C1 = log2(1 + γ1), (10)
27

C2 = log2(1 + γ2), (11)
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The optimal value of vD for maximizing C2 is represented by
√

p2

N . Afterwards, the HBF optimization problem1

for vRF for UE2 can be expressed as follows [13]:2

min
vRF

log2(1 +
p2||hH

2 vRF vD||2 ρ
N

p2||hH
2 vRF vD||2 ρ

N + 1
), (12)

subjected to |[vRF ]i|2 = 1 and i = 1, ....., N [13]. In this study γ2est = γ2 is assumed because the SINR can be3

estimated more accurately than the CSI. Where, γ2est is the estimated SINR [13]. Furthermore, the SC (CS )4

of the proposed MISO-MISO-NOMA-HBF-BFNN can be derived by adding C1 and C2 as in the following5

equation:6

CS = C1 + C2. (13)

3.2. Capacity of MISO-OMA-HBF-BFNN7

Time-division multiple access (TDMA) is considered for the MISO-OMA-HBF-BFNN. The MISO-OMA-HBF-8

BFNN scheme is described as a benchmark of the proposed MISO-NOMA-HBF-BFNN scheme to compare the9

user channel capacities and the SC. S transmits the information signal towards UE1 and UE2 individually in10

various independent time slots along with P in this case without any interference. Where, P represents the11

total transmit power from S . Thus, in the case of TDMA based MISO-OMA-HBF-BFNN, independent time12

slots are allocated for the users to transmit individual symbols (e.g., x1 , and x2 ). Two different independent13

time slots are denoted as t1 , and t2 to transmit x1 and x2 towards UE1 and UE2 , respectively [13,16]. Hence,14

equally divided time slots (t1 = t2 = 1
2 ) are considered here. Thus, the achievable capacity of UE1 , UE2 , and15

the SC can be presented as follows for the MISO-OMA-HBF-BFNN scheme:16

COMA
1 =

1

2
log2(1 + γOMA

1 ), (14)

17

COMA
2 =

1

2
log2(1 + γOMA

2 ), (15)

Where γOMA
1 = ||hH

1 vRF vD||2ρ and γOMA
2 = ||hH

2 vRF vD||2ρ . Moreover, the optimal vD for enhancing C2 is18

expressed by
√

P
N . Then, the optimization problem for vRF due to MISO-OMA-HBF-BFNN for UE1 and19

UE2 can be expressed as follows by [13]:20

min
vRF

log2(1 + ||hH
1 vRF ||2

ρ

N
), (16)

21

min
vRF

log2(1 + ||hH
2 vRF ||2

ρ

N
), (17)

subject to |[vRF ]i|2 = 1, for i = 1, ....., N . As the SINR can be estimated more accurately than the CSI, hence22

γOMA
1est = γOMA

1 and γOMA
2est = γOMA

2 are assumed in this study. Where γOMA
1est and γOMA

2est are the estimated23

SINR [13]. Furthermore, the SC of MISO-OMA-HBF-BFNN can be derived by adding COMA
1 and COMA

2 as24

in the following equation:25

COMA
S = COMA

1 + COMA
2 . (18)

6
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Figure 3. Capacity comparisons for PNR = 20 dB and Lest = 3.

4. Simulation Results1

For simulation purposes, a MISO based array antenna with N = 64 and uniform linear half-wave spacing was2

considered at S . The Saleh-Valenzuela based mmWave channel model was considered for all communication3

links in this study. Parameters p1 = 0.2, p2 = 1 − p1 , P = 1, and L = 3 were considered in this study. The4

pilot-to-noise ratio (PNR) was considered as an indicator of the channel estimation because PNR and SNR5

cannot be the same in practical scenarios [13]. The details of the BFNN parameters were set as listed in Table.6

I. The same parameters were used for the other compared schemes. The Adam optimizer was considered in7

this study. In the considered BFNN, the hyper-parameter setting is shown in Table I and remain constant8

throughout all experiments. The learning rate is initialized at 0.001 and the Adam optimizer is utilized in the9

proposed scheme. To assure the effectiveness of the SNR, the training samples were considered within -20 dB10

to 20 dB and imperfect CSI was also considered for all comparisons [13].11

Fig. 3 illustrates the capacity comparisons for the proposed scheme and the other compared schemes in the12

case of PNR = 20dB and the estimated channel paths, Lest = 3. The proposed scheme provides significantly13

higher user capacities than other compared scheme. Because due to the proposed BFNN technique for MISO-14

NOMA-HBF-BFNN scheme, the analog beamformer vRF is optimized based on h2est and γ2est . Hence. the15

CCU (UE1 ) and CEU (UE2 ) capacities are significantly improved for the proposed scheme compared to other16

schemes. Thus, SC is also improved by the proposed scheme compared to other schemes which is illustrated in17

Fig. 3.18

Fig. 4 illustrates the CCU capacity comparisons for the proposed MISO-NOMA-HBF-BFNN scheme19

and the other existing schemes under PNR = 0dB and Lest = 3. The proposed scheme provides significantly20

higher user capacities than other compared schemes in the case of PNR = 0dB . Due to the considered BFNN21

technique for MISO-NOMA-HBF-BFNN scheme, the analog beamformer vRF is optimized based on h2est and22

γ2est . Hence. the CCU and CEU capacities are significantly improved for the proposed scheme compared to23

other schemes in the case of lower PNR. Thus, SC is also improved in case of the proposed scheme which is24

also illustrated in Fig. 4. However, the capacities are decreased in the case of PNR = 0dB compared to PNR25

= 20dB due to the low PNR in the case of the proposed MISO-NOMA-HBF-BFNN scheme which is shown in26

Fig. 4.27

Fig. 5 shows that the channel capacity comparisons for the proposed MISO-NOMA-HBF-BFNN scheme28

and the other compared schemes in the case of PNR = 20dB and Lest = 1. In Figure 5, the proposed scheme29

provides remarkably greater user channel capacities and SC compared to the other conventional schemes in the30
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Figure 4. Capacity comparisons for PNR = 0 dB and Lest = 3.
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Figure 5. SC comparisons for PNR = 20 dB and Lest = 1.

case of lower SNR. In contrast, the capacities are degraded in the case of the proposed scheme due to higher1

SNR compared to conventional MISO-NOMA-HBF. Because the proposed BFNN can optimize the analog2

beamformer vRF effectively in case of lower SNR due to less accurate channel path (Lest ). Due to higher SNR,3

the proposed BFNN cannot optimize the analog beamformer vRF effectively and cannot provide higher user4

channel capacities as well as SC due to less accurate Lest . However, the capacities are decreased in the case of5

Lest = 1 compared to Lest = 3 due to the less accurate Lest in the case of the proposed MISO-NOMA-HBF-6

BFNN scheme which is illustrated in Fig. 5 as well.7

5. Conclusion8

In this study, the MISO-NOMA-HBF-BFNN scheme is proposed for mmWave based downlink MISO-NOMA9

B5G cellular communication. The performance of the MISO-NOMA-HBF-BFNN scheme is analyzed extensively10

in terms of user channel capacities and SC. Moreover, the user channel capacities and SC of the proposed scheme11

are also compared with the conventional MISO-NOMA-HBF and MISO-OMA-HBF-BFNN schemes. The result12

analysis illustrates that, due to the proposed scheme, the CCU channel capacity, CEU channel capacity and13

SC are improved compared to the other compared schemes due to the BFNN for CEU due to imperfect CSI.14

Because the analog beamformer can effectively be optimized by the BFNN for CEU due to the imperfect CSI.15

Thus, the user channel capacities and SC of the proposed MISO-NOMA-HBF-BFNN scheme are improved16

8
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compared to other existing schemes. The impact of different PNR and Lest are also analyzed for the proposed1

scheme and compared with other existing schemes. The result analysis also illustrated that the proposed scheme2

outperforms other existing schemes in terms of user capacities and SC in the case of different PNR and Lest as3

well.4
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