
manuscript submitted to Geophysical Research Letters  

 

Apportionment and Inventory Comparison of Agriculture and Energy Sector Methane 1 
Emissions using Multi-month Trace Gas Measurements in Northern Colorado 2 

 3 
Griffin J. Mead,1 Daniel I. Herman,1,2 Fabrizio R. Giorgetta,1,2 Nathan A. Malarich,1 4 
Esther Baumann,1,2  Brian R. Washburn,1,2 Nathan R. Newbury,1 Ian Coddington,1 Kevin 5 
C. Cossel1,* 6 
 7 
1 National Institute of Standards and Technology, Spectrum Technology and Research Division, 8 
Boulder, CO 80305 9 
2 University of Colorado, Boulder, Department of Physics, Boulder, CO 80309 10 

Corresponding author: Kevin Cossel (kevin.cossel@nist.gov)  11 

 12 

Key Points: 13 

• Optimized methane fluxes across multiple sectors in a complex emissions environment 14 
using a mid-infrared dual-comb spectrometer and tracer gas analysis 15 

• Comparison with energy-sector inventory indicates decrease in emissions factors since 16 
2012 17 

• Comparison with agriculture-sector inventories emphasize the importance of spatial 18 
distributions in regional comparisons 19 

Abstract 20 

Quantifying sector-resolved methane fluxes in complex emissions environments is challenging 21 
yet necessary for inventory validations.  We separate energy and agriculture sector methane 22 
using a dynamic linear model of methane, ethane, and ammonia mixing ratios measured at a 23 
Northern Colorado site from November 2021 to January 2022. Combining observations with 24 
spatially resolved inventories and inverse methods, energy and agriculture methane fluxes are 25 
constrained across a ~850 km2 area. Optimized energy sector fluxes were 22% lower than the 26 
inventory despite a ~360% increase in regional energy production since the inventory was 27 
constructed, suggesting a regional decline in emissions factors. In contrast, optimized agriculture 28 
fluxes were 3× larger than the inventory; we demonstrate this discrepancy is consistent with the 29 
spatial distribution of agricultural sources. These results highlight the utility of sector-30 
apportioned methane observations for multi-sector inventory optimization in complex 31 
environments, which may prove valuable for national and global quatification of sector-resolved 32 
methane fluxes. 33 

 34 

Plain Language Summary 35 

Knowledge of the locations, fluxes, and kinds of methane sources is important for implementing 36 
effective emissions mitigation technologies and regulations. Methane emissions are often 37 
challenging to categorize because a wide variety of sources can emit methane, and these 38 
disparate sources are often intermingled at relevant spatial scales. We demonstrate how a 39 
dynamic linear model can use multi-month time series of two trace gases, ethane and ammonia, 40 
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to effectively separate methane into energy and agriculture source sectors. We demonstrate how 41 
the sector-apportioned methane can be incoroporated into a Bayesian inversion approach for 42 
refinement of these inventories. Our results suggest that emissions factors for energy 43 
infrastructure have decreased three-fold since 2012 in the study area, and that our methodology 44 
is sensitive to the spatial distribution of methane sources in the region. 45 

 46 

1 Introduction 47 

Increased use of hydrocarbons and the expansion of agriculture over the past century has 48 
significantly increased atmospheric methane concentrations. While short-lived in the 49 
atmosphere, methane has a global warming potential 24-28× that of carbon dioxide on a 100-50 
year timescale. International attempts to limit global temperature rises have increasingly focused 51 
attention on reducing methane emissions. Mitigation efforts rely, in turn, on accurate national 52 
emissions inventories to identify the economic sectors which contribute to anthropogenic 53 
methane emissions. Current best estimates indicate that the energy and agriculture sectors 54 
respectively produce 30% and 36% of annual methane emissions in the United States 55 
(Maasakkers et al., 2016). Reducing uncertainty in the contributions from these two sectors is 56 
pressing but also quite challenging. Energy infrastructure and agricultural lands are often 57 
comingled; at a typical inventory model resolution of 0.1°, we estimate that up to half of all areas 58 
in the U.S. contribute both energy and agriculture sector methane fluxes. Observational studies 59 
must overcome this collocation challenge to constrain the magnitude and distribution of methane 60 
emissions from these two sectors. 61 
 62 
Here, we present results from a multi-month study in the Northern Colorado Front Range Urban 63 
Corridor which demonstrate direct, sector-sepcific inventory optimizations by combining novel 64 
instrumentation and analytical methods. Methane emissions in this region arise predominantly 65 
from the energy and agriculture sectors; rapidly expanding energy infrastructure in the Denver-66 
Julesburg Basin (DJB) over the past two decades has become increasingly intermingled with 67 
areas where livestock are raised (Fig 1a, Fig 1b). Multi-month data sets of methane, ethane, and 68 
ammonia mixing ratios (Fig 1c) were collected at a regional site using a cavity ring-down 69 
spectrometer and, for the first time, an open-path, mid-infrared dual-comb spectrometer (MIR-70 
DCS). The broad spectral bandwidth of the MIR-DCS instrument enables multi-species 71 
quantification, which in turn is critical for sector apportionment of methane (Coddington et al., 72 
2016; Giorgetta et al., 2021; Ycas et al., 2018). From these observational data, we construct a 73 
dynamic linear model framework which extends the application of tracer gas sector attribution to 74 
the long duration of the observational data (Kille et al., 2019; Pollack et al., 2022; Yacovitch et 75 
al., 2014, 2015) In combination, the dual-comb spectroscopy technique and dynamic linear 76 
model analysis provide crucial information that constrains the regional distribution of energy and 77 
agriculture methane fluxes. Sector-resolved inventory models are compared to observations and 78 
optimized using a Bayesian inverse method. Posterior energy emissions in the region are similar 79 
to 2012 inventory estimates despite a ~360% increase in energy production; this  corroborates 80 
other studies hypothesis that emissions factors have changed since the inventory was constructed 81 
(Peischl et al., 2018). Agricultural methane fluxes were 3× greater than inventory estimates; we 82 
demonstrate that this discrepancy arises from the spatial concentration of livestock which is not 83 
captured in the inventory model. Sector-resolved inventory evaluations presented here 84 
demonstrate how complex regional emissions inventories can be verified using a combination of 85 
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instrumental and analytical techniques. The intrinsic sector sensitivity of this approachcould be 86 
broadly implemented across much larger regions andfills gaps in our understanding of national- 87 
and global-level methane emissions from different economic sectors. 88 
 89 
 90 

 91 
 92 

Figure 1 a) The Front Range Urban Corridor extends along the eastern edge of the Rocky 93 
Mountains. Tens of thousands of wellheads (shown as a density map) installed in the region extract 94 
oil and gas from the Wattenberg field (red outline). County outlines are shown in black. Data were 95 
collected at the Platteville Atmospheric Observatory (PAO). b) Agricultural activities, such as 96 
confined animal feeding operations (CAFO, color coded by livestock and scaled to relative 97 
expected emissions magnitude), are widely distributed and spatially overlapped with energy 98 
infrastructure. c) Full methane, ethane, ammonia, (expressed as dry mixing ratios) and water time 99 
series recorded at PAO, over the 2.5 month period by an open-path, mid-infrared dual-comb 100 
spectrometer for methane, ethane and water, and by a cavity ringdown spectrometer for ammonia. 101 
 102 

2 Materials and Methods 103 

2.1 Observational data collection 104 
Measurements collected at the Platteville Atmospheric Observatory (PAO) from 1 105 

November 2021 to 17 January 2022 are used in this analysis. Methane (CH4), ethane (C2H6), and 106 
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water (H2O) concentrations were measured with an open-path mid-infrared (MIR) dual-comb 107 
spectrometer (DCS), while ammonia (NH3) was measured using a cavity ring-down spectrometer 108 
(CRDS). Fig 1c shows the full CH4, C2H6, and NH3 time series expressed as dry air mole 109 
fractions, reported in ppm [umol/mol] and/or ppb [nmol/mol]. Both instruments were 110 
simultaneously sampling ~50% of the time; all analysis will rely on these overlapping periods. 111 
Additional meteorological data (air temperature, pressure, relative humidity, solar radiation, 112 
wind speed and direction) were obtained from a monitoring station run by the National Oceanic 113 
and Atmospheric Administration (NOAA, station code PVL). A map of the measurement site is 114 
provided in Fig S1. 115 
 116 
The MIR DCS system is similar to previously reported designs (Giorgetta et al., 2021; Ycas et 117 
al., 2019, 2020) and is described in more detail in (Herman et al., 2023). Briefly, the instrument 118 
measures an optical bandwidth spanning 3-5 µm with 200-MHz spectral resolution. 119 
Measurements extended along a 380-meter open-air path (760 m round trip) at an average height 120 
above ground level of 5 meters to a retroreflector. The retroreflected light is collected with the 121 
same transmit/receive telescope, detected by a thermoelectrically cooled mercury cadmium 122 
telluride detector, digitized at 200 MHz, and coherently averaged to yield one atmospheric 123 
spectra every 2 minutes (Roy et al., 2012; Ycas et al., 2018). These atmospheric transmission 124 
spectra were fit to reference spectra from HITRAN2020 (Gordon et al., 2022) to retrieve the 125 
path-averaged concentrations of CH4, C2H6, and H2O. Other species, including propane, heavier 126 
alkanes and aromatic compounds are also present in the data but not analyzed here. 127 
 128 

2.2 Tracer gas analysis 129 
 130 

Methane observations are modelled as the sum of energy emissions (𝛽!𝐶"𝐻#), agricultural 131 
emissions (𝛽"𝑁𝐻$), a background term, 𝛽%, and a Gaussian noise term 𝜖  (Kille et al., 2019): 132 
 133 

𝐶𝐻& = 𝛽% + 𝛽!𝐶"𝐻# + 𝛽"𝑁𝐻$ + 𝜖 134 
 135 
where the dry mixing ratio is indicated by the chemical compound. This is appropriate for the 136 
Front Range Urban Corridor where energy and agriculture contribute a majority of methane 137 
emissions.  Landfills can also provide a substantial methane flux and unfortunately have no 138 
convenient distinguishing tracer gas. However, all major landfills are well outside our area of 139 
sensitivity and therefore are not expected to contribute significantly.  140 
 141 
The regression coefficients 𝛽%, 𝛽!, and 𝛽" are expected to vary throughout the duration of 142 
observations at PAO since the background methane 𝛽% will surely change and the ratio of 143 
methane to the tracer gases (𝛽!, and 𝛽") will also vary with the specific source. A static linear 144 
regression approach will fail to capture this variation inherent to the multi-month time series. To 145 
accommodate variations in the coefficients, we use a dynamic multivariate linear model. (West 146 
& Harrison, 1997). Dynamic linear models (DLMs) consist of an observation equation  147 
 148 

𝑌' = 𝐹'(𝜃' + 𝜈' ,								𝜈'~𝑁[0, 𝑉'] 149 
 150 
and a system equation   151 
 152 
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𝜃' = 𝜃')! +	𝜔' ,								𝜔'~𝑁[0,𝑊'] 153 
 154 
Here, 𝑌' is the methane concentration at observation time point t, which has a Gaussian noise 155 
term 𝜈'with a mean of zero and a variance 𝑉' (defined here as the variance of the point-wise 156 
difference of the methane time series). Tracer gas observations, along with a constant term which 157 
models the intercept, are included in the regression vector 𝐹'	 = 61' , 𝐶"𝐻#,' , 𝑁𝐻$,'8. The 158 
regression state vector 𝜃' = 6𝛽%,' , 𝛽!,' , 𝛽",'8 evolves over time as a function of the previous 159 
parameter vector and the evolution variance matrix 𝑊'. Because this variance matrix is difficult 160 
to directly estimate and may not be time-invariant, DLMs are often solved using a discount 161 
factor 𝛿 instead as a proxy for the “memory” of the system over time (West & Harrison, 1997). 162 
The discount factor is defined as 𝛿 = 	𝑃' (𝑊' + 𝑃')⁄ , where 𝑃' is the prior variance 163 
corresponding to a state vector with zero stochastic change (𝑊' = 0). In that limiting case, 𝛿 = 1 164 
(irrespective of the actual value of 𝑃') and the DLM is identical to a static multivariate regression 165 
model. An optimal discount factor can be determined through minimizing the model’s mean 166 
standard error, but in practice this minimization becomes expensive for large data sets. For 167 
analysis in this work, replicates of the DLM were fit to the data using a random selection of 168 
discount factors spanning [0.98,0.999]. Values below 0.98 were found to lead to numerical 169 
instability. (Note that data points where the variance of either 𝛽! or 𝛽" was greater than 100% of 170 
the fit value are excluded in subsequent analysis.)  171 
 172 

2.3 Emissions inventories 173 
This work considers a 0.1°×0.1° spatially gridded methane surface flux map derived from the 174 
2012 EPA national methane inventory (Maasakkers et al., 2016).  These estimates may be 175 
convolved with STILT-R influence footprints to predict sector-apportioned methane mixing 176 
ratios at PAO which can be used as priors for Bayesian inversions. The inventory relies on 177 
models of the size and spatial distribution of methane sources to generate sector-specific surface 178 
flux estimates. Annual sectoral estimates for emissions arising from energy production (1B2b 179 
(Natural Gas Production + Processing + Transmission + Distribution) + 1B2a (Petroleum)) and 180 
animal husbandry (4A (Enteric Fermentation) + 4B (Manure Management)) were used in this 181 
work.  182 
 183 

2.4 Atmospheric dispersion modelling 184 
A dispersion model is required to connect the measured sector-apportioned methane to an 185 
inventory. For this, we retrieve 3-km High Resolution Rapid Refresh (HRRR) meteorological 186 
data provided by the National Oceanic and Atmospheric Administration’s Air Resources 187 
Laboratory.  Based on these data and using the STILT-R Lagrangian transport model (Benjamin 188 
et al., 2016; Fasoli et al., 2018; Lin, 2003), we calculated hourly footprints over an 8 week period 189 
of observations spanning November and December 2021 spanning +/-3° latitude and longitude 190 
centered on PAO. These influence footprints were based on 24 hour and 48 hour back 191 
trajectories originating from PAO calculated at 1-hour steps using 100 particles at 0.1° resolution 192 
with hyper near field effects enabled. This influence footprint f(xr, Tr | xi, T) (units of [ppm m2 s / 193 
μmol CH4 ]) connects emissions throughout the spatial domain, at location xi and time T, to 194 
observed mixing ratios at PAO, at location xr and time Tr. A “forward” estimate (prior 195 
prediction) of the tracer concentration change at the receptor due to transport from an emission 196 
source can be calculated by multiplying the influence footprint with a surface flux estimate F(xi, 197 
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T) (units of [µmol CH4 / m2 s]) provided by the inventory, followed by summation over the 198 
spatial domain of the simulation. 199 
 200 

2.5 Bayesian inversion  201 
From the observed energy and agriculture apportioned methane time series and back trajectory 202 
simulations, we calculate maximum a posteriori (MAP) estimates 𝐱>	and corresponding posterior 203 
error covariance matrices 𝐒@ for both sectors using the respective emissions inventory as the prior 204 
estimate, 𝐱𝐀	(Cusworth et al., 2020), 205 
 206 

𝐱> = 𝐱𝐀 + 𝐒𝐇𝐓(𝐇𝐒𝐇𝐓 + 𝐑))𝟏(𝐲 − 𝐇𝐱)	 207 
	   208 

𝐒@ = (𝐇𝐓𝐑)𝟏𝐇 + 𝐒)𝟏))𝟏 209 
 210 
Observational time series were converted from two-minute to one-hour mean values;  only 211 
databetween hours 11-16 local time (when the boundary layer is assumed to be well mixed and at 212 
a maximum height) were used in the analysis (Kunik et al., 2019). Optimization of the prior and 213 
observational error covariance matrices R and S is discussed in the SI (Michalak?). The 214 
averaging kernel sensitivity matrix, calculated from 𝐒@, indicates the posterior estimate is 215 
optimized across an area of 850 km2 centerd around PAO. This region is highlighted with a 216 
rectangular outline in Figs 4 and 5. The study’s averaging kernel matrix is shown in Fig S5. 217 
 218 

3 Time-resolved Sector Apportioned Methane 219 

The dynamic linear model was applied to the full time series data. Significant day-to-day 220 
variations in relative contributions from agriculture and energy were observed, consistent with 221 
the complex regional source environment. Three illustrative examples are shown in Fig 2. 222 
Methane, ethane, and ammonia mixing ratios, and DLM regression coefficients with 223 
uncertainties are shown for time periods spanning 9-24 hours. Notably, the DLM regression 224 
captures how uncertainty in the regression coefficients varies over time. During periods with a 225 
low tracer gas mixing ratio or little variation in the tracer gas, uncertainty in the respective 226 
regression coefficient increases. A sharp increase in one tracer gas concentration rapidly shrinks 227 
the uncertainty in the respective DLM coefficient.  228 

 229 
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 230 
 231 

Figure 2 Three plume events illustrate how the dynamic linear regression model reproduces 232 
observed CH4 dynamics. The three regression coefficients calculated using the dynamic linear 233 
model (dashed lines, left axis) are shown, with the uncertainty in gray shading. In addition, the 234 
top panel shows both the full modeled methane concentration (solid line, right axis) and the 235 
measured methane concentration (green circles, right axis).  The second and third rows show the 236 
sector-apportioned methane for the energy and agricultural sectors respectively, based on the 237 
product of the tracer gas measurements and retrieved enhancement ratios (colored dots, right 238 
axis). Note that the enhancement ratios with the tracer gases, 𝛽! and 𝛽" , cover a wide range of 239 
values, which highlights the usefulness of the DLM approach for resolving complex dynamics. 240 
Comparison of the enhancement factors retrieved from the DLM to other literature and available 241 
data. d) The range of	𝛽! coefficients observed at PAO are similar to coefficients calculated from 242 
COGCC sampling data. Evidence for produced gas emissions are apparent in the DLM results. e) 243 
𝛽" coefficients at PAO are consistent with other studies performed in the Front Range Urban 244 
Corridor (Eilerman et al., 2016) and San Joaquin Valley (Miller et al., 2015). 245 

Figure 2d-e shows kernel density estimate of the two enhancement ratios over the 2.5 month 246 
observation period. In the case of 𝛽!, this ratio has been observed to vary as natural gas is 247 
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extracted, processed, and transported (Peischl et al., 2013). Ethane and methane mole fractions 248 
for natural gas samples collected after 2010 in the Front Range Urban Corridor by the Colorado 249 
Oil and natural gas Conservation Commission (COGCC) provided a direct comparison to our 250 
estimates for 𝛽! (Fig 2d) (Colorado Oil and Gas Conservation Commission, 2022). COGCC 251 
recorded data for a range of sample locations, including well casings, produced gas, and 252 
separators and water tanks. For this analysis, well casings consisted of samples collected from 253 
bradenheads, well tubing, and surface, intermediate, and production casings. The 𝛽!values 254 
determined from the PAO data span the lower end of values for well casing and the higher range 255 
of values for separator and water tank emissions, but are most consistent with produced gas 256 
emissions.  257 
 258 
Similarly, 𝛽" is expected to vary as emissions from chickens and cows can have substantially 259 
different ratios of methane and ammonia concentrations (Golston et al., 2020). Other sources of 260 
variation could include atmospheric chemical effects such as deposition and reactivity (primarily 261 
for NH3). We compare our 𝛽" results with two mobile measurement studies in Fig 2e. While 262 
extensive studies examining ammonia/methane enhancement ratios are not available, studies in 263 
both the San Joaquin Valley of California and the Front Range Urban Corridor in Colorado 264 
overlap well with 𝛽"	results obtained at PAO, indicating a consistent, if broad, distribution of 265 
𝛽"	values for agriculture across the western United States (Eilerman et al., 2016; Miller et al., 266 
2015). 267 
 268 
This analysis emphasizes that enhancement ratios are far from universal—even for a single 269 
location—and that it is likely impossible to determine a unique set of 𝛽 parameters for energy 270 
and agriculture emissions even for a measurement spanning several hours. In the same vein, 271 
descriptions of the relative fractions of agriculture- and energy-sector methane will vary based 272 
upon the time period considered. 273 

4 Comparison with inventories 274 

We now compare sector-apportioned methane to inventory predictions using the “forward” 275 
model (prior prediction) discussed in Section 2.4. The degree of agreement presumably reflects 276 
the extent to which the inventory correctly models the real world methane sources. We can then 277 
improve inventory agreement by generating a posterior estimate using a Bayesian inversion with 278 
the inventory as the prior estimate. We consider only midday observations when the boundary 279 
layer is on average well mixed and well approximated in the meteorological models. Figure 4a 280 
and 5a summarizes the results for the energy and agricultural sector respectively.  The 281 
observation uncertainties were estimated with a bootstrap method by randomly sampling 20% of 282 
the sector apportioned methane time series 500 times, calculating the hourly mean for each 283 
sample, and calculating the variance of the spread of the hourly means. The uncertainty in the 284 
forward model mixing ratios were based on the sector-dependent uncertainties described in 285 
Maasakkers. Finally, the posterior uncertainties were calculated using the posterior error 286 
covariance matrix (see SI).  287 
 288 
 289 
 290 
 291 
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 293 
Figure 3 Comparison of energy-sector methane observed at PAO to the inventory and posterior 294 
predictions. a) Midday mixing ratios observed at PAO are compared to forward model predictions 295 
and the optimized Bayesian posterior. b-c) Prior and posterior surface flux maps for energy sector 296 
methane emissions remain largely similar in both distribution and magnitude of emissions. d) 297 
Difference between prior and posterior emissions are slight, with a general reduction in emissions 298 
to the north-east of PAO.  299 

4.1 Energy inventory 300 
As shown in Figure 4a, there is good agreement between energy sector observations and 301 

predictions. Hourly mean differences between observations and the prior and posterior were -302 
16.3 ± 55.0 ppb and 2.0 ± 25.8 ppb respectively.  Within the region of high sensitivity (yellow 303 
box centered on PAO) mean energy fluxes were 22% lower in the posterior solution (78.4 ± 3.5 304 
nmol CH4 m-2 s-1) compared to the prior model (100.0 ± 53.0 nmol CH4 m-2 s-1  ). The Bayesian 305 
inversion weights emissions in the posterior state vector slightly towards the west of PAO (Fig 306 
4b),  but overall there is little change in the posterior distribution relative to the prior 307 
 308 
It is somewhat surprising that our observations from the winter of 2021-2022 are in close 309 
agreement with the prior based on a 2012 inventory. PAO is in Colorado’s Weld County, which 310 
historically has produced the vast majority of oil and natural gas in Front Range Urban Corridor. 311 
From 2012 to 2021, reported Weld County oil and natural gas production volumes increased by 312 
factors of 370% and 360% respectively [COGCC], although the distribution of production across 313 
the DJB became more localized and heterogeneous (Fig S4). The agreement between 314 
observations and inventory suggests either that 1) 2012 emissions factors were over-estimated by 315 
~3.6× , 2) emissions factors have declined  since 2012, or 3) production within the region 316 
aroundPAO remained unchanged relative to 2012. 317 
 318 
Using an annual, spatially gridded dataset on oil and gas production volumes and new well  319 
installations recently published by the USGS, we address these three possibilities (Skinner et al., 320 
2022). Case 3 was rejected since the mixing rations were predicted to increase several fold based 321 
on the changes in the spatial inventories. Cases 1 and 2 are more interesting. The USGS data 322 
indicate a significant change in well infrastructure and production trends since 2012. Between 323 
2010-2012,  horizontal drilling skyrocketed to become a ubiquitous technology for new well 324 
installations; large increases in oil and natural gas production began shortly after. Given the 325 
significant changes in both well infrastructure and extraction efficiency, we speculate that 326 
emissions factors of horizontal well are substantially different than those used in the inventory 327 
model. For example, the consolidated infrastructure at new sites could contribute to higher rates 328 
of successful leak detection and repair than traditional vertically drilled single well installations 329 
(Robertson et al., 2017). Adoption of more stringent state air quality standards in 2014 may have 330 
further contributed to mitigate fugitive emissions from the energy sector. Indeed, other studies 331 
are consistent with declining emission factors.  Previous estimates from the DJB using aircraft 332 
mass-balance flights [Petron, Peischl, Cusworth] have remained statistically unchanged from 333 
2008 to 2021. Together, these data suggest that emissions factors were likely accurate for the 334 
2012 inventory, and have likely decreased in the DJB since 2012 due to a combination of 335 
regulations and changes in resource extraction.  336 
 337 
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 339 
Figure 4 Comparison of agriculture-sector methane observed at PAO to the original inventory 340 
and posterior predictions (left column), and to the re-distributed inventory and posterior 341 
predictions (right column). a) Midday mixing ratios observed at PAO are compared to inventory 342 
and optimized Bayesian posterior predictions. b-c) Prior and posterior surface flux maps for 343 
agriculter sector methane emissions demonstrate large differences, with the posterior emissions 344 
more strongly localized around PAO. d) Difference between prior and posterior emissions are 345 
significant, with a several-fold increase in emissions to the north-west. e) Comparison of 346 
observations to the re-distributed agriculture inventory and the posterior predictions. Agriculture 347 
emissions uncertainties from Maasakkers were applied to calculate uncertainties in the 348 
redistributed emissions map.  f-g) The re-distributed prior and posterior are minimally different, 349 
suggesting that the re-distribution better captures the actual distribution of emissions around 350 
PAO. h) Differences between the re-distributed prior and posterior are slight, with adjustments on 351 
the 50% level.   352 

4.2 Agriculture inventory 353 
In contrast to the energy sector, observed agriculture mixing ratios were on average 3.1× 354 

larger than inventory predictions. The posterior reduces the mean hourly difference between 355 
prior and observations from 31.3 ± 25.3 ppb CH4 to 6.3 ± 16.7 ppb CH4, largely by localizing 356 
methane flux around PAO (Fig 5d). Agriculture mean methane fluxes increased within the region 357 
of maximum sensitivity by 3× from 13.68 ± 16.37 nmol CH4 m-2 s-1 to 41.41 ± 1.12 nmol CH4 m-358 
2 s-1. This result is surprising as agricultural emissions should have remained roughly constant 359 
from 2012 to 2021 based on censuses of permitted livestock (unlike energy production that 360 
increased threefold in volume during that time period). Nonetheless, the substantial increase in 361 
posterior emissions suggests that some error is present in the agriculture inventory. Comparison 362 
of the inventory to registered concentrated animal feeding operations (CAFOs) locations 363 
demonstrates that inventory fluxes are not localized around CAFOs. The agricultural inventory 364 
was generated by probabilistically distributing known county level livestock headcounts onto 365 
agriculture zoned land in that county. For some livestock, such as beef cattle which graze in 366 
pastures for parts of the year, this is a logical approach; however chickens and dairy cattle are 367 
frequently localized CAFOs. This suggests a spatial misallocation of sources, instead of large 368 
errors in emissions factors, might explain the discrepancy with observations. 369 

 370 
To test the hypothesis that re-distributing emissions to CAFO locations will generate an 371 
improved inventory, county-level methane emissions were extracted from the EPA inventory and 372 
redistributed to the physical locations of CAFOs within each county, proportionate to the total 373 
animal equivalent emissions units at each CAFO (Golston et al., 2020). Crucially, no changes to 374 
the total county level emissions are made, which reflects our assumption that agricultural 375 
emissions factors remained constant from 2012 to 2021. As shown in Fig 5e, the redistributed 376 
agriculture inventory improves agreement with observations, although the observed mixing 377 
ratios remain 1.87× larger. The updated posterior calculated using the redistributed inventory as 378 
a prior reduces the ratio between posterior and observed mixing ratios to 1.17× and reduces mean 379 
hourly difference to 5.6 ± 17 ppb CH4. Mean emissions in the sensitivity region were 42.8 ± 1.9 380 
nmol CH4 m-2 s-1 which is indistinguishable to the posterior solution calculated using the original 381 
EPA agriculture inventory. 382 
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 383 

5 Conclusions 384 

We have presented a long-term, sector-apportioned study of methane emissions in the 385 
Front Range Urban Corridor. By combining a dynamic linear model tracer gas analysis with 386 
inverse modelling, we constrain methane emissions from multiple economic sectors in a ~850 387 
km2 region using data from a single measurement location. Prior and posterior energy sector 388 
methane emissions agreed well with observations, which is strongly suggestive of a decrease in 389 
energy infrastructure emissions intensity from 2012 to 2021 in the Front Range Urban Corridor 390 
region. Large changes in the distribution of agriculture emissions are consistent with localized 391 
emissions from CAFOs, a detail which is excluded from the inventory. While conclusions from 392 
our single-sensor study can be further improved with a spatially distributed sensor network, it is 393 
noteworthy that the measurement approach can already provide valuable ground-truth data of 394 
sector-resolved methane emission across areas comparable to the footprints of many methane 395 
observing satellites (Cusworth et al., 2021).  396 

 397 
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