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Key Points: 13 

• A dynamic linear model (DLM) extracts sector-apportioned methane from multi-month 14 
trace gas measurements in Northern Colorado. 15 

• Bayesian optimization constrained by the DLM analysis indicates a regional decrease in 16 
oil and natural gas emissions factors since 2012. 17 

• Optimized methane emissions from agriculture are higher than inventory predictions, in 18 
part due to spatial misallocation in the inventory. 19 

Abstract 20 

Quantifying sector-resolved methane fluxes in complex emissions environments is challenging 21 
yet necessary to improve emissions inventories and guide policy decisions.  We separate energy 22 
and agriculture sector methane using a dynamic linear model analysis of methane, ethane, and 23 
ammonia measurements at a Northern Colorado site from November 2021 to January 2022. By 24 
combining observations with spatially resolved inventories and Bayesian inverse methods, 25 
energy and agriculture methane fluxes are optimized across a ~850 km2 area. Posterior energy 26 
sector fluxes were 22% lower than the inventory despite a ~360% increase in regional energy 27 
production since the inventory was constructed, suggesting a regional decline in emissions 28 
factors. In contrast, optimized agriculture fluxes were 3× larger than inventory estimates; we 29 
demonstrate this discrepancy is consistent with differences in the actual vs. modeled spatial 30 
distribution of agricultural sources. These results highlight how sector-apportioned methane 31 
observations can yield multi-sector inventory optimizations even in complex environments. 32 

 33 

Plain Language Summary 34 

Knowledge of the locations, fluxes, and kinds of methane sources is important for implementing 35 
effective emissions mitigation technologies and regulations. Methane emissions are often 36 
challenging to categorize because a wide variety of sources can emit methane, and these 37 
disparate sources are often intermingled at the spatial resolution of gridded inventories. We 38 
demonstrate how a dynamic linear model can use multi-month time series of two tracer gases, 39 
ethane and ammonia, to effectively separate methane into contributions from the energy and 40 
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agriculture sectors. We further demonstrate how the sector-apportioned methane can be 41 
incoroporated into a Bayesian inversion analysis which refines the magnitude and distribution of 42 
the inventory’s methane fluxes. Our results suggest that emissions factors for energy 43 
infrastructure have decreased three-fold since 2012 in the study area, and that our methodology 44 
is sensitive to the spatial distribution of methane sources in the region. 45 

 46 

1 Introduction 47 

While short-lived in the atmosphere, methane has ~30× greater global warming potential 48 
than carbon dioxide over a 100-year timescale. United States methane inventories estimate that 49 
the energy and agriculture sectors each contribute about a third of total annual U.S. 50 
anthropogenic emissions (Maasakkers et al., 2016). Refining energy and agriculture inventories 51 
is an important first step towards identifying emissions reduction strategies. This, however, is 52 
itself a difficult task: energy and agriculture infrastructures are often spatially overlapped at 53 
typical inventory resolutions, and there are challenges with attributing methane to one or the 54 
other sector. These hurdles must be overcome in observational studies seeking to optimize and 55 
contrain methane emissions from these two important sectors. 56 
 57 
Here, we demonstrate how tracer gas measurememnts can help optimize regional energy and 58 
agriculture methane inventories despite substantial spatial overlap between the two sectors. Our 59 
study area is the Northern Colorado Front Range Urban Corridor (FRUC), where oil and natural 60 
gas infrastructure accessing the Wattenberg gas field are intermingled with large livestock 61 
developments (Figs 1a,b). We measured methane, ethane (a tracer gas for energy emissions), and 62 
ammonia (a tracer for agriculture) across a multi-month period using an open-path, mid-infrared 63 
dual-comb spectrometer (MIR-DCS) (Coddington et al., 2016; Giorgetta et al., 2021; Ycas et al., 64 
2018) and a cavity ring-down spectrometer (CRDS). Unlike previously described, short duration 65 
tracer gas studies (Kille et al., 2019; Pollack et al., 2022; Yacovitch et al., 2014, 2015), our 66 
extended time series required a dynamic linear model (DLM) to capture variations in the tracer 67 
gas coefficients over time (West & Harrison, 1997).  A Bayesian inversion then optimized 68 
energy and agriculture methane fluxes using the DLM-derived energy and agriculture-sector 69 
methane observations and an atmospheric transport model.  70 
 71 
Optimized energy fluxes in the region around the measurement site were similar to 2012 72 
inventory estimates despite a ~360% increase in energy production; this supports other findings 73 
which suggest the percent of methane emitted as a function of production has changed since the 74 
inventory was constructed (Lu et al., 2023; Peischl et al., 2018). In contrast, inferred agricultural 75 
methane fluxes were 3.0× greater than inventory estimates. We demonstrate that this discrepancy 76 
arises partially from the spatial distribution of livestock which is not captured in the inventory 77 
model. Our work highlights that tracer gas measurements can guide inventory optimizations even 78 
in complex emissions environemnts. 79 
 80 
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 81 
Figure 1 Energy and agriculture sources of methane are intermingled around the Platteville 82 
Atmospheric Observatory (PAO) measurement site. a) Thousands of wellheads (shown as a density 83 
map) extract oil and gas from the Wattenberg field  (red outline). Locations of other down-stream 84 
components of the extraction process are not shown. Counties are outlined in black.  b) 85 
Agricultural developments, in particular concentrated animal feeding operations (CAFOs, color 86 
coded by livestock and scaled to relative expected emissions magnitude), are widely distributed 87 
and spatially overlapped with energy infrastructure. c) The full multi-month methane, ethane, 88 
ammonia, (expressed as dry mixing ratios) and water time series recorded at PAO. 89 
 90 

2 Materials and Methods 91 

First we discuss the collection of time series methane and tracer gas data, and subsequent sector 92 
apportionment using a dynamic linear model. Next, we give a brief description of the 93 
atmospheric transport model and sector-resolved emissions inventory used in this work. Finally, 94 
we describe the Bayesian inversion approach which generates the optimized posterior emissions 95 
inventories.  96 

2.1 Observational data collection 97 
Methane (CH4), ethane (C2H6), and water (H2O) concentrations were measured at the 98 

Platteville Atmospheric Observatory (PAO) from 1 November 2021 to 17 January 2022 with an 99 
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open-path MIR-DCS instrument; ammonia (NH3) was measured with a commercial CRDS. 100 
Ammonia data were interpolated onto the 2-minute MIR-DCS time base, which is set by the 101 
MIR-DCS spectral averaging time. Figure 1c shows the interpolated dry air mole fractions CH4, 102 
C2H6, and NH3 time series, reported in ppm [umol/mol] and/or ppb [nmol/mol]. Subsequent 103 
analysis relies on periods where all three species were measured. A map of the measurement site 104 
is provided in Figure S1. 105 
 106 
The MIR-DCS system is similar to previously reported designs (Giorgetta et al., 2021; Ycas et 107 
al., 2019, 2020) and is described in more detail in another publication (D. Herman et al., 2023). 108 
Briefly, the instrument measures an optical bandwidth spanning 2400 cm-1 to 3100 cm-1 with 109 
0.006 cm-1 spectral resolution (Figure S2b). A telescope transmits MIR light along a 380 m 110 
open-air path to a retroreflector ~5 m above ground level. The reflected light is collected by the 111 
transmit/receive telescope, detected by a thermoelectrically cooled mercury cadmium telluride 112 
detector, digitized at 200 MHz, and coherently averaged (Roy et al., 2012; Ycas et al., 2018). 113 
Path-averaged CH4, C2H6, and H2O concentrations were retrieved from the spectra using the 114 
HITRAN2020 database (Gordon et al., 2022). 115 
 116 

2.2 Dynamic linear model tracer gas analysis 117 
Energy and agriculture contributions in a methane time series can be extracted using 118 

correlations with ethane and ammonia (Kille et al., 2019). Generally this is achieved by fitting 119 
the methane data to a linear regression model comprised of energy sector methane 120 
(𝑦!"#$%& = 	𝛽'	[𝐶(𝐻)]), agricultural sector methane (𝑦*%$+ = 	𝛽(	[𝑁𝐻,]), a background term 121 
(𝛽-), and a Gaussian noise term (𝜖): 122 
 123 

[𝐶𝐻.] = 𝛽- + 𝛽'[𝐶(𝐻)] + 𝛽(	[𝑁𝐻,] + 𝜖 124 
 125 
This model is appropriate for the FRUC region since the majority of methane emissions are from 126 
energy and agriculture.  While landfills can emit substantial volumes of methane, landfill 127 
emissions are not included in the analysis because all major sites were outside this work’s area of 128 
sensitivity. 129 
 130 
Fluctuations in the 𝛽-, 𝛽', and 𝛽( tracer gas coefficients are expected duriung the multi-month 131 
study at PAO; the background methane concentration 𝛽- varies diurnally, and the two tracer gas 132 
coefficients, 𝛽' and 𝛽(, change as different methane sources are transported to PAO. Since a 133 
static linear regression analysis cannot capture these variations, and to avoid dividing the time 134 
series into arbitrarily smaller segments, we perform the tracer gas analysis using a dynamic 135 
linear model (West & Harrison, 1997). Methane data are modelled with the observation equation, 136 
 137 

[𝐶𝐻.]/ = 𝐹/0𝜃/ + 𝜈/ ,								𝜈/~𝑁[0, 𝑉/], 138 
 139 
and the system equation,  140 
 141 

𝜃/ = 𝜃/1' +	𝜔/ ,								𝜔/~𝑁[0,𝑊/], 142 
 143 
where t is an index representing data time steps. Tracer gas observations, along with a constant 144 
unity term which models the intercept, are represented by the regression vector 𝐹/ =145 
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(1, [𝐶(𝐻)]/ , [𝑁𝐻,]/). Observations are assumed subject to Gaussian noise 𝜈/with a mean of zero 146 
and a variance 𝑉/ (defined here as the variance of the point-wise difference of the methane time 147 
series). The state vector 𝜃/ = 8𝛽-,/ , 𝛽',/ , 𝛽(,/9 evolves over time as a function of the 𝜃/1' state 148 
vector and the evolution variance vector 𝑊/. Because the variance is difficult to directly estimate 149 
and may not be time-invariant, DLMs are often solved using a discount factor 𝛿 instead as a 150 
proxy for the “memory” of the system over time (West & Harrison, 1997). The discount factor is 151 
defined as 𝛿 = 	𝑃/ (𝑊/ + 𝑃/)⁄ , where 𝑃/ is the prior variance corresponding to a state vector with 152 
zero stochastic change (𝑊/ = 0). In that limiting case, 𝛿 = 1 (irrespective of the actual value of 153 
𝑃/) and the DLM is identical to a static linear regression model. An optimal discount factor can 154 
be determined through minimizing the model’s mean standard error, but in practice this 155 
minimization becomes expensive for large data sets. For this analysis, 100 DLM fits were 156 
performed over the full times series data; discount factors were sampled from a random uniform 157 
distribution spanning [0.98,0.999]; the mean values from the 100 DLM fits are used throughout. 158 
(Discount values below 0.98 lead to numerical instability; data where the fractional variance of 159 
either 𝛽' or 𝛽( was greater than 100% of the fit value are excluded in subsequent analysis.) 160 

 161 
2.3 Atmospheric transport modelling 162 
We use the STILT-R atmospheric transport model and 3-km High Resolution Rapid 163 

Refresh (HRRR) meteorological data to calculate influence footprints in a 3°×3° domain 164 
centered on PAO (Benjamin et al., 2016; Fasoli et al., 2018; Lin, 2003). Each influence footprint 165 
𝑯(𝑧$ , 𝑇$|𝑧+ , 𝑇+) (units of [ppm m2 s / μmol CH4 ]) connects sector-specific emissions throughout 166 
the spatial domain, at location 𝑧+ and time 𝑇+, to observed sector-apportioned methane mixing 167 
ratios at PAO (𝑧$) at time 𝑇$. Footprints were calculated for each hour in an 8-week period of 168 
observations from November and December 2021. Each footprint is the sum of a 2-day duration 169 
back trajectory of 100 particles originating from PAO, calculated at 0.1° resolution and hourly 170 
step size with hyper near field effects enabled.  171 
 172 

2.4 Emissions inventories 173 
Energy and agriculture emissions are estimated using 0.1°×0.1° sector-resolved methane 174 

flux maps derived from the 2012 EPA national methane inventory (Maasakkers et al., 2016). The 175 
energy inventory, 𝑥!"#$%&, is the sum of IPCC categories 1B2b (Natural Gas Production + 176 
Processing + Transmission + Distribution) and 1B2a (Petroleum); coal methane emissions are 177 
not considered (IPCC, 1996). The agriculture inventory, 𝑥*%$+, is the sum of IPCC categories 4A 178 
(Enteric Fermentation) and 4B (Manure Management).  179 
 180 

2.5 Bayesian inversion  181 
Each sector-resolved methane time series (𝑦!"#$%& and 𝑦*%$+) can be modelled as the sum 182 

of the product of a time-independent methane inventory (𝑥!"#$%& and 𝑥*%$+) and the time-183 
varying series of influence footprints 𝑯 at each grid cell, plus an error term ϵ, 184 

 185 
𝑦!"#$%& = 	𝑯	𝑥!"#$%& + 𝜖	 186 
𝑦*%$+ = 	𝑯	𝑥*%$+ + 𝜖 187 

 188 
Bayesian inverse modelling uses observational constraints (𝑦!"#$%&/*%$+456 ) to generate maximum a 189 

posteriori (MAP) inventory estimates, 𝑥!"#$%&/*%$+	896/#$+9$ ,  using the prior information provided by the 190 
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inventories, 𝑥!"#$%&/*%$+	8$+9$ (D. H. Cusworth et al., 2020). The observation vector 𝑦!"#$%&/*%$+456  are 191 
the hourly mean mixing ratios of energy and agriculture methane averaged from the 2-minute 192 
time series. Following other studies, data are restricted to between the hours 11-16 local time 193 
when the boundary layer is well mixed and better captured by the meteorological models, for a 194 
total of 238 data points for each observation vector (Fasoli et al., 2018; Kunik et al., 2019; 195 
McKain et al., 2015; Sargent et al., 2018). The H matrix contains the corresponding STILT 196 
footprint for each hour, where each footprint is restricted to an area +/- 2.9° latitude and 197 
longitude centered on PAO at 0.1° resolution for a total of 3422 state vector elements; footprints 198 
were flattened and stacked to yield the final H matrix with shape (238×3422). The priors 199 
𝑥!"#$%&/*%$+	8$+9$ were interpolated onto the grid of the STILT footprints. Optimization of the prior 200 
and observational error covariance matrices required for the MAP estimation is discussed in the 201 
SI (Michalak, 2004; Michalak et al., 2005). The averaging kernel sensitivity matrix (Figure S4) 202 
indicates the posterior is constrained by observations in an 850 km2 area centerd around PAO. 203 
This region is highlighted with a dashed rectangular outline in Figs 3 and 4. 204 
 205 

3 Time-resolved sector apportioned methane 206 

We first examine the dynamic linear model tracer gas results which provide the key 207 
observational constraints for the Bayesian inversion. Three illustrative examples are shown in 208 
Figure 2. The DLM analysis captures not only how each tracer gas coefficient varies as different 209 
sources are transported to PAO but also how uncertainty in the coefficients evolve. During 210 
periods with a low tracer gas concentration or little variation in the tracer gas, uncertainty in the 211 
respective coefficient increases. Alternatively, a sharp increase in one tracer gas concentration 212 
rapidly shrinks the uncertainty in the respective DLM coefficient.  213 

 214 
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 215 
 216 

Figure 2 Three methane plumes (a,b,c) illustrate how the DLM apportions methane into 217 
contributions from the energy and agriculture sectors. The tracer gas coefficients (dashed lines, 218 
left axis) are shown with uncertainties in gray shading. In addition, the top panel shows both the 219 
full modeled methane concentration (solid line, right axis) and the measured methane 220 
concentration (red circles, right axis).  The second and third rows show the ethane and ammonica 221 
measurements (colored dots, right axis). Panels d) and e) compare the 𝛽' and 𝛽( coefficients from 222 
the full time series to other literature. The range of	𝛽' coefficients observed at PAO are consistent 223 
with coefficients calculated from COGCC sampling data and may reflect contributions from 224 
different sources around PAO. e) 𝛽(  coefficients at PAO are consistent with other studies 225 
performed in Colorado (Eilerman et al., 2016) and California (Miller et al., 2015). 226 

DLM analysis produces tracer gas coefficient time series which can provide insight into emission 227 
source characteristics. Figure 2d,e show kernel density estimates of the energy (𝛽') and 228 
agriculture (𝛽() tracer gas coefficients over the multi-month observation period. In the case of 229 
𝛽', this ratio has been observed to vary as natural gas is extracted, processed, and transported 230 
(Cardoso-Saldaña et al., 2019; Peischl et al., 2013). Ethane and methane mole fractions for 231 
natural gas samples collected after 2010 in the Front Range Urban Corridor by the Colorado Oil 232 
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and natural gas Conservation Commission (COGCC) provide a direct comparison to our 233 
estimates for 𝛽' (Figure 2d) (Colorado Oil and Gas Conservation Commission, 2022). COGCC 234 
recorded data for a range of sample locations, including well casings (bradenheads, well tubing, 235 
and surface, intermediate, and production casings), produced gas, and separators and water tanks. 236 
The 𝛽'values determined from the PAO data span the lower end of values for well casing and the 237 
higher range of values for separator and water tank emissions, but are most consistent with 238 
produced gas emissions.  239 
 240 
Similarly, 𝛽( is expected to vary as emissions from different livestock species can have 241 
substantially different ratios of methane and ammonia concentrations (Golston et al., 2020). 242 
Other sources of variation could include atmospheric chemical effects such as deposition and 243 
reactivity (primarily for NH3). We compare our 𝛽( results with two mobile measurement studies 244 
in Figure 2e. While extensive sampling of ammonia/methane ratios throughout the state are not 245 
available, studies in both the San Joaquin Valley of California and the FRUC overlap well with 246 
𝛽(	results obtained at PAO, indicating a consistent, if broad, distribution of 𝛽(	values for 247 
agriculture across the western United States (Eilerman et al., 2016; Miller et al., 2015). 248 
 249 
Significant day-to-day variations in tracer gas coefficients observed in this analysis emphasizes 250 
the difficulty determining a unique set of energy and agriculture coefficients, even for 251 
measurements conducted in a single location (Lan et al., 2019). Despite these complexities, the 252 
DLM approach successfully generates energy and agriculture sector-apportioned methane time 253 
series which will serve as the observational constraints for inventory optimization. 254 

4 Methane inventory optimization 255 

Changes in emissions between the prior and posterior inventories are reported in several 256 
ways. First, we report the mean absolute differences between the observed time series 𝑦456, and 257 
the prior and posterior predicted time series, 𝑦8$+9$and 𝑦896/#$+9$. Second, we report Welch’s 258 
two-sided t-test results which compare mean mixing ratios of 𝑦456to 𝑦8$+9$and 𝑦896/#$+9$. Third, 259 
we compare mean fluxes from 𝑥8$+9$and 𝑥896/#$+9$within the 850 km2 region identified by the 260 
averaging kernel sensitivity matrix. 261 

 262 
4.1 Energy sector 263 
A mean absolute difference of 15.36 ± 55.98 ppb CH4 between 𝑦!"#$%&456 and 𝑦!"#$%&8$+9$  was 264 

reduced in 𝑦!"#$%&896/#$+9$to 11.87 ± 25.76 ppb CH4. The two-sided Welch’s t-test found that 265 
observations were indistinguishable from both the predicted prior (t=-1.15, p-value=0.27) and 266 
posterior (t=0.18, p-value = 0.85) mixing ratios, consistent with the minor changes in the mean 267 
difference between the time series. Spatially, mean energy fluxes within the region of maximum 268 
sensitivity (dashed rectangle in Figure 3) were 22% lower in the posterior solution (78.4 ± 3.5 269 
nmol CH4 m-2 s-1) compared to the prior (100.0 ± 53.0 nmol CH4 m-2 s-1  ), with the posterior 270 
state vector emissions slightly reduced towards the north-east of PAO (Figure 3c). 271 
 272 



manuscript submitted to Geophysical Research Letters  

 

 273 
 274 
Figure 3 The spatial distribution of methane emissions from the energy sector are optimized with 275 
a Bayesian inversion using the energy sector methane time series observed at PAO. a-b) Prior 276 
(𝑥!"#$%&	8$+9$ )  and posterior (𝑥!"#$%&	896/#$+9$)  surface flux maps for energy sector methane emissions 277 
remain largely similar in both distribution and magnitude of emissions. c) Difference between 278 
prior and posterior emissions indicate a slight reduction in emissions north-east of PAO.  279 

 280 
It is noteworthy that the means of 𝑦!"#$%&456  (measured in 2021) and 𝑦!"#$%&8$+9$  (calculated from the 281 
2012 EPA inventory) are within ~20% of each other. Between 2012 to 2021, the Wattenberg 282 
field’s oil and natural gas production volumes increased by 370% and 360% respectively. 283 
Several aircraft mass-balance studies of the Wattenberg field from 2008 to 2021 show relatively 284 
constant emissions over this time period that are also consistent with the EPA inventory (D. 285 
Cusworth et al., 2022; Peischl et al., 2018; Pétron et al., 2012, 2014). Thus, the agreement 286 
between our observations and the 2012 inventory suggests either that 1) emissions factors have 287 
declined since 2012, or 2) production within the sensitivity region around PAO remained 288 
unchanged relative to 2012. An spatially gridded dataset reporting annual oil and gas production 289 
volumes and new well installations (Skinner et al., 2022) demonstrates that, although the 290 
distribution of production across the region did become more localized and heterogeneous, 291 
production immediately around PAO increased at roughly the same rate as the Wattenberg field 292 
overall. This indicates that emissions factors have likely declined since 2012.  293 
 294 
While similar trends have been seen across the US (Lu et al., 2023), the exact causes remain 295 
undetermined. Data from Skinner et al., 2022 indicate a significant change in regional well 296 
infrastructure and production volumes over the past decade. Following trends in the Permian and 297 
other major basins, horizontally drilled well installations became ubiquitous in the Wattenberg 298 
field between 2010-2012; large increases in oil and natural gas production followed shortly after. 299 
Given the correlated change in well infrastructure and extraction efficiency, we speculate that 300 
horizontal well emissions factors differ from those used to construct the inventory model. 301 
Reasons for this could include the consolidated infrastructure and multiple well heads at 302 
horizontally drilled sites, which may lead to higher rates of successful leak detection and repair 303 
than traditional dispersed, vertically drilled single well installations (Robertson et al., 2017). 304 
Colorado State’s 2014 adoption of stricter air quality standards may have further mitigated 305 
energy sector emissions. Indeed, the observed ~3.6× decrease in regional emissions factors since 306 
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2012 is significantly larger than the US-average decrease of 1.6× (Lu et al., 2023), further 307 
hinting that state regulations had a significant impact.  308 
 309 
 310 

4.2 Agriculture sector 311 
In contrast to the energy sector, 𝑦*%$+456  was 3.1× greater than 𝑦*%$+8$+9$, with a mean hourly 312 

difference of 32.21 ± 25.72 ppb CH4. This difference reduced to 8.40 ± 17.33 ppb CH4 in 313 
𝑦*%$+896/#$+9$ as methane fluxes around PAO increased from 13.7 ± 16.4 nmol CH4 m-2 s-1 to 41.4 ± 314 
1.1 nmol CH4 m-2 s-1 (Figure 4a,b). Posterior mean mixing ratios were indistinguishable from 315 
observations (t=1.35, p-value=0.20) in contrast to the distinctly different prior mean mixing ratio 316 
(t=10.25 , p-value=6.7e-6). The discrepancy between 𝑦*%$+456  and 𝑦*%$+8$+9$ is surprising given that the 317 
total permitted livestock population around PAO has remained roughly constant since 2012 318 
(National Agricultural Statistics Service, n.d.). A threefold error in livestock emissions factors or 319 
increase since 2012 are both improbable; instead, we propose a spatial misallocation of regional 320 
emissions is likely to blame. Comparing the prior (Figure 4a) to locations of registered 321 
concentrated animal feeding operations (CAFOs, Figure 1b) clearly demonstrates that fluxes are 322 
not localized around CAFOs. This is a result of methodology: the agriculture inventory was 323 
generated by probabilistically distributing county-level livestock headcounts throughout each 324 
county using multiple livestock occurance probability maps (Maasakkers et al., 2016). For some 325 
livestock, such as beef cattle which graze in pastures for parts of the year, this is a logical 326 
approach; however, poultry and dairy cattle are often on CAFOs throughout the animal lifespan.  327 

 328 
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 329 
 330 
Figure 4 Comparison of agriculture-sector methane observed at PAO to the original inventory 331 
and posterior predictions (top row), and to the re-distributed inventory and posterior predictions 332 
(bottom row). a-b) Posterior (𝑥*%$+896/#$+9$) agriculture methane are more localized around PAO 333 

than in the prior (𝑥*%$+8$+9$). c) Difference between prior and posterior emissions are significant, 334 
with a several-fold increase in emissions to the north-west. d-e) Redistributed posterior agriculture 335 
methane is distributed similarly to the redistributed prior. f) Differences between the re-distributed 336 
prior and posterior are slight, suggesting that the re-distribution better captures the distribution 337 
of emissions around PAO. 338 

To determine if localizing emissions to CAFOs improves agreement with observations, county-339 
level inventory emissions were calculated and redistributed to CAFO locations within each 340 
county proportionate to the total animal equivalent emissions units at each CAFO (Golston et al., 341 
2020). Total county level emissions were unchanged, reflecting our assumption that agricultural 342 
emissions factors have remained constant. Redistributed emissions uncertainties were calculated 343 
using equations from Maasakkers. Differences between the redistributed prior (Figure 4d) and 344 
posterior (Figure 4e) were substantially smaller (Figure 4f) than those observed with the original 345 
inventory (Figure 4c). The 𝑦:#;+6/	*%$+8$+9$  and 𝑦*%$+456  time series had a decreased mean absolute 346 
difference of 20.95 ± 40.99 ppb CH4 although the two time series remained distinct (t=5.86, p-347 
value =1.6e-3). Mean absolute difference was reduced by 𝑦:#;+6/	*%$+896/#$+9$ 	to 7.93 ± 17.38 ppb CH4 348 
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and was found to be indistinguishable from 𝑦*%$+456  (t=1.17, p-value =0.27). Mean fluxes in 349 

𝑥:#;+6/	*%$+896/#$+9$  were increased to 42.8 ± 1.9 nmol CH4 m-2 s-1, consistent with the 𝑥*%$+896/#$+9$ results. 350 
 351 

5 Conclusions 352 

We constrain energy and agriculture methane emissions in a ~850 km2 region in the Front Range 353 
Urban Corridor by analyzing long-term measurements of methane, ethane, and ammonia with a 354 
dynamic linear model and Bayesian inversion. (While two instruments were used in this work, in 355 
the future all three gases could be measured using a single DCS instrument with adequate 356 
spectral coverage (D. I. Herman et al., 2021).) Comparison with the 2012 gridded EPA inventory 357 
showed a small decrease in energy sector methane emissions which is suggestive of a significant 358 
decrease in regional energy emissions factors from 2012 to 2021. Adoption of horizontal drilling 359 
and stricter state-level regulations around 2010-2014 may have contributed to these inferred 360 
changes in emissions factors. Furthermore, the significant increase and clustering of  agricultural 361 
methane emissions in the posterior helped identify issues in the spatial composition of the 362 
regional agriculture inventory. Redistributing emissions to known CAFO locations reduced the 363 
spatial differences between the redistributed prior and posterior flux maps, although observations 364 
still suggest agriculture emissions are ~1.6× higher than even the redistributed inventory. 365 
Improvements in the spatial distribution of emissions in the inventory are critical for regional 366 
scale studies using aircraft or satellite observations where multiple tracer gas observations are 367 
not present (D. H. Cusworth et al., 2021; Peischl et al., 2018) . While conclusions from our 368 
single-sensor study can be improved with a distributed sensor network, it is noteworthy this 369 
approach can refine sector-resolved methane emission across areas comparable to the footprints 370 
of many methane observing satellites (D. H. Cusworth et al., 2021; Ware et al., 2019).  371 
 372 
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Text S0 to S7 
Figures S1 to S4 

Text S0: Data sources and analytical tools 

This work relies upon observational time series data, meteorological model data, and surface flux 
data. Time series data were produced by calculating the dry mixing ratios of methane and ethane 
for each 2-minute averaged spectra recorded at PAO. Molecular linelists were provided by 
HITRAN2020 (Gordon et al., 2021); spectral fitting was performed using the LMFIT Python 
package (Newville, Matthew et al., 2014). High Resolution Rapid Refresh (HRRR) meteorological 
model (Benjamin et al., 2016) data  was retrieved from the National Oceanic and Atmospheric 
Administration’s Air Resources Laboratory FTP server (ftp://ftp.arl.noaa.gov/nams). Transport 
modeling using the HRRR data was performed with the STILT-R package 
(https://github.com/uataq/stilt/). Surface flux data was published in Maasakkers et al, 2016. Much 
of the geospatial processing and plotting was performed in QGIS. The NOAA meteorological 
station data can be accessed here: 
https://psl.noaa.gov/data/obs/sites/view_site_details.php?siteID=pvl. 

Text S1: Experimental setup at the Platteville Atmospheric Observatory 
 

An overview of instrument locations at Platteville Atmospheric Observatory is shown in 
Figure S1. Mid-infrared (MIR) light from the dual-comb spectrometer (DCS) was launched from a 
gimbal-mounted 10-cm aperture transmit/receive telescope to a 12.5-cm diameter gold hollow 
corner-cube retroreflector mounted on a telephone pole. The ammonia cavity ring-down 
spectrometer (CRDS) analyzer was housed in a nearby trailer which was offset ~50 meters 
perpendicular to the MIR beam path. A ~4-meter ¼” PTFE tubing clad in copper tubing and 
wrapped in heater tape and foil tape extended from the CRDS analyzer to sample air above the 
trailer at ~4 meters AGL. The heater tape was regulated to maintain a temperature of 47 ˚C. Data 
were collected at 1 Hz and interpolated onto the 2-minute DCS time base.  
 
Zero-air measurements were performed on the CRDS instrument every 1-2 weeks at PAO by 
overflowing the inlet with zero grade dry air. Over all measurements (N=10), the mean reported 



 
 

2 
 

ammonia concentration was 1.8 ppb +/- 1.0 ppb. This concentration offset was comparable to 
manufacturer specifications and subtracted from the NH3 data. Equivalent zero-air reference 
measurements were not possible with the open-path DCS instrument; as a result, the reported 
accuracy of the methane and ethane data are estimated. For ethane, a minimum detected 
concentration of 4 ppb +/- 1 ppb was observed on the night of 31 October 2021. Since this 
measurement includes contributions from regional oil and natural gas emissions, ethane’s 
accuracy is estimated at <=4 ppb with a precision of 1 ppb. Methane precision was determined to 
be +/- 1 ppb over the same 31 October 2021 nighttime period.  
 
A key assumption of this work is that the mixing ratios of methane, ethane, and ammonia are 
uniform across the DCS beam path and the CRDS inlet. Any variation which does occur, for 
example due to venting from a nearby tank battery, is further assumed to be detected by both 
systems with only a small offset in time as the plume travels from one system to the other. 
Depending upon the wind direction, a local plume would need to be transported 50 m-300 m 
between the CRDS and DCS beam path. With a typical 2 m/s wind speed, this would result in an 
arrival time offset of 25-150 s, which is less than or equal to the 2-minute time base of a single 
data point. Therefore, the locations of the two systems are not expected to introduce any 
substantial error into the analysis. Data from a CH4 CRDS instrument collocated with the NH3 
CRDS instrument closely matched the DCS observations (CH4CRDS = 0.994 × CH4DCS , R2 = 
0.998). 

 

Figure S1. a) Map of instrument locations at PAO. The MIR DCS beam path traverses 380 m 
from a transmit/receive telescope to a retroreflector. The cavity ringdown spectrometer (CRDS) is 
co-located to retrieve ammonia. Satellite background image ©2023 Google and Maxar 
Technologies. b) Polar histogram of wind direction and speed recorded by the NOAA PVL met 
station.   
 
Text S2: Dual-comb spectroscopy 
 

A basic overview of the dual-comb spectroscopy method is shown in Figure S2a. Two 
mid-infrared frequency combs travel across an open-air beam path where molecular absorption 
occurs. Collection and digitization of the two combs on a photodiode down-converts information 
at optical frequencies to radio frequencies. Using known comb parameters, the optical spectrum 
can be reproduced from the radio signal (Figure S2b). Methane, ethane, and water 
concentrations were fit in the 2918-2968 cm-1 spectral region for all data in this analysis. The 
spectral baseline was modelled with a fifth-order polynomial. 
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Figure S2. Mid-infrared dual-comb spectroscopy was used to measure methane, ethane, and 
water at PAO. a) A model of the dual-comb spectroscopy technique. Two frequency combs with 
repetition rates 𝑓! and 𝑓! + Δ𝑓 propagate along an open-air path. Molecules in the path absorb 
portions of the frequency comb light. The two combs then interfere on the detector, down-
converting the optical comb and molecular absorption spectra to radio frequencies. b) A 
representative 2-minute averaged MIR spectrum for the PAO measurements (black trace). The 
overall shape is dominated by the comb spectra themselves, but the smaller sharp lines indicate 
transitions from multiple gas species. The lower graphs show the absorption spectra of water, 
methane, and ethane, scaled to the concentrations retrieved from the MIR spectrum on top.  
 

Text S3: Dynamic linear model background estimation 
A dynamic linear model tracer gas analysis is used to separate the observed methane 

time series into contributions from energy and agriculture emissions, and a background term: 
 

[𝐶𝐻"] = 𝛽# + 𝛽$[𝐶%𝐻&] + 𝛽%	[𝑁𝐻'] + 𝜖 
 
In the Front Range Urban Corridor, the 𝛽#	term is the ‘background’ methane mixing ratio which 
would be measured in the absence of energy and agricultural methane emissions. We compared 
data from PAO with methane and ethane time series data collected at two regional air quality 
monitoring sites shown in Figure S3a: Boulder Reservoir (BRZ) (Boulder County Public Health et 
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al., n.d.) and Longmont Union Reservoir (LUR) (City of Longmont & Boulder A.I.R., LLC, n.d.). 
(Ammonia data is not recorded at either BRZ or LUR.) For each site, background methane mixing 
ratios were defined as those time periods when the observed ethane mixing ratio was less than or 
equal to the 5th percentile of the ethane time series. Background methane mixing ratios calculated 
using this approach are shown in the downward-going kernel density estimates in Figure S3b. 
Background methane mixing ratios decreased from PAO to LUR to BRZ as the density of oil and 
natural gas infrastructure around each site decreased. The independently determined 
𝛽#	regression results (Figure S3b, upward-going kernel density estimate) overlapped with these 
three background estimates, indicating that the dynamic linear model tracer gas analysis provides 
a reasonable estimate of background conditions at PAO. 
 
 

 
 

 
Figure S3. a) Additional methane and ethane mixing ratios measured at the Boulder Reservoir 
(BRZ) and Longmont Union Reservoir (LUR) air quality monitoring sites was used to independently 
estimate regional background methane mixing ratios. b) Ethane-only estimates from BRZ, LUR, 
and PAO (‘PAO/LUR/BRZ bkgd’) are consistent with the DLM analysis of the PAO data (‘PAO 𝛽#’). 
 
Text S4: Bayesian inversion analysis details 
 

Using the observed sector-apportioned methane time series, the 8-week hourly resolution 
primary back trajectory simulations, and emission inventories, we generated optimized posterior 
inventories by calculating the maximum a posteriori (MAP) estimate 𝑥()*+,!-)! 	and posterior error 
covariance matrix 𝑺/	(Cusworth et al., 2020), 
 

𝑥()*+,!-)! = 𝑥(!-)! + 𝑺𝑯.(𝑯𝑺𝑯. +𝑹)/$(𝑦01* −𝑯𝑥(!-)!)	 
	   

𝑺/ = (𝑯.𝑹/$𝑯+ 𝑺/$)/$ 
 
The solutions 𝑥()*+,!-)! and 𝑺/ require estimates for the observational error covariance matrix 𝑹 
and the prior error covariance matrix 𝑺, which are determined by finding solutions 𝜃 = {𝜎2 , 𝜎3} that 
minimize the cost function (Cusworth et al., 2020; Michalak et al., 2005):  
 

𝐿4	 = |𝑯𝑺𝑯. +𝑹| +	(𝑯𝑥(!-)! − 𝑦01*).(𝑯𝑺𝑯. +𝑹)/$(𝑯𝑥(!-)! − 𝑦01*) 

 
The two error covariance matrices are then constructed as identity matrices multiplied by the 
respective scalar variances: 

𝑺 = 𝜎3	𝑰,								𝑹 = 	𝜎2𝑰 
 

Different regions contribute to the posterior state vector to varying degrees, which can be 
determined from the averaging kernel matrix 𝑨: 
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𝑨 = 	𝑰 −	𝑺/𝑺/$ 

The ideal averaging kernel matrix is 𝑰; non-ideal deviations due to measurement design, model 
errors, etc, produce off-diagonal matrix elements which undesirably spread information across 
multiple grid cells.  
 
Posterior estimates will only be optimized in regions where the averaging kernel is appreciably 
greater than 0. The diagonal elements of this study’s averaging kernel matrix is shown in Figure 
S4, which indicates that our observations will only meaningfully optimize the emissions inventory 
in an area of approximately 850 km2 centered around PAO. This sensitivity region is shown as a 
rectangular outline centered on PAO in the main text’s Figures 3 and 4. 
 

 
 
Figure S4. The diagonal elements of the averaging kernel sensitivity matrix 𝑨 for observations at 
PAO. Posterior emissions are most strongly constrained by observations within a 850 km2  (0.3° × 
0.3°) area centered around PAO (outlined in black dashed rectangle). The degrees of freedom of 
signal (DOFS) provided by the observations is 4.1.   
 

Text S5: Redistributing agriculture methane emissions to CAFO locations 
EPA agriculture emissions were redistributed to known CAFO locations using QGIS tools. 

First, the total emissions (4A+4B) for each county were calculated using the Zonal Statistics tool. 
This step reverses the probabilistic distribution of emissions throughout each county which was 
used to produce the EPA inventory. After exporting these county-level data to a comma 
separated variable format, the total emissions for each county were distributed to every CAFO 
within that county proportionate to the fractional animal equivalent units of livestock permitted at 
each CAFO. This results in the same total agriculture emissions at the county level but spatially 
re-distributed to known CAFO locations according to relative CAFO size and primary livestock 
type. CAFO distributed emissions data were then re-imported to QGIS; after generating a 0.1° 
grid with the same spatial extent as the EPA inventory, the total emissions per grid element was 
calculated using the Points in Polygon query. Finally, the emissions were converted to a raster 
and exported as a netCDF file, producing an updated AG emissions inventory with the same 
extent and resolution as the original EPA inventory. (This redistributed inventory only defines 
emissions within the state of Colorado.) 
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Text S6: STILT-R simulation parameters 
A range of atmospheric dispersion simulations were run to determine the sensitivity of the 

influence footprint to input parameters. Footprint variability was estimated by performing 
simulations over a range of spatial resolutions (0.03° and 0.1°), back-trajectory durations (24 and 
48 hours), numbers of particles (50, 100, and 200 particles), and with and without hyper-near field 
effects for a two-week period in November. Variations in 𝑦67,!89/;8!-(!-)!  due to simulation inputs was 
found to be quite small compared to the estimated spatial inventory uncertainties specified in 
Maasakkers (Maasakkers et al., 2016). 
 
 
Text S7: Uncertainty analysis of Bayesian inversion results 
 
Uncertainties in 𝑦67,!89/;8!-01*  were estimated with a bootstrap method by randomly sampling 20% 
of the sector apportioned methane time series 500 times, calculating the hourly mean for each 
sample, and calculating the variance of the spread of the hourly means. The uncertainty of 𝑦(!-)! 
was based on the sector-dependent uncertainties described in Maasakkers. Uncertainty in 
𝑦()*+,!-)! was calculated using the posterior error covariance matrix (see Text S4).  
 
In the following tables, the mean hourly mixing ratios for 𝑦01*, 𝑦(!-)!, and 𝑦()*+,!-)! are listed 
along with uncertainties. Mean absolute differences were calculated as |𝑦01* − 𝑦(!-)!/()*+,!-)!|, 
and uncertainties were propagated as !𝛿𝑦!"#$ + 𝛿𝑦%&'(&/%(#*+&'(&$ . 
 
S7.1 Energy sector 

 
S7.1.1 Mean diurnal mixing ratios 

 

 
 

S7.1.2 Prior vs. Observations 
 

Hour 𝑦!"#  [ppm] 𝛿𝑦!"# [ppm] 𝑦%&'(& [ppm] 𝛿𝑦%&'(& [ppm] |𝑦!"# − 𝑦%&'(&| [ppm] '𝛿𝑦!"#$ + 𝛿𝑦%&'(&$  [ppm] 
11 0.11947 0.03048 0.12370 0.06556 0.00423 0.07230 
12 0.08577 0.02663 0.08925 0.04730 0.00348 0.05429 
13 0.06337 0.01786 0.06923 0.03669 0.00586 0.04080 
14 0.06068 0.02004 0.06799 0.03604 0.00731 0.04123 
15 0.06053 0.02204 0.08123 0.04305 0.0207 0.04837 
16 0.07475 0.03005 0.12530 0.06641 0.05055 0.07289 

    CH4 [ppm] 0.01536 0.05498 
    CH4 [ppb] 15.36 54.98 

 
 

S7.1.3 Posterior vs. Observations 
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Hour 𝑦!"#  

[ppm] 
𝛿𝑦!"# 
[ppm] 

𝑦%(#*+&'(& 
[ppm] 

𝛿𝑦%(#*+&'(& 
[ppm] 

|𝑦!"# − 𝑦%(#*+&'(&| 
[ppm] 

'𝛿𝑦!"#$ + 𝛿𝑦%(#*+&'(&$  
[ppm] 

11 0.11947 0.03048 0.10307 0.01067 0.0164 0.03229 
12 0.08577 0.02663 0.07407 0.00827 0.0117 0.02788 
13 0.06337 0.01786 0.05478 0.00674 0.00859 0.01909 
14 0.06068 0.02004 0.05285 0.00622 0.00783 0.02098 
15 0.06053 0.02204 0.06429 0.00669 0.00376 0.02304 
16 0.07475 0.03005 0.09772 0.00867 0.02297 0.03127 

    CH4 [ppm] 0.01187 0.02576 
    CH4 [ppb] 11.87 25.76 

 
 
 
S7.2 Agriculture sector 

 
S7.2.1 Mean diurnal mixing ratios 
 

 

 
 

S7.2.2 Prior vs. Observations 
 

Hour 𝑦!"#  [ppm] 𝛿𝑦!"# [ppm] 𝑦%&'(& [ppm] 𝛿𝑦%&'(& [ppm] |𝑦!"# − 𝑦%&'(&| [ppm] '𝛿𝑦!"#$ + 𝛿𝑦%&'(&$  [ppm] 
11 0.05178 0.01524 0.02064 0.02634 0.03114 0.03044 
12 0.05236 0.02016 0.01465 0.01877 0.03771 0.02755 
13 0.03796 0.01452 0.01159 0.01485 0.02637 0.02077 
14 0.04135 0.01526 0.01129 0.01442 0.03006 0.02100 
15 0.04709 0.01981 0.01272 0.01627 0.03437 0.02564 
16 0.05177 0.01742 0.01815 0.02311 0.03362 0.02894 

    CH4 [ppm] 0.03221 0.02572 
    CH4 [ppb] 32.21 25.72 

 
 

S7.2.3 Posterior vs. Observations 
 

Hour 
𝑦!"#  

[ppm] 
𝛿𝑦!"# 
[ppm] 

𝑦%(#*+&'(& 
[ppm] 

𝛿𝑦%(#*+&'(& 
[ppm] 

|𝑦!"# − 𝑦%(#*+&'(&| 
[ppm] 

'𝛿𝑦!"#$ + 𝛿𝑦%(#*+&'(&$  
[ppm] 

11 0.05178 0.01524 0.04885 0.00391 0.00293 0.01574 
12 0.05236 0.02016 0.03692 0.00303 0.01544 0.02039 
13 0.03796 0.01452 0.03044 0.00247 0.00752 0.01473 
14 0.04135 0.01526 0.03013 0.00228 0.01122 0.01543 
15 0.04709 0.01981 0.03725 0.00245 0.00984 0.01996 
16 0.05177 0.01742 0.05524 0.00318 0.00347 0.01771 

    CH4 [ppm] 0.00840 0.01733 
    CH4 [ppb] 8.40 17.33 
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S7.3 Redistributed agriculture sector 
 
S7.3.1 Mean diurnal mixing ratios 
 
 

 

 
 

S7.3.2 Prior vs. Observations 
 

Hour 𝑦!"#  [ppm] 𝛿𝑦!"# [ppm] 𝑦%&'(& [ppm] 𝛿𝑦%&'(& [ppm] |𝑦!"# − 𝑦%&'(&| [ppm] '𝛿𝑦!"#$ + 𝛿𝑦%&'(&$  [ppm] 
11 0.05108 0.01491 0.03041 0.04536 0.02067 0.04774 
12 0.05238 0.02022 0.02298 0.03393 0.02940 0.03950 
13 0.03744 0.01459 0.01974 0.02895 0.01770 0.03242 
14 0.04146 0.01601 0.01936 0.02851 0.02210 0.03270 
15 0.04490 0.01940 0.02376 0.03458 0.02114 0.03965 
16 0.04988 0.01664 0.03522 0.05132 0.01466 0.05395 

    CH4 [ppm] 0.02095 0.04099 
    CH4 [ppb] 20.95 40.99 

 
 
S7.3.3 Posterior vs. Observations 
 

Hour 𝑦!"#  [ppm] 𝛿𝑦!"# [ppm] 𝑦%(#*+&'(& [ppm] 𝛿𝑦%(#*+&'(& [ppm] |𝑦!"# − 𝑦%(#*+&'(&| [ppm] '𝛿𝑦!"#$ + 𝛿𝑦%(#*+&'(&$  
[ppm] 

11 0.05108 0.01491 0.04936 0.00500 0.00172 0.01573 
12 0.05238 0.02022 0.03720 0.00387 0.01518 0.02059 
13 0.03744 0.01459 0.03093 0.00316 0.00651 0.01492 
14 0.04146 0.01601 0.03053 0.00291 0.01093 0.01627 
15 0.04490 0.01940 0.03783 0.00313 0.00707 0.01965 
16 0.04988 0.01664 0.05604 0.00405 0.00616 0.01713 

    CH4 [ppm] 0.00793 0.01738 
    CH4 [ppb] 7.93 17.38 

 

 
 
 
 


