REFERENCES
Abed, A., Légaré, G., Pomerleau, S., St-Cyr, J., Boyle, B., & Belzile,
F. J. (2019). Genotyping-by-sequencing on the ion torrent platform in
barley. In: Harwood, W. (Eds) Barley. Methods in Molecular
Biology , vol 1900. Humana Press, New York, NY. DOI:
https://doi.org/10.1007/978-1-4939-8944-7_15
Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y., & Lobo, J.
(2008). Genetic consequences of habitat fragmentation in plant
populations: susceptible signals in plant traits and methodological
approaches. Molecular Ecology, 17, 5177–5188.
Albert, J. S., Carnaval, A. C., Flantua, S. G. A., Lohmann, L. G.,
Ribas, C. C., Riff, D., Carrillo, J. D., Fan, Y., Figueiredo, J. J. P.,
Guayasamin, J. M., Hoorn, C., de Melo, G. H., Nascimento, N., Quesada,
C. A., Ulloa Ulloa, C., Val, P., Arieira, J., Encalada, A. C., Nobre, C.
A. (2023). Human impacts outpace natural processes in the Amazon.Science , 379, 6630. doi:10.1126/science.abo5003
Aldrich, P. R., Hamrick, J. L., Chavarriaga, P., Kochert, G. (1998).
Microsatellite analysis of demographic genetic structure in fragmented
populations of the tropical tree Symphonia globulifera .Molecular Ecology , 7,
933–944. /10.1046/j.1365-294x.1998.00396.x
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa,
F., & Poorter, L. (2019). Amazonian rainforest tree mortality driven by
climate and functional traits. Nature Climate
Change, 9, 384–388.
Alonso-García, M., Villarreal A., J. C., McFarland, K., & Goffinet, B.
(2020). Population genomics and phylogeography of a clonal bryophyte
with spatially separated sexes and extreme sex ratios. Frontiers
in Plant Science , 11, 495. doi: 10.3389/fpls.2020.00495.
Alvarenga, L. D. P., Pôrto, K. C., & Silva, M. P. P. (2009). Relations
between regional–local habitat loss and metapopulation properties of
epiphyllous bryophytes in the Brazilian Atlantic Forest.Biotropica , 41,
682-691. https://doi.org/10.1111/j.1744-7429.2009.00532.x
Alvarenga, L. D. P., Pôrto, K. C., Coelho, M. L. P. & Zartman, C. E.
(2016). How does reproductive strategy influence demography? A case
study in the tropical, unisexual epiphyllous moss Crossomitrium
patrisiae . American Journal of Botany , 103,
1921–1927. https://doi.org/10.3732/ajb.1600202
Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput
Sequence Data [Online]. Available online
at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Auffret, A. G., Rico, Y., Bullock, J. M., Hooftman, D. A. P., Pakeman,
R. J., Soons, M. B., Suárez-Esteban, A., Traveset, A., Wagner, H. H., &
Cousins S. A. O. (2017), Plant functional connectivity – integrating
landscape structure and effective dispersal. Journal of Ecology ,
105, 1648-1656. https://doi.org/10.1111/1365-2745.12742
Aycrigg, J. L., & Garton, E. O. (2014). Linking metapopulation
structure to elk population management in Idaho: a genetic approach.Journal of Mammalogy, 95, 597–614.
https://doi.org/10.1644/12-MAMM-A-300
Buza, L., Young, A., & Thrall, P. (2000). Genetic erosion, inbreeding
and reduced fitness in fragmented populations of the endangered
tetraploid pea Swainsona recta . Biological Conservation93, 177–186. https://doi.org/10.1016/S0006-3207(99)00150-0.
Campos, L. V., Stech, M., Mota de Oliveira, S., Muñoz-Ortiz, A., Ter
Steege, H., & Uribe-M., J. (2022). Genetic population structure ofCheilolejeunea rigidula (Lejeuneaceae) in the Amazon region.Bryophyte Diversity and Evolution 45, 119–132. DOI:
10.11646/BDE.45.1.8
Carley, L. N., Morris, W. F., Walsh, R., Riebe, D., & Mitchell-Olds,
T. (2022). Are genetic variation and demographic performance
linked? Evolutionary
Applications , 15, 1888–1906. https://doi.org/10.1111/eva.13487
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A.
(2013). Stacks: an analysis tool set for population
genomics. Molecular Ecology , 22 , 3124–3140.
https://doi.org/10.1111/mec.12354
Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K., & May,
F. (2020). Ecosystem decay exacerbates biodiversity loss with
habitat loss. Nature, 584, 238–243
https://doi.org/10.1038/s41586-020-2531-2
Côrtes, M. C., Uriarte, M., Lemes, M. R., Gribel, R., Kress, W. J.,
Smouse, P. E., & Bruna, E. M. (2013). Low plant density enhances gene
dispersal in the Amazonian understory herb Heliconia acuminata .Molecular Ecology, 22, 5716–5729. doi: 10.1111/mec.12495.
Costanzi, J.‐M., & Steifetten, Ø. (2019). Island biogeography theory
explains the genetic diversity of a fragmented rock ptarmigan
(Lagopus muta ) population. Ecology and Evolution 9,
3837–3849. https://doi.org/10.1002/ece3.5007
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M.
C. (2018). Classifying drivers of global forest loss. Science361, 1108–1111. doi:10.1126/science.aau3445
Daskalova, G. N., Myers-Smith, I. H., Bjorkman, A. D., Blowes, S. A.,
Supp, S. R., Magurran, A. E., & Dornelas, M. (2020). Landscape-scale
forest loss as a catalyst of population and biodiversity change.Science 368, 1341–1347.
Diamond, J. M. (1975). The island dilemma: Lessons of modern
biogeographic studies for the design of natural reserves.Biological Conservation , 7, 129–146.
Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., &
Borsboom, D. (2012). qgraph: Network Visualizations of Relationships in
Psychometric Data. Journal of Statistical Software , 48, 1–18.
https://doi.org/10.18637/jss.v048.i04
Escolástico-Ortiz, D. A., Hedenäs, L., Quandt, D., Harpke, D., Larraín,
J., Stech, M., Villarreal A., J. C. (2023). Cryptic speciation shapes
the biogeographic history of a northern distributed
moss, Botanical Journal of the Linnean Society , 201, 114–134.
https://doi.org/10.1093/botlinnean/boac027
Fahrig, L. (2019). Habitat fragmentation: A long and tangled tale.Global Ecology and Biogeography , 28, 33– 41.
https://doi.org/10.1111/geb.12839
Fahrig, L., Arnillas, C., Arroyo-Rodríguez, V., J.rger-Hickfang, T.,
Müller, J., Pereira, H., Riva, F., Rösch, V., Seibold, S., Tscharntke,
T.,Watling, J., & May, F. (2022). Resolving the SLOSS dilemma for
biodiversity conservation: a research agenda. Biological Reviews ,
97, 99–114.
Ferreira, S. J. F., Luizão F. J., & Dallarosa, R. L. G. (2005).
Throughfall and rainfall interception by an upland forest submitted to
selective logging in Central Amazonia. Acta Amazonica, 35,
55–62.
Fischer, R., Taubert, F., Müller, M. S., Groeneveld, J., Lehmann, S.,
Wiegand, T., & Huth, A. (2021). Accelerated forest fragmentation leads
to critical increase in tropical forest edge area. Science
advances , 7 , eabg7012.
https://doi.org/10.1126/sciadv.abg7012
Figueiredo, L., Krauss, J., Steffan-Dewenter, I., & Cabral, J. S.
(2019). Understanding extinction debts: spatio-temporal scales,
mechanisms and a roadmap for future research. Ecography, 42,
1–18.
Gascon, C., & Bierregaard, R. O. Jr. (2001). The Biological Dynamics of
Forest Fragments Project. In: Bierregaard, R. O., Gascon, C.,
Lovejoy, T. E. & Mesquita, R. (Eds.), Lessons from Amazonia (pp.
31–42). New Haven, CT: Yale University Press.
Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P., & ter Steege, H.
(2019). Amazonian tree species threatened by deforestation and climate
change. Nature Climate Change, 9, 547–553.
Goudet, J., & Jombart, T. (2022). hierfstat: Estimation and Tests of
Hierarchical F-Statistics. R package version 0.5-11.
https://CRAN.R-project.org/package=hierfstat
Gruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). “dartr:
An r package to facilitate analysis of SNP data generated from reduced
representation genome sequencing.” Molecular Ecology
Resources , 18,
691–699. doi:10.1111/1755-0998.12745.
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A.,
Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C.
D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins,
C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R.,
Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D. -X., &
Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on
Earth’s ecosystems. Science Advance , 1, e1500052.
Hamabata, T., Kinoshita, G., Kurita, K., Cao, P. -L., Ito, M., Murata,
J., Komaki, Y., Isagi, Y., & Makino, T. (2019). Endangered island
endemic plants have vulnerable genomes. Communication Biology, 2,
244. https://doi.org/10.1038/s42003-019-0490-7
Hamilton, M. (1999). Tropical tree gene flow and seed dispersal.Nature , 401, 129–130. https://doi.org/10.1038/43597
Hanski, I. (2012). Eco-evolutionary dynamics in a changing world.Annals of the New York Academy of Sciences , 1249,
1–17. https://doi.org/10.1111/j.1749-6632.2011.06419.x
Hanski, I. (2015). Habitat fragmentation and species richness.Journal of Biogeography , 42,
989–993. https://doi.org/10.1111/jbi.12478
Hanski, I., & Gagiotti, O.E. (2004). Ecology, Genetics, and Evolution
of Metapopulations. Elsevier, San Diego.
Hanski, I., Zurita, G. A., Bellocq, M. I., & Rybicki,
J. (2013). Species-fragmented area relationship. Proccedings
National Academy of Science
USA , 110, 12715–12720. https://doi.org/10.1073/pnas.1311491110
Hanski, I., Schulz, T., Wong, S., Ahola, V., Roukolainen, A., & Ojanen,
S. P. (2017). Ecological and genetic basis of metapopulation persistence
of the Glanville fritillary butterfly in fragmented
landscapes. Nature Communication, 8, 14504.
https://doi.org/10.1038/ncomms14504
He O., & Zhu R-L. (2011). Spore output in selected species of
Lejeuneaceae (Marchantiophyta) from China. Cryptogamie,
Bryologie , 32, 107-112.
Hedenäs, L., Hylander, K., Lönnell, N., & Bisang, I. (2021). Genetic
variation and reproductive patterns in wetland mosses suggest efficient
initial colonization of disturbed sites. Ecology and
Evolution , 11, 15846– 15859. https://doi.org/10.1002/ece3.8255
Hepenstrick, D., Zemp, N., Widmer, A., & Holderegger, R. (2022).
Neither connectivity nor genetic diversity matter in the conservation of
a rare fern and a moss on insular erratic boulders. Conservation
Genetics, 23 , 193–209.
https://doi.org/10.1007/s10592-021-01414-6
Hill, R., Loxterman, J. L., & Aho, K. (2017). Insular biogeography and
population genetics of dwarf mistletoe (Arceuthobium americanum )
in the Central Rocky Mountains. Ecosphere , 8, e01810.
Holá, E., Košnar, J., & Kučera, J. (2015). Comparison of genetic
structure of epixylic liverwort Crossocalyx Hellerianus between
central European and Fennoscandian populations. PLoS
ONE , 10, e0133134. https://doi.org/10.1371/journal.pone.0133134
Honnay, O., Jacquemyn, H., Bossuyt, B., & Hermy, M. (2005). Forest
fragmentation effects on patch occupancy and population viability of
herbaceous plant species. New Phytologist , 166,
723–736. https://doi.org/10.1111/j.1469-8137.2005.01352.x
Honnay, O., & Bossuyt, B. (2005). Prolonged clonal growth: escape route
or route to extinction? Oikos , 108,
427–432. https://doi.org/10.1111/j.0030-1299.2005.13569.x
Hufbauer, R. A., Szűcs, M., Kasyon, E., Youngberg, C., Koontz, M. J.,
Richards, C., Tuff, T., & Melbourne, B. A. (2015). Three types of
rescue can avert extinction in a changing environment. Proccedings
National Academy of Science USA, 112, 10557–10562.
Jombart, T., Devillard, S., & Balloux, F. (2010) Discriminant analysis
of principal components: a new method for the analysis of genetically
structured populations. BMC Genetics, 11, 94.
https://doi.org/10.1186/1471-2156-11-94
Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R
package for genetic analysis of populations with clonal, partially
clonal, and/or sexual reproduction. PeerJ, 2, e281. doi:
10.7717/peerj.281.
Kamvar, Z. N., Brooks J. C., & Grünwald, N. J. (2015). Novel R tools
for analysis of genome-wide population genetic data with emphasis on
clonality. Frontiers in Genetics, 6, 208. doi:
10.3389/fgene.2015.00208
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W.W., & Prodöhl, P.
A. (2013). DiveRsity: An R package for the estimation of population
genetics parameters and their associated errors. Methods in
Ecology and Evolution, 4, 782–788.
https://CRAN.R-project.org/package=genetics; DOI:
10.1111/2041-210X.12067
Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J.,
Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Rodà, F., Stefanescu,
C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2009). Extinction
debt: a challenge for biodiversity conservation. Trends in Ecology
and Evolution , 24, 564–571.
Laenen, B., Désamoré, A., Devos, N., Shaw, A. J., González-Mancebo, J.
M., Carine, M. A., & Vanderpoorten, A. (2011). Macaronesia: a source of
hidden genetic diversity for post-glacial recolonization of western
Europe in the leafy liverwort Radula lindenbergiana .Journal of Biogeography , 38,
631–639. https://doi.org/10.1111/j.1365-2699.2010.02440.x
Laenen, B., Machac, A., Gradstein, S. R., Shaw, B., Patiño, J.,
Désamoré, A., Goffinet, B., Cox, C. J., Shaw, J., & Vanderpoorten, A.
(2016). Geographical range in liverworts: does sex really matter?Journal of Biogeography , 43,
627–635. https://doi.org/10.1111/jbi.12661
Lang, A. S., Gehrmann, T., & Cronberg N. (2021). Genetic diversity and
population structure in bryophyte with facultative nannandry.Frontiers in Plant Science, 12, 1664–462X. DOI
10.3389/fpls.2021.517547
Laurance, W. F., Camargo, J. L. C., Regina, C. C., Luizão, R. C. C.,
Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson,
G. B., Benítez-Malvido, J., Vasconcelos, H. L., Van Houtan, K. S.,
Zartman, C. E., Boyle, S. A., Didham, R. K., Andrade, A., & Lovejoy, T.
E. (2011). The fate of Amazonian forest fragments: A 32-year
investigation. Biological Conservation , 144, 56–67.
Laurance, W. F., Camargo, J. L. C., Fearnside, P. M., Lovejoy, T. E.,
Williamson, G. B., Mesquita, R. C. G., Meyer, C. F. J., Bobrowiec, P. E.
D., & Laurance, S. G. W. (2018). An Amazonian rainforest and its
fragments as a laboratory of global change. Biological Reviews ,
93, 223–247.
Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer,
E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J.,
Silva-Junior, C. H. L., Alencar, A. A. C., Anderson, L. O., Armenteras,
D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M. H.,
Faria, B. L., Fearnside, P. M., Ferreira, J., Gatti, L.,
Gutierrez-Velez, V. H., Han, Z., Hibbard, K., Koven, C., Lawrence, P.,
Pongratz, J., Portela, B. T. T., Rounsevell, M., Ruane, A. C.,
Schaldach, R., da Silva, S. S., von Randow, C. & Walker, W. S. (2023).
The drivers and impacts of Amazon forest degradation. Science,379, 6630. doi:10.1126/science.abp8622
Ledent, A., Gauthier, J., Pereira, M., Overson, R., Laenen, B.,
Mardulyn, P., Gradstein, S. R., de Haan, M., Ballings, P., Van der
Beeten, I., Zartman, C. E., & Vanderpoorten, A. (2020). What do
tropical cryptogams reveal? Strong genetic structure in Amazonian
bryophytes. New Phytologist, 228,
640–650. https://doi.org/10.1111/nph.16720
Levins, R. A. 1969. Some demographic and genetic consequences of
environmental heterogeneity for biological control. Bulletin of
the Entomological Society of America , 15, 237–240. DOI:
10.1093/besa/15.3.237
Losos, J. B., & Ricklefs, R. E. (2009). The theory of island
biogeography revisited. Princeton, NJ: Princeton University Press.
Lovejoy, T. E., Rankin, J. M., Bierregaard, R. O., Brown, K. S., Emmons,
L. H., & Van der Voort, M. E. (1984). Ecosystem decay of Amazon forest
fragments. In: Nitecki, M. H. (Ed.), Extinctions. University of
Chicago Press, Chicago, pp. 295–325.
Lovejoy, T. E., & Nobre, C. (2019). Winds of will: Tipping change in
the Amazon. Science Advance, 5, eaba2949.
Lowe, A. J., Boshier, D., Ward, M., Bacles, C. F. E., & Navarro, C.
(2005). Genetic resource impacts of habitat loss and degradation;
reconciling empirical evidence and predicted theory for neotropical
trees. Heredity , 95, 255–273.
MacArthur, R. H., & Wilson, E. O. (1967). The theory of island
biogeography. Princeton, NJ: Princeton University Press.
Maciel-Silva, A. S., Marques Valio, I. F., & Rydin, H. (2012). Altitude
affects the reproductive performance in monoicous and dioicous
bryophytes: examples from a Brazilian Atlantic rainforest. AoB
PLANTS , pls016. doi:10.1093/aobpla/pls016
Mantel, N. (1967). The detection of disease clustering and a generalized
regression approach. Cancer Research , 27,
209–220. PMID 6018555.
Matricardi, E. A. T., Skole, D. L., Costa, O. B., Pedlowski, M. A.,
Samek, J. H., & Miguel, E. P. (2020). Long-term forest degradation
surpasses deforestation in the Brazilian Amazon. Science , 369,
1378–1382. doi:10.1126/science.abb3021
Mežaka, A., Bader, M. Y., Salazar Allen, N., & Mendieta-Leiva, G.
(2020). Epiphyll specialization for leaf and forest successional stages
in a tropical lowland rain forest. Journal of Vegetation Science,31, 118–128. https://doi.org/10.1111/jvs.12830
Morris, W. F., Pfister, C. A., Tuljapurkar, S., Haridas, C. V., Boggs,
C. L., Boyce, M. S., Bruna, E. M., Church, D. R., Coulson, T., Doak, D.
F., Forsyth, S., Gaillard, J. -M., Horvitz, C. C., Kalisz, S., Kendall,
B. E., Knight, T. M., Lee, C. T., & Menges, E. S. (2008). Longevity can
buffer plant and animal populations against changing climatic
variability. Ecology , 89, 19–25. DOI:
https://doi.org/10.1890/07-0774.1
Morris, R. J. (2010). Anthropogenic impacts on tropical forest
biodiversity: a network structure and ecosystem functioning perspective.Philosophical Transaction of the Royal Society of London, 365,
3709–3718.
Mota de Oliveira, S., & ter Steege, H. (2015). Bryophyte communities in
the Amazon forest are regulated by height on the host tree and site
elevation. Journal of Ecology 102, 441–450. Doi:
https://doi.org/10.1111/1365-2745.12359
Mota de Oliveira, S., Duijm, E., Stech, M., Ruijgrok, J., Polling, M.,
Barbosa, C. G. G., Cerqueira, G. R., Nascimento, A. H. M., Godoi, R. H.
M., Taylor, P. E., Wolff, S., Weber, B., & Kesselmeier, J. (2022). Life
is in the air: An expedition into the Amazonian atmosphere.Frontiers in Ecology and Evolution , 10, 789791. doi:
10.3389/fevo.2022.789791
Nazareno, A. G., Alzate-Marin, A. L., & Pereira, R. A. S. (2013).
Dioicy, more than monoecy, affects plant spatial genetic structure: the
case study of Ficus . Ecology and Evolution, 3, 3495–3508.
doi: 10.1002/ece3.739
Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2019). A biogeographic
barrier test reveals a strong genetic structure for a canopy-emergent
Amazon tree species. Scientific Reports 9, 18602.
Obbard, D. J., Harris, S. A., & Pannell, J. R. (2006). Sexual Systems
and Population Genetic Structure in an Annual Plant: Testing the
Metapopulation Model. The American Naturalist, 167, 354–366.
DOI: 10.1086/499546
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O’Hara, R. B., Simpson G. L., Solymos, P., Henry, M., Stevens, H., &
Wagner, H. (2016). vegan: Community Ecology Package. R package version
2.3–5. https://CRAN.R-project.org/package=vegan.
Paradis, E. (2010). “pegas: an R package for population genetics with
an integrated–modular approach.” Bioinformatics , 26, 419–420.
Patiño, J., Werner, O., & González-Mancebo, J. M. (2010). Impact of
forest disturbance on the late successional moss Isothecium
myosuroides : local-scale variations of genetic diversity and population
structure. Journal of Bryology , 32, 220–231.
Patiño, J., Bisang, I., Hedenäs, L., Dirkse, G., Bjarnason, Á.H.,
Ah-Peng, C., & Vanderpoorten, A. (2013). Baker’s law and the island
syndromes in bryophytes. Journal of Ecology , 101, 1245–1255.
https://doi.org/10.1111/1365-2745.12136
Patiño, J., Carine, M., Mardulyn, P., Devos, N., Mateo, R. G.,
González-Mancebo, J. M., Shaw, A. J., & Vanderpoorten, A. (2015).
Approximate Bayesian Computation Reveals the Crucial Role of Oceanic
Islands for the Assembly of Continental Biodiversity. Systematic
Biology , 64, 579–589. https://doi.org/10.1093/sysbio/syv013
Pharo, E. J., & Zartman, C. E. (2007). Bryophytes in a changing
landscape: the hierarchical effects of habitat fragmentation on
ecological and evolutionary processes. Biological
Conservation , 135, 315–325.
Pohjamo, M., Korpelainen, H., & Kalinauskaitė, N. (2008). Restricted
gene flow in the clonal hepatic Trichocolea tomentella in fragmented
landscapes. Biological Conservation , 141, 1204–1217.
https://doi.org/10.1016/j.biocon.2008.02.016.
R Core Team (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rochette, N. C., Rivera-Colón, A. G., & Catchen, J. M. (2019). Stacks
2: Analytical methods for paired-end sequencing improve RADseq-based
population genomics. Molecular
Ecology , 28, 4737–4754. https://doi.org/10.1111/mec.15253
Rochette, N., & Catchen, J. (2017). Deriving genotypes from RAD-seq
short-read data using Stacks. Nature Protocols , 12, 2640–2659.
Rosenzweig, M. L. (1995). Species Diversity in Space and Time (Cambridge
Univ Press, Cambridge, UK.
Rousset, F. (1997). Genetic differentiation and estimation of gene flow
from F-statistics under isolation by distance. Genetics , 145,
1219–1228. doi: 10.1093/genetics/145.4.1219.
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J.,
Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig,
A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N.
L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000).
Global Biodiversity Scenarios for the Year 2100. Science , 287,
1770–1774.
Schuster R. M. (1983). Phytogeography of the bryophyta.In: Schuster R. M. (Ed.) New manual of
bryology , vol. 1 . Nichinan, Japan: The Hattori Botanical
Laboratory, 463–626.
Scott, E. R., Uriarte, M., & Bruna, E. M. (2022). Delayed effects of
climate on vital rates lead to demographic divergence in Amazonian
forest fragments. Global Change Biology , 28, 463–479.
https://doi.org/10.1111/ gcb.15900
Sierra, A. M., Toledo, J. J., Salazar Allen, N., & Zartman, C. E.
(2019a). Reproductive traits as predictors of assembly chronosequence
patterns in epiphyllous bryophyte metacommunities. Journal of
Ecology, 107, 875–886.
Sierra, A. M., Toledo, J. J., Nascimento, H. E., Pereira, M. R., &
Zartman, C. E. (2019b). Are extinction debts reflected in temporal
changes of life history trait profiles? A fifteen-year reappraisal of
bryophyte metacommunities in a fragmented landscape. Biological
Conservation, 238, 108218.
Snäll, T., Fogelqvist, J., Ribeiro, P. J., & Lascoux,
M. (2004). Spatial genetic structure in two congeneric epiphytes with
different dispersal strategies analysed by three different
methods. Molecular Ecology 13, 2109–2119.
Sonnleitner, M., Dullinger, S., Wanek, W., & Zechmeister, H. (2009).
Microclimatic patterns correlate with the distribution of epiphyllous
bryophytes in a tropical lowland rainforest in Costa Rica. Journal
of Tropical Ecology , 25, 321–330.
https://doi.org/10.1017/S0266467409006002.
Spagnuolo, V., Muscariello, L., Terracciano, S., & Giordano, S.
(2007). Molecular biodiversity in the moss Leptodon
smithii (Neckeraceae) in relation to habitat disturbance and
fragmentation. Journal of Plant Research, 120, 595–604.
https:/10.1007/s10265-007-0097-9
Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P., & Kleinhans, D.
(2016). Directional genetic differentiation and relative migration.Ecology and Evolution, 6, 3461–3475. doi: 10.1002/ece3.2096.
Stouffer, P. C. (2020). Birds in fragmented Amazonian rainforest:
Lessons from 40 years at the Biological Dynamics of Forest Fragments
Project. The Condor , 122, 3, 4
duaa005. https://doi.org/10.1093/condor/duaa005
Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S.,
Rödig, E., Wiegand, T., & Huth, A. (2018). Global patterns of tropical
forest fragmentation. Nature, 554, 519–522
https://doi.org/10.1038/nature25508
Thrall, P., Burdon, J., & Murray, B. (2000). The metapopulation
paradigm: A fragmented view of conservation biology. In: Young,
A. & Clarke, G. (Eds.), Genetics, Demography and Viability of
Fragmented Populations (Conservation Biology, pp. 75-96). Cambridge:
Cambridge University Press. doi:10.1017/CBO9780511623448.007
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat
destruction and the extinction debt. Nature , 371, 65–66.
Tjørve, E. (2010). How to resolve the SLOSS debate: Lessons from
species-diversity models. Journal of Theoretical Biology , 264,
604–612. https://doi.org/10.1016/j.jtbi.2010.02.009.
Tjørve, E., & Tjørve, K. M. (2017). Species–Area Relationship. In:
eLS, John Wiley & Sons, Ltd
(Ed.). https://doi-org.acces.bibl.ulaval.ca/10.1002/9780470015902.a0026330
Vanderpoorten, A., Patiño, J., Désamoré, A., Laenen, B., Górski, P.,
Papp, B., Holá, E., Korpelainen, H., & Hardy, O. (2019). To what extent
are bryophytes efficient dispersers? Journal of Ecol ogy,
107, 2149–2154. DOI: https://doi.org/10.1111/1365-2745.13161
Vellend, M., Baeten, L., Becker-Scarpitta, V., McCune, J. L., Messier,
J., Myers-Smith, I. H., & Sax, D. F. (2017). Plant Biodiversity Change
Across Scales During the Anthropocene. Annual Review in Plant
Biology 68, 563–86.
Vellend, M. (2003). Island biogeography of genes and species.American Naturalist, 162, 358–365.
Vellend, M., & Geber, M. A. (2005). Connections between species
diversity and genetic diversity. Ecology Letters , 8, 767–781.
Vranckx, G., Jacquemyn, H., Muys, B., & Honnay, O. (2011).
Meta-analysis of susceptibility of woody plants to loss of genetic
diversity through habitat fragmentation. Conservation Biology ,
26, 228–237. doi: 10.1111/j.1523-1739.2011.01778.x.
Wang, S., & Altermatt, F. (2019). Metapopulations revisited: the
area-dependence of dispersal matters. Ecology, 100,
e02792. 10.1002/ecy.2792
Wang, Y., Zhu, Y., & Wang, Y. (2012). Differences in spatial genetic
structure and diversity in two mosses with different dispersal
strategies in a fragmented landscape. Journal of Bryology, 34,
9–16. Doi: 10.1179/037366810X12735734836133
Watling, J. I., Arroyo-Rodríguez, V., Pfeifer, M., Baeten, L.,
Banks-Leite, C., Cisneros, L. M., Fang, R., Hamel-Leigue, A. C., Lachat,
T., Leal, I. R., Lens, L., Possingham, H. P., Raheem, D. C., Ribeiro, D.
B., Slade, E. M., Urbina-Cardona, J. N., Wood, E. M., & Fahrig, L.
(2020). Support for the habitat amount hypothesis from a global
synthesis of species density studies. Ecology Letters , 23,
674–681. https://doi.org/10.1111/ele.13471
Whittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general
dynamic theory of oceanic island biogeography. Journal of
Biogeography, 35, 977–994. DOI: 10.1111/j.1365-2699.2008.01892.x
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J.,
Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography:
Taking the long view of nature’s laboratories. Science, 357,
eaam8326. DOI: 10.1126/science.aam8326
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics, for
the analysis of population structure. Evolution , 38, 1358–1370.
Young, A., Boyle, T. & Brown, T. (1996). The population genetic
consequences of habitat fragmentation for plants. Trends in
Ecology & Evolution, 11, 413–418. Doi :
https://doi.org/10.1016/0169-5347(96)10045-8.
Zanatta, F., Engler, R., Collart, F., Broennimann, O., Mateo, R. G.,
Papp, B., Muñoz, J., Baurain, D., Guisan, A., & Vanderpoorten, A.
(2020). Bryophytes are predicted to lag behind future climate change
despite their high dispersal capacities. Nature
Communication, 11, 5601. https://doi.org/10.1038/s41467-020-19410-8
Zartman, C. E. (2003). Forest fragmentation effects on epiphyllous
bryophyte communities of central Amazonia. Ecology, 84, 948–954.
https://doi.org/10.1890/0012-9658.
Zartman, C. E., & Nascimento H. E. (2006). Are patch-tracking
metacommunites dispersal limited? Inferences from abundance-occupancy
patterns of epiphylls in Amazonian forest fragments. Biological
Conservation, 127, 46–54.
https://doi.org/10.1016/j.biocon.2005.07.012.
Zartman, C. E., & Shaw, A. J. (2006). Metapopulation extinction
thresholds in rainforest remnants. The American Naturalist, 167,
177–189. https://doi.org/10.1086/499376.
Zartman, C. E., McDaniel, S. F., & Shaw, A. J. (2006). Experimental
habitat fragmentation increases linkage disequilibrium but does not
affect genetic diversity or population structure in the Amazonian
liverwort Radula flaccida . Molecular Ecology, 15,
2305–2315. https://doi.org/10.1111/j.1365-294X.2006.02929.x
Zartman, C. E., Nascimento, H. E. M., Cagani, K. G., Alvarenga, L. D.
P., & Snäll, T. (2012). Finescale changes in connectivity affect the
metapopulation dynamics of a bryophyte confined to ephemeral patches.Journal of Ecology , 100, 980–986.
https://doi.org/10.1111/j.1365-2745.2012.01969.x.
Zartman, C. E., Amaral, J. A., Figueiredo, J. N., & Dambros, C. S.
(2015). Drought impacts survivorship and reproductive strategies of an
epiphyllous leafy liverwort in central Amazonia. Biotropica, 47,
172–178
Legends
Tables
Table 1. Summary statistics results of Wilcoxon rank sum exact test of
differences in estimated number of colonies between categories
considering 1- & 10-ha forest fragments as small patches and 100-ha &
continuous forest as large patches and compared between the two years
sampled (2000 and 2016). Significant differences with p-value
<0.01 and <0.001 are highlighted in bold.
Table 2. Analysis of Molecular Variance (AMOVA) of epiphyllous
population in forest fragment and continuous forest for the two filtered
dataset by the minimum percentage of individuals across populations
required to process a locus. Significant differences with p-value<0.01 and <0.001 are highlighted in bold.
Figures
Figure 1. Expected population genetic outcomes under different
metapopulation structure models with variable degree of isolation
(connectivity) and patch size. In the non-equilibrium metapopulation
patches of equal size are highly isolated, that there is no exchange of
migrants between populations. In the classical metapopulation model,
patches of equal size present high probability of extinction, but have
enough connectivity to allow (re)colonization of unoccupied patches
allowing metapopulation persistence. The mainland-island metapopulation
present small and large patches, where unidirectional migration to small
patches is dependent of the mainland population where extinction rate is
low (Island-Mainland). Distances from the mainland will determine the
rate of migration represented by the arrow size. In patchy
metapopulation, patches of variable size are highly connected (patchy)
with high rate of migration among all populations. In the metapopulation
models following a patch size and connectivity continuum, a high degree
of genetic differentiation will be observed in highly isolated small
patches, and in highly connected patches of varying size, the genetic
differentiation will be lower (Aycrigg & Garton 2014). Figure is
adapted from Aycrigg & Garton 2014.
Figure 2. Population size as the estimated number of epiphyllous
bryophyte colonies of the species Radula flaccida andCololejeunea surinamensis per 1-ha study plot. Temporal variation
in population size between the year 2000 and 2016 per 1-ha study plots
in A. Small Forest patches (1- and 10-ha), and B. in large forests
patches (100-ha and continuous forest). C. Population size density
distribution comparison between small and large forests patches for the
year 2000 and 2016. Mean population size are depicted as follow: orange
solid line for 1-ha, orange dashed line for 10-ha, green solid line for
100-ha and green dashed line for continuous forests.
Figure 3. Fine-scale population genetic structure of the speciesRadula flaccida and Cololejeunea surinamensis in an
experimental Amazonian fragmented landscape for: A. R. flaccida(Dataset n = 105, -R = 15); B. R. flaccida (Datasetn = 70, -R = 20); C. C. surinamensis (Dataset n =
108, -R = 15); and D. C. surinamensis (Dataset n = 71, -R
= 20). Ordination plot of Discriminant Analysis of Principal Components
(DAPC) and density plot depicting the two-ordination axis showing the
genotype similarity of populations in different forest fragment size and
continuous forest. Points represent individuals assigned to their
respective size category and 95% ellipse showing confidence interval.
Figure 4. Population genetic differentiation of the species Radula
flaccida and Cololejeunea surinamensis in an experimental
Amazonian fragmented landscape with the two datasets. MeanF ST pairwise comparison of populations within
small patches, between small and large patches, and within large patches
for: A. R. flaccida (Dataset n = 105, -R = 15); B.R. flaccida (Dataset n = 70, -R = 20); C. C.
surinamensis (Dataset n = 108, -R = 15); and D. C.
surinamensis (Dataset n = 71, -R = 20).
Figure 5. Isolation by distance relationship (Fij )FST/1-FST of epiphyll populations
and geographic distance (log-transformed) for A. R. flaccida(Dataset n = 105, -R = 15); and B. C. surinamensis(Dataset n = 108, -R = 15). Regression lines correspond to
pairwise comparison among populations in small forest patches (1- and
10-ha), populations in large forest patches (100-ha and Continuous
Forest), and between small and large forest patches for both species.
Symmetrical relative migration network graph using the Nmparameter among small forest patches (1- and 10-ha), and large forest
patches (100-ha and Continuous Forest) for C. R. flaccida(Dataset n = 105, -R = 15); and D. C. surinamensis(Dataset n = 108, -R = 15) in an experimental Amazonian
fragmented landscape. Filter threshold for the asymmetric values was set
to 0.35. Colors corresponds to the patch size as in Figure 3.