References
[1] COOPER C E, BROWN G C. The inhibition of mitochondrial
cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen
cyanide and hydrogen sulfide: chemical mechanism and physiological
significance [J]. Journal of bioenergetics and biomembranes, 2008,
40(5): 533-9.
[2] NICHOLLS P, MARSHALL D C, COOPER C E, et al. Sulfide inhibition
of and metabolism by cytochrome c oxidase [J]. Biochemical Society
transactions, 2013, 41(5): 1312-6.
[3] RAMZAN R, DOLGA A M, MICHELS S, et al. Cytochrome c Oxidase
Inhibition by ATP Decreases Mitochondrial ROS Production [J]. Cells,
2022, 11(6).
[4] BRISCHIGLIARO M, ZEVIANI M. Cytochrome c oxidase deficiency
[J]. Biochimica et biophysica acta Bioenergetics, 2021, 1862(1):
148335.
[5] WARENYCIA M W, GOODWIN L R, BENISHIN C G, et al. Acute hydrogen
sulfide poisoning. Demonstration of selective uptake of sulfide by the
brainstem by measurement of brain sulfide levels [J]. Biochemical
pharmacology, 1989, 38(6): 973-81.
[6] ABE K, KIMURA H. The possible role of hydrogen sulfide as an
endogenous neuromodulator [J]. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 1996, 16(3): 1066-71.
[7] HOSOKI R, MATSUKI N, KIMURA H. The possible role of hydrogen
sulfide as an endogenous smooth muscle relaxant in synergy with nitric
oxide [J]. Biochemical and biophysical research communications,
1997, 237(3): 527-31.
[8] WANG R. Two’s company, three’s a crowd: can H2S be the third
endogenous gaseous transmitter? [J]. FASEB journal : official
publication of the Federation of American Societies for Experimental
Biology, 2002, 16(13): 1792-8.
[9] BLACKSTONE E, MORRISON M, ROTH M B. H2S induces a suspended
animation-like state in mice [J]. Science (New York, NY), 2005,
308(5721): 518.
[10] YELLON D M, BEIKOGHLI KALKHORAN S, DAVIDSON S M. The RISK
pathway leading to mitochondria and cardioprotection: how everything
started [J]. Basic research in cardiology, 2023, 118(1): 22.
[11] HECK-SWAIN K L, KOEPPEN M. The Intriguing Role of
Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A
Comprehensive Review [J]. Journal of cardiovascular development and
disease, 2023, 10(5).
[12] ELTZSCHIG H K, ECKLE T. Ischemia and reperfusion–from
mechanism to translation [J]. Nature medicine, 2011, 17(11):
1391-401.
[13] YELLON D M, HAUSENLOY D J. Myocardial reperfusion injury
[J]. The New England journal of medicine, 2007, 357(11): 1121-35.
[14] GOLTS E, ONAITIS M. Commentary: Ischemia reperfusion-Looking
ahead [J]. The Journal of thoracic and cardiovascular surgery, 2021,
161(2): e124-e5.
[15] ZHU S, WANG X, CHEN H, et al. Hippo (YAP)-autophagy axis
protects against hepatic ischemia-reperfusion injury through JNK
signaling [J]. Chinese medical journal, 2023.
[16] JERNRYD V, METZSCH C, ANDERSSON B, et al. The influence of
ischemia and reperfusion time on outcome in heart transplantation
[J]. Clinical transplantation, 2020, 34(5): e13840.
[17] WANG R. Physiological implications of hydrogen sulfide: a whiff
exploration that blossomed [J]. Physiological reviews, 2012, 92(2):
791-896.
[18] ŁOWICKA E, BEŁTOWSKI J. Hydrogen sulfide (H2S) - the third gas
of interest for pharmacologists [J]. Pharmacological reports : PR,
2007, 59(1): 4-24.
[19] HUGHES M N, CENTELLES M N, MOORE K P. Making and working with
hydrogen sulfide: The chemistry and generation of hydrogen sulfide in
vitro and its measurement in vivo: a review [J]. Free radical
biology & medicine, 2009, 47(10): 1346-53.
[20] MATHAI J C, MISSNER A, KüGLER P, et al. No facilitator required
for membrane transport of hydrogen sulfide [J]. Proceedings of the
National Academy of Sciences of the United States of America, 2009,
106(39): 16633-8.
[21] KANGAS J, SAVOLAINEN H. Urinary thiosulphate as an indicator of
exposure to hydrogen sulphide vapour [J]. Clinica chimica acta;
international journal of clinical chemistry, 1987, 164(1): 7-10.
[22] MóDIS K, COLETTA C, ERDéLYI K, et al. Intramitochondrial
hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase
maintains mitochondrial electron flow and supports cellular
bioenergetics [J]. FASEB journal : official publication of the
Federation of American Societies for Experimental Biology, 2013, 27(2):
601-11.
[23] SINGH S, PADOVANI D, LESLIE R A, et al. Relative contributions
of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis
via alternative trans-sulfuration reactions [J]. The Journal of
biological chemistry, 2009, 284(33): 22457-66.
[24] OLSON K R. H(2)S and polysulfide metabolism: Conventional and
unconventional pathways [J]. Biochemical pharmacology, 2018, 149:
77-90.
[25] GREGORY J F, DERATT B N, RIOS-AVILA L, et al. Vitamin B6
nutritional status and cellular availability of pyridoxal 5’-phosphate
govern the function of the transsulfuration pathway’s canonical
reactions and hydrogen sulfide production via side reactions [J].
Biochimie, 2016, 126: 21-6.
[26] BEŁTOWSKI J. [Hydrogen sulfide as a biologically active
mediator in the cardiovascular system] [J]. Postepy higieny i
medycyny doswiadczalnej (Online), 2004, 58: 285-91.
[27] GONG Q H, WANG Q, PAN L L, et al. S-propargyl-cysteine, a novel
hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced
spatial learning and memory impairment: involvement of TNF signaling and
NF-κB pathway in rats [J]. Brain, behavior, and immunity, 2011,
25(1): 110-9.
[28] KAWABATA A, ISHIKI T, NAGASAWA K, et al. Hydrogen sulfide as a
novel nociceptive messenger [J]. Pain, 2007, 132(1-2): 74-81.
[29] KIMURA H. Hydrogen sulfide: its production, release and
functions [J]. Amino acids, 2011, 41(1): 113-21.
[30] SHIBUYA N, TANAKA M, YOSHIDA M, et al. 3-Mercaptopyruvate
sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in
the brain [J]. Antioxidants & redox signaling, 2009, 11(4): 703-14.
[31] SHIBUYA N, KOIKE S, TANAKA M, et al. A novel pathway for the
production of hydrogen sulfide from D-cysteine in mammalian cells
[J]. Nature communications, 2013, 4: 1366.
[32] GOULD S J, KELLER G A, SUBRAMANI S. Identification of
peroxisomal targeting signals located at the carboxy terminus of four
peroxisomal proteins [J]. The Journal of cell biology, 1988, 107(3):
897-905.
[33] KIMURA H. The physiological role of hydrogen sulfide and beyond
[J]. Nitric oxide : biology and chemistry, 2014, 41: 4-10.
[34] SCHUMANN U, SUBRAMANI S. Special delivery from mitochondria to
peroxisomes [J]. Trends in cell biology, 2008, 18(6): 253-6.
[35] HILDEBRANDT T M, GRIESHABER M K. Three enzymatic activities
catalyze the oxidation of sulfide to thiosulfate in mammalian and
invertebrate mitochondria [J]. The FEBS journal, 2008, 275(13):
3352-61.
[36] JACKSON M R, MELIDEO S L, JORNS M S. Human sulfide:quinone
oxidoreductase catalyzes the first step in hydrogen sulfide metabolism
and produces a sulfane sulfur metabolite [J]. Biochemistry, 2012,
51(34): 6804-15.
[37] LIBIAD M, YADAV P K, VITVITSKY V, et al. Organization of the
human mitochondrial hydrogen sulfide oxidation pathway [J]. The
Journal of biological chemistry, 2014, 289(45): 30901-10.
[38] LANDRY A P, BALLOU D P, BANERJEE R. H(2)S oxidation by
nanodisc-embedded human sulfide quinone oxidoreductase [J]. The
Journal of biological chemistry, 2017, 292(28): 11641-9.
[39] LIBIAD M, SRIRAMAN A, BANERJEE R. Polymorphic Variants of Human
Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer
Kinetics [J]. The Journal of biological chemistry, 2015, 290(39):
23579-88.
[40] LANDRY A P, BALLOU D P, BANERJEE R. Hydrogen Sulfide Oxidation
by Sulfide Quinone Oxidoreductase [J]. Chembiochem : a European
journal of chemical biology, 2021, 22(6): 949-60.
[41] PACIFICI G M, ROMITI P, SANTERINI S, et al.
S-methyltransferases in human intestine: differential distribution of
the microsomal thiol methyltransferase and cytosolic thiopurine
methyltransferase along the human bowel [J]. Xenobiotica; the fate
of foreign compounds in biological systems, 1993, 23(6): 671-9.
[42] LEVITT M D, FURNE J, SPRINGFIELD J, et al. Detoxification of
hydrogen sulfide and methanethiol in the cecal mucosa [J]. The
Journal of clinical investigation, 1999, 104(8): 1107-14.
[43] BOSTELAAR T, VITVITSKY V, KUMUTIMA J, et al. Hydrogen Sulfide
Oxidation by Myoglobin [J]. Journal of the American Chemical
Society, 2016, 138(27): 8476-88.
[44] WHITEMAN M, LI L, ROSE P, et al. The effect of hydrogen sulfide
donors on lipopolysaccharide-induced formation of inflammatory mediators
in macrophages [J]. Antioxidants & redox signaling, 2010, 12(10):
1147-54.
[45] ZHAO W, ZHANG J, LU Y, et al. The vasorelaxant effect of H(2)S
as a novel endogenous gaseous K(ATP) channel opener [J]. The EMBO
journal, 2001, 20(21): 6008-16.
[46] YOO D, JUPITER R C, PANKEY E A, et al. Analysis of
cardiovascular responses to the H2S donors Na2S and NaHS in the rat
[J]. American journal of physiology Heart and circulatory
physiology, 2015, 309(4): H605-14.
[47] GONG W, ZHANG S, CHEN Y, et al. Protective role of hydrogen
sulfide against diabetic cardiomyopathy via alleviating necroptosis
[J]. Free radical biology & medicine, 2022, 181: 29-42.
[48] BIBLI S I, ANDREADOU I, CHATZIANASTASIOU A, et al.
Cardioprotection by H2S engages a cGMP-dependent protein kinase
G/phospholamban pathway [J]. Cardiovascular research, 2015, 106(3):
432-42.
[49] IBRAHIM S A, ABDEL-GABER S A, IBRAHIM M A, et al. Nitric Oxide
Modulation as a Potential Molecular Mechanism Underlying the Protective
Role of NaHS in Liver Ischemia Reperfusion Injury [J]. Current
molecular pharmacology, 2022, 15(4): 676-82.
[50] YU Q, LU Z, TAO L, et al. ROS-Dependent Neuroprotective Effects
of NaHS in Ischemia Brain Injury Involves the PARP/AIF Pathway [J].
Cellular physiology and biochemistry : international journal of
experimental cellular physiology, biochemistry, and pharmacology, 2015,
36(4): 1539-51.
[51] OZTURK T, ERTAS E, MERT O. Use of Lawesson’s reagent in organic
syntheses [J]. Chemical reviews, 2007, 107(11): 5210-78.
[52] POWELL C R, DILLON K M, MATSON J B. A review of hydrogen
sulfide (H(2)S) donors: Chemistry and potential therapeutic applications
[J]. Biochemical pharmacology, 2018, 149: 110-23.
[53] LI L, WHITEMAN M, GUAN Y Y, et al. Characterization of a novel,
water-soluble hydrogen sulfide-releasing molecule (GYY4137): new
insights into the biology of hydrogen sulfide [J]. Circulation,
2008, 117(18): 2351-60.
[54] ZHOU T, QIAN H, ZHENG N, et al. GYY4137 ameliorates
sepsis-induced cardiomyopathy via NLRP3 pathway [J]. Biochimica et
biophysica acta Molecular basis of disease, 2022, 1868(12): 166497.
[55] MENG G, WANG J, XIAO Y, et al. GYY4137 protects against
myocardial ischemia and reperfusion injury by attenuating oxidative
stress and apoptosis in rats [J]. Journal of biomedical research,
2015, 29(3): 203-13.
[56] ZHAO H, QIU Y, WU Y, et al. Protective Effects of GYY4137 on
Renal Ischaemia/Reperfusion Injury through Nrf2-Mediated Antioxidant
Defence [J]. Kidney & blood pressure research, 2021, 46(3): 257-65.
[57] CUI N, LUO H, ZHAO Y. Protective effect of GYY4137, a
water‑soluble hydrogen sulfide‑releasing molecule, on intestinal
ischemia‑reperfusion [J]. Molecular medicine reports, 2020, 21(3):
1633-9.
[58] CHEN L J, NING J Z, CHENG F, et al. Comparison of
Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of
Testicular Ischemia Reperfusion Injury in Rats [J]. Current medical
science, 2020, 40(2): 332-8.
[59] PENG T, ZHUO L, WANG Y, et al. Systematic review of sodium
thiosulfate in treating calciphylaxis in chronic kidney disease patients
[J]. Nephrology (Carlton, Vic), 2018, 23(7): 669-75.
[60] TSANG R Y, AL-FAYEA T, AU H J. Cisplatin overdose: toxicities
and management [J]. Drug safety, 2009, 32(12): 1109-22.
[61] BEBARTA V S, BRITTAIN M, CHAN A, et al. Sodium Nitrite and
Sodium Thiosulfate Are Effective Against Acute Cyanide Poisoning When
Administered by Intramuscular Injection [J]. Annals of emergency
medicine, 2017, 69(6): 718-25.e4.
[62] OLSON K R, DELEON E R, GAO Y, et al. Thiosulfate: a readily
accessible source of hydrogen sulfide in oxygen sensing [J].
American journal of physiology Regulatory, integrative and comparative
physiology, 2013, 305(6): R592-603.
[63] SHIROZU K, TOKUDA K, MARUTANI E, et al. Cystathionine γ-lyase
deficiency protects mice from galactosamine/lipopolysaccharide-induced
acute liver failure [J]. Antioxidants & redox signaling, 2014,
20(2): 204-16.
[64] SAKAGUCHI M, MARUTANI E, SHIN H S, et al. Sodium thiosulfate
attenuates acute lung injury in mice [J]. Anesthesiology, 2014,
121(6): 1248-57.
[65] MARUTANI E, YAMADA M, IDA T, et al. Thiosulfate Mediates
Cytoprotective Effects of Hydrogen Sulfide Against Neuronal Ischemia
[J]. Journal of the American Heart Association, 2015, 4(11).
[66] RAVINDRAN S, JAHIR HUSSAIN S, BOOVARAHAN S R, et al. Sodium
thiosulfate post-conditioning protects rat hearts against ischemia
reperfusion injury via reduction of apoptosis and oxidative stress
[J]. Chemico-biological interactions, 2017, 274: 24-34.
[67] ZHANG M Y, DUGBARTEY G J, JURIASINGANI S, et al. Sodium
thiosulfate-supplemented UW solution protects renal grafts against
prolonged cold ischemia-reperfusion injury in a murine model of
syngeneic kidney transplantation [J]. Biomedicine & pharmacotherapy
= Biomedecine & pharmacotherapie, 2022, 145: 112435.
[68] TOKUDA K, KIDA K, MARUTANI E, et al. Inhaled hydrogen sulfide
prevents endotoxin-induced systemic inflammation and improves survival
by altering sulfide metabolism in mice [J]. Antioxidants & redox
signaling, 2012, 17(1): 11-21.
[69] ZHANG M Y, DUGBARTEY G J, JURIASINGANI S, et al. Hydrogen
Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and
Underlying Molecular Mechanisms [J]. International journal of
molecular sciences, 2021, 22(12).
[70] DELEON E R, GAO Y, HUANG E, et al. Garlic oil polysulfides:
H2S- and O2-independent prooxidants in buffer and antioxidants in cells
[J]. American journal of physiology Regulatory, integrative and
comparative physiology, 2016, 310(11): R1212-25.
[71] RIED K, FAKLER P. Potential of garlic (Allium sativum) in
lowering high blood pressure: mechanisms of action and clinical
relevance [J]. Integrated blood pressure control, 2014, 7: 71-82.
[72] AMAGASE H. Clarifying the real bioactive constituents of garlic
[J]. The Journal of nutrition, 2006, 136(3 Suppl): 716s-25s.
[73] ROSE P, MOORE P K, ZHU Y Z. Garlic and Gaseous Mediators
[J]. Trends in pharmacological sciences, 2018, 39(7): 624-34.
[74] SUN X, WANG W, DAI J, et al. A Long-Term and Slow-Releasing
Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion
Injury [J]. Scientific reports, 2017, 7(1): 3541.
[75] SZCZESNY B, MóDIS K, YANAGI K, et al. AP39, a novel
mitochondria-targeted hydrogen sulfide donor, stimulates cellular
bioenergetics, exerts cytoprotective effects and protects against the
loss of mitochondrial DNA integrity in oxidatively stressed endothelial
cells in vitro [J]. Nitric oxide : biology and chemistry, 2014, 41:
120-30.
[76] ZHU C, SU Y, JURIASINGANI S, et al. Supplementing preservation
solution with mitochondria-targeted H(2) S donor AP39 protects cardiac
grafts from prolonged cold ischemia-reperfusion injury in heart
transplantation [J]. American journal of transplantation : official
journal of the American Society of Transplantation and the American
Society of Transplant Surgeons, 2019, 19(11): 3139-48.
[77] NISHIME K, MIYAGI-SHIOHIRA C, KUWAE K, et al. Preservation of
pancreas in the University of Wisconsin solution supplemented with AP39
reduces reactive oxygen species production and improves islet graft
function [J]. American journal of transplantation : official journal
of the American Society of Transplantation and the American Society of
Transplant Surgeons, 2021, 21(8): 2698-708.
[78] DA COSTA MARQUES L A, TEIXEIRA S A, DE JESUS F N, et al.
Vasorelaxant Activity of AP39, a Mitochondria-Targeted H(2)S Donor, on
Mouse Mesenteric Artery Rings In Vitro [J]. Biomolecules, 2022,
12(2).
[79] ZHAI Y, PETROWSKY H, HONG J C, et al. Ischaemia-reperfusion
injury in liver transplantation–from bench to bedside [J]. Nature
reviews Gastroenterology & hepatology, 2013, 10(2): 79-89.
[80] AL-GITHMI I S, ABDULQADER A A, ALOTAIBI A, et al. Acute Kidney
Injury After Open Heart Surgery [J]. Cureus, 2022, 14(6): e25899.
[81] O’NEAL J B, SHAW A D, BILLINGS F T T. Acute kidney injury
following cardiac surgery: current understanding and future directions
[J]. Critical care (London, England), 2016, 20(1): 187.
[82] KALOGERIS T, BAINES C P, KRENZ M, et al. Ischemia/Reperfusion
[J]. Comprehensive Physiology, 2016, 7(1): 113-70.
[83] WALKON L L, STRUBBE-RIVERA J O, BAZIL J N. Calcium Overload and
Mitochondrial Metabolism [J]. Biomolecules, 2022, 12(12).
[84] SZYDLOWSKA K, TYMIANSKI M. Calcium, ischemia and excitotoxicity
[J]. Cell calcium, 2010, 47(2): 122-9.
[85] TANG S P, MAO X L, CHEN Y H, et al. Reactive Oxygen Species
Induce Fatty Liver and Ischemia-Reperfusion Injury by Promoting
Inflammation and Cell Death [J]. Frontiers in immunology, 2022, 13:
870239.
[86] GRANGER D N, KVIETYS P R. Reperfusion injury and reactive
oxygen species: The evolution of a concept [J]. Redox biology, 2015,
6: 524-51.
[87] PERKINS K A, PERSHAD S, CHEN Q, et al. The effects of
modulating eNOS activity and coupling in ischemia/reperfusion (I/R)
[J]. Naunyn-Schmiedeberg’s archives of pharmacology, 2012, 385(1):
27-38.
[88] BHAT A H, DAR K B, ANEES S, et al. Oxidative stress,
mitochondrial dysfunction and neurodegenerative diseases; a mechanistic
insight [J]. Biomedicine & pharmacotherapy = Biomedecine &
pharmacotherapie, 2015, 74: 101-10.
[89] BORTOLOTTI M, POLITO L, BATTELLI M G, et al. Xanthine
oxidoreductase: One enzyme for multiple physiological tasks [J].
Redox biology, 2021, 41: 101882.
[90] BEDARD K, KRAUSE K H. The NOX family of ROS-generating NADPH
oxidases: physiology and pathophysiology [J]. Physiological reviews,
2007, 87(1): 245-313.
[91] BRANDES R P, WEISSMANN N, SCHRöDER K. Nox family NADPH
oxidases: Molecular mechanisms of activation [J]. Free radical
biology & medicine, 2014, 76: 208-26.
[92] LASSèGUE B, GRIENDLING K K. NADPH oxidases: functions and
pathologies in the vasculature [J]. Arteriosclerosis, thrombosis,
and vascular biology, 2010, 30(4): 653-61.
[93] DE PASCALI F, HEMANN C, SAMONS K, et al. Hypoxia and
reoxygenation induce endothelial nitric oxide synthase uncoupling in
endothelial cells through tetrahydrobiopterin depletion and
S-glutathionylation [J]. Biochemistry, 2014, 53(22): 3679-88.
[94] SANADA S, KITAKAZE M. Ischemic preconditioning: emerging
evidence, controversy, and translational trials [J]. International
journal of cardiology, 2004, 97(2): 263-76.
[95] CHEN X, ZHANG X, XUE L, et al. Treatment with Enriched
Environment Reduces Neuronal Apoptosis in the Periinfarct Cortex after
Cerebral Ischemia/Reperfusion Injury [J]. Cellular physiology and
biochemistry : international journal of experimental cellular
physiology, biochemistry, and pharmacology, 2017, 41(4): 1445-56.
[96] UEHARA T, BENNETT B, SAKATA S T, et al. JNK mediates hepatic
ischemia reperfusion injury [J]. Journal of hepatology, 2005, 42(6):
850-9.
[97] TIBBETTS M D, ZHENG L, LENARDO M J. The death effector domain
protein family: regulators of cellular homeostasis [J]. Nature
immunology, 2003, 4(5): 404-9.
[98] LINKERMANN A, HACKL M J, KUNZENDORF U, et al. Necroptosis in
immunity and ischemia-reperfusion injury [J]. American journal of
transplantation : official journal of the American Society of
Transplantation and the American Society of Transplant Surgeons, 2013,
13(11): 2797-804.
[99] CHOI M E, PRICE D R, RYTER S W, et al. Necroptosis: a crucial
pathogenic mediator of human disease [J]. JCI insight, 2019, 4(15).
[100] GALLUZZI L, KEPP O, CHAN F K, et al. Necroptosis: Mechanisms
and Relevance to Disease [J]. Annual review of pathology, 2017, 12:
103-30.
[101] KANG J W, HONG J M, LEE S M. Melatonin enhances mitophagy and
mitochondrial biogenesis in rats with carbon tetrachloride-induced liver
fibrosis [J]. Journal of pineal research, 2016, 60(4): 383-93.
[102] QIN J, ZHOU J, DAI X, et al. Short-term starvation attenuates
liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in
mice [J]. American journal of translational research, 2016, 8(8):
3364-75.
[103] LIU A, HUANG L, GUO E, et al. Baicalein pretreatment reduces
liver ischemia/reperfusion injury via induction of autophagy in rats
[J]. Scientific reports, 2016, 6: 25042.
[104] CHEN X, LI X, ZHANG W, et al. Activation of AMPK inhibits
inflammatory response during hypoxia and reoxygenation through
modulating JNK-mediated NF-κB pathway [J]. Metabolism: clinical and
experimental, 2018, 83: 256-70.
[105] RITTER L S, STEMPEL K M, COULL B M, et al. Leukocyte-platelet
aggregates in rat peripheral blood after ischemic stroke and reperfusion
[J]. Biological research for nursing, 2005, 6(4): 281-8.
[106] TEOH N C. Hepatic ischemia reperfusion injury: Contemporary
perspectives on pathogenic mechanisms and basis for hepatoprotection-the
good, bad and deadly [J]. Journal of gastroenterology and
hepatology, 2011, 26 Suppl 1: 180-7.
[107] MEDZHITOV R. Origin and physiological roles of inflammation
[J]. Nature, 2008, 454(7203): 428-35.
[108] GHADERI S, ALIDADIANI N, DILAVER N, et al. Role of glycogen
synthase kinase following myocardial infarction and ischemia-reperfusion
[J]. Apoptosis : an international journal on programmed cell death,
2017, 22(7): 887-97.
[109] LU L, LIU M, SUN R, et al. Myocardial Infarction: Symptoms and
Treatments [J]. Cell biochemistry and biophysics, 2015, 72(3):
865-7.
[110] PAPAPETROPOULOS A, WHITEMAN M, CIRINO G. Pharmacological tools
for hydrogen sulphide research: a brief, introductory guide for
beginners [J]. British journal of pharmacology, 2015, 172(6):
1633-7.
[111] DONNARUMMA E, TRIVEDI R K, LEFER D J. Protective Actions of
H2S in Acute Myocardial Infarction and Heart Failure [J].
Comprehensive Physiology, 2017, 7(2): 583-602.
[112] CALVERT J W, ELSTON M, NICHOLSON C K, et al. Genetic and
pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart
failure in mice [J]. Circulation, 2010, 122(1): 11-9.
[113] LI L, LI M, LI Y, et al. Exogenous H2S contributes to recovery
of ischemic post-conditioning-induced cardioprotection by decrease of
ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the
aging cardiomyocytes [J]. Cell & bioscience, 2016, 6: 26.
[114] KIMURA Y, KIMURA H. Hydrogen sulfide protects neurons from
oxidative stress [J]. FASEB journal : official publication of the
Federation of American Societies for Experimental Biology, 2004, 18(10):
1165-7.
[115] CALVERT J W, JHA S, GUNDEWAR S, et al. Hydrogen sulfide
mediates cardioprotection through Nrf2 signaling [J]. Circulation
research, 2009, 105(4): 365-74.
[116] WANG X, WANG Q, GUO W, et al. Hydrogen sulfide attenuates
cardiac dysfunction in a rat model of heart failure: a mechanism through
cardiac mitochondrial protection [J]. Bioscience reports, 2011,
31(2): 87-98.
[117] WU D, WANG H, TENG T, et al. Hydrogen sulfide and autophagy: A
double edged sword [J]. Pharmacological research, 2018, 131: 120-7.
[118] JIANG H, XIAO J, KANG B, et al. PI3K/SGK1/GSK3β signaling
pathway is involved in inhibition of autophagy in neonatal rat
cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide
[J]. Experimental cell research, 2016, 345(2): 134-40.
[119] WANG H, ZHONG P, SUN L. Exogenous hydrogen sulfide mitigates
NLRP3 inflammasome-mediated inflammation through promoting autophagy via
the AMPK-mTOR pathway [J]. Biology open, 2019, 8(7).
[120] GEMICI B, WALLACE J L. Anti-inflammatory and cytoprotective
properties of hydrogen sulfide [J]. Methods in enzymology, 2015,
555: 169-93.
[121] SODHA N R, CLEMENTS R T, FENG J, et al. Hydrogen sulfide
therapy attenuates the inflammatory response in a porcine model of
myocardial ischemia/reperfusion injury [J]. The Journal of thoracic
and cardiovascular surgery, 2009, 138(4): 977-84.
[122] ZANARDO R C, BRANCALEONE V, DISTRUTTI E, et al. Hydrogen
sulfide is an endogenous modulator of leukocyte-mediated inflammation
[J]. FASEB journal : official publication of the Federation of
American Societies for Experimental Biology, 2006, 20(12): 2118-20.
[123] ZUIDEMA M Y, KORTHUIS R J. Intravital microscopic methods to
evaluate anti-inflammatory effects and signaling mechanisms evoked by
hydrogen sulfide [J]. Methods in enzymology, 2015, 555: 93-125.
[124] HU H J, JIANG Z S, ZHOU S H, et al. Hydrogen sulfide
suppresses angiotensin II-stimulated endothelin-1 generation and
subsequent cytotoxicity-induced endoplasmic reticulum stress in
endothelial cells via NF-κB [J]. Molecular medicine reports, 2016,
14(5): 4729-40.
[125] HENNEIN H A, EBBA H, RODRIGUEZ J L, et al. Relationship of the
proinflammatory cytokines to myocardial ischemia and dysfunction after
uncomplicated coronary revascularization [J]. The Journal of
thoracic and cardiovascular surgery, 1994, 108(4): 626-35.
[126] PERNA A F, SEPE I, LANZA D, et al. Hydrogen sulfide reduces
cell adhesion and relevant inflammatory triggering by preventing
ADAM17-dependent TNF-α activation [J]. Journal of cellular
biochemistry, 2013, 114(7): 1536-48.
[127] XIE Y H, ZHANG N, LI L F, et al. Hydrogen sulfide reduces
regional myocardial ischemia injury through protection of mitochondrial
function [J]. Molecular medicine reports, 2014, 10(4): 1907-14.
[128] BECKER L B. New concepts in reactive oxygen species and
cardiovascular reperfusion physiology [J]. Cardiovascular research,
2004, 61(3): 461-70.
[129] ZAMZAMI N, MARCHETTI P, CASTEDO M, et al. Sequential reduction
of mitochondrial transmembrane potential and generation of reactive
oxygen species in early programmed cell death [J]. The Journal of
experimental medicine, 1995, 182(2): 367-77.
[130] ZHU H, HU S, LI Y, et al. Interleukins and Ischemic Stroke
[J]. Frontiers in immunology, 2022, 13: 828447.
[131] PAUL S, CANDELARIO-JALIL E. Emerging neuroprotective
strategies for the treatment of ischemic stroke: An overview of clinical
and preclinical studies [J]. Experimental neurology, 2021, 335:
113518.
[132] SVEINSSON O A, KJARTANSSON O, VALDIMARSSON E M. [Cerebral
ischemia/infarction - epidemiology, causes and symptoms] [J].
Laeknabladid, 2014, 100(5): 271-9.
[133] ZHAO Y, ZHANG X, CHEN X, et al. Neuronal injuries in cerebral
infarction and ischemic stroke: From mechanisms to treatment (Review)
[J]. International journal of molecular medicine, 2022, 49(2).
[134] WHITFIELD N L, KREIMIER E L, VERDIAL F C, et al. Reappraisal
of H2S/sulfide concentration in vertebrate blood and its potential
significance in ischemic preconditioning and vascular signaling [J].
American journal of physiology Regulatory, integrative and comparative
physiology, 2008, 294(6): R1930-7.
[135] DENG G, MUQADAS M, ADLAT S, et al. Protective Effect of
Hydrogen Sulfide on Cerebral Ischemia-Reperfusion Injury [J].
Cellular and molecular neurobiology, 2023, 43(1): 15-25.
[136] LI L, ROSE P, MOORE P K. Hydrogen sulfide and cell signaling
[J]. Annual review of pharmacology and toxicology, 2011, 51: 169-87.
[137] QIN H, GU L Z, GAO L, et al. [Protective effect of H2S
pretreatment on cerebral ischemia-reperfusion injury and its mechanisms
in rats] [J]. Zhongguo yi xue ke xue yuan xue bao Acta Academiae
Medicinae Sinicae, 2013, 35(3): 249-53.
[138] LUO Y, YANG X, ZHAO S, et al. Hydrogen sulfide prevents
OGD/R-induced apoptosis via improving mitochondrial dysfunction and
suppressing an ROS-mediated caspase-3 pathway in cortical neurons
[J]. Neurochemistry international, 2013, 63(8): 826-31.
[139] YIN J, TU C, ZHAO J, et al. Exogenous hydrogen sulfide
protects against global cerebral ischemia/reperfusion injury via its
anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats
[J]. Brain research, 2013, 1491: 188-96.
[140] DAI H B, XU M M, LV J, et al. Mild Hypothermia Combined with
Hydrogen Sulfide Treatment During Resuscitation Reduces Hippocampal
Neuron Apoptosis Via NR2A, NR2B, and PI3K-Akt Signaling in a Rat Model
of Cerebral Ischemia-Reperfusion Injury [J]. Molecular neurobiology,
2016, 53(7): 4865-73.
[141] KIMURA H. Hydrogen sulfide induces cyclic AMP and modulates
the NMDA receptor [J]. Biochemical and biophysical research
communications, 2000, 267(1): 129-33.
[142] SANTANA MALDONADO C M, KIM D S, PURNELL B, et al. Acute
hydrogen sulfide-induced neurochemical and morphological changes in the
brainstem [J]. Toxicology, 2023, 485: 153424.
[143] DOU Y, WANG Z, CHEN G. The role of hydrogen sulfide in stroke
[J]. Medical gas research, 2016, 6(2): 79-84.
[144] ZHANG J, ZHANG S, SHAN H, et al. Biologic Effect of Hydrogen
Sulfide and Its Role in Traumatic Brain Injury [J]. Oxidative
medicine and cellular longevity, 2020, 2020: 7301615.
[145] XIAO C, ZHAO H, ZHU H, et al. Tisp40 Induces Tubular
Epithelial Cell GSDMD-Mediated Pyroptosis in Renal Ischemia-Reperfusion
Injury via NF-κB Signaling [J]. Frontiers in physiology, 2020, 11:
906.
[146] REGNER K R, ROMAN R J. Role of medullary blood flow in the
pathogenesis of renal ischemia-reperfusion injury [J]. Current
opinion in nephrology and hypertension, 2012, 21(1): 33-8.
[147] LEVEY A S, JAMES M T. Acute Kidney Injury [J]. Annals of
internal medicine, 2017, 167(9): Itc66-itc80.
[148] ZHAO H, ALAM A, SOO A P, et al. Ischemia-Reperfusion Injury
Reduces Long Term Renal Graft Survival: Mechanism and Beyond [J].
EBioMedicine, 2018, 28: 31-42.
[149] FARRAR A. Acute Kidney Injury [J]. The Nursing clinics of
North America, 2018, 53(4): 499-510.
[150] HAN S J, KIM J I, PARK J W, et al. Hydrogen sulfide
accelerates the recovery of kidney tubules after renal
ischemia/reperfusion injury [J]. Nephrology, dialysis,
transplantation : official publication of the European Dialysis and
Transplant Association - European Renal Association, 2015, 30(9):
1497-506.
[151] BOS E M, WANG R, SNIJDER P M, et al. Cystathionine γ-lyase
protects against renal ischemia/reperfusion by modulating oxidative
stress [J]. Journal of the American Society of Nephrology : JASN,
2013, 24(5): 759-70.
[152] AZIZI F, SEIFI B, KADKHODAEE M, et al. Administration of
hydrogen sulfide protects ischemia reperfusion-induced acute kidney
injury by reducing the oxidative stress [J]. Irish journal of
medical science, 2016, 185(3): 649-54.
[153] YANG G, WU L, JIANG B, et al. H2S as a physiologic
vasorelaxant: hypertension in mice with deletion of cystathionine
gamma-lyase [J]. Science (New York, NY), 2008, 322(5901): 587-90.
[154] SNIJDER P M, FRENAY A R, KONING A M, et al. Sodium thiosulfate
attenuates angiotensin II-induced hypertension, proteinuria and renal
damage [J]. Nitric oxide : biology and chemistry, 2014, 42: 87-98.
[155] ELROD J W, CALVERT J W, MORRISON J, et al. Hydrogen sulfide
attenuates myocardial ischemia-reperfusion injury by preservation of
mitochondrial function [J]. Proceedings of the National Academy of
Sciences of the United States of America, 2007, 104(39): 15560-5.
[156] AHMAD A, OLAH G, SZCZESNY B, et al. AP39, A Mitochondrially
Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal
Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute
Renal Injury in Vivo [J]. Shock (Augusta, Ga), 2016, 45(1): 88-97.
[157] NASTOS C, KALIMERIS K, PAPOUTSIDAKIS N, et al. Global
consequences of liver ischemia/reperfusion injury [J]. Oxidative
medicine and cellular longevity, 2014, 2014: 906965.
[158] ZHOU J, GUO L, MA T, et al.
N-acetylgalactosaminyltransferase-4 protects against hepatic
ischemia/reperfusion injury by blocking apoptosis signal-regulating
kinase 1 N-terminal dimerization [J]. Hepatology (Baltimore, Md),
2022, 75(6): 1446-60.
[159] KLUNE J R, TSUNG A. Molecular biology of liver
ischemia/reperfusion injury: established mechanisms and recent
advancements [J]. The Surgical clinics of North America, 2010,
90(4): 665-77.
[160] KANG K, ZHAO M, JIANG H, et al. Role of hydrogen sulfide in
hepatic ischemia-reperfusion-induced injury in rats [J]. Liver
transplantation : official publication of the American Association for
the Study of Liver Diseases and the International Liver Transplantation
Society, 2009, 15(10): 1306-14.
[161] JHA S, CALVERT J W, DURANSKI M R, et al. Hydrogen sulfide
attenuates hepatic ischemia-reperfusion injury: role of antioxidant and
antiapoptotic signaling [J]. American journal of physiology Heart
and circulatory physiology, 2008, 295(2): H801-6.
[162] LU M, JIANG X, TONG L, et al. MicroRNA-21-Regulated Activation
of the Akt Pathway Participates in the Protective Effects of H(2)S
against Liver Ischemia-Reperfusion Injury [J]. Biological &
pharmaceutical bulletin, 2018, 41(2): 229-38.
[163] KANG K, JIANG H C, ZHAO M Y, et al. [Protection of CSE/H2S
system in hepatic ischemia reperfusion injury in rats] [J].
Zhonghua wai ke za zhi [Chinese journal of surgery], 2010, 48(12):
924-8.
[164] WU D, WANG J, LI H, et al. Role of Hydrogen Sulfide in
Ischemia-Reperfusion Injury [J]. Oxidative medicine and cellular
longevity, 2015, 2015: 186908.
[165] HAGA S, REMINGTON S J, MORITA N, et al. Hepatic ischemia
induced immediate oxidative stress after reperfusion and determined the
severity of the reperfusion-induced damage [J]. Antioxidants &
redox signaling, 2009, 11(10): 2563-72.
[166] CHENG P, WANG F, CHEN K, et al. Hydrogen sulfide ameliorates
ischemia/reperfusion-induced hepatitis by inhibiting apoptosis and
autophagy pathways [J]. Mediators of inflammation, 2014, 2014:
935251.
[167] LIU Y, KALOGERIS T, WANG M, et al. Hydrogen sulfide
preconditioning or neutrophil depletion attenuates
ischemia-reperfusion-induced mitochondrial dysfunction in rat small
intestine [J]. American journal of physiology Gastrointestinal and
liver physiology, 2012, 302(1): G44-54.
[168] ZHANG Q, FU H, ZHANG H, et al. Hydrogen sulfide
preconditioning protects rat liver against ischemia/reperfusion injury
by activating Akt-GSK-3β signaling and inhibiting mitochondrial
permeability transition [J]. PloS one, 2013, 8(9): e74422.
[169] DU J, WANG Q, LI Q M, et al. [Alternation of thioredoxin
system in postconditioning with hydrogen sulfide against hepatic
ischemia-reperfusion injury in rats] [J]. Zhonghua yi xue za zhi,
2012, 92(37): 2607-10.
[170] YOUNIS N N, SHAHEEN M A, MAHMOUD M F. Silymarin
preconditioning protected insulin resistant rats from liver
ischemia-reperfusion injury: role of endogenous H2S [J]. The Journal
of surgical research, 2016, 204(2): 398-409.
[171] HUSAIN S, ABDUL Y, POTTER D E. Non-analgesic effects of
opioids: neuroprotection in the retina [J]. Current pharmaceutical
design, 2012, 18(37): 6101-8.
[172] QIN X, LI N, ZHANG M, et al. Tetrahedral framework nucleic
acids prevent retina ischemia-reperfusion injury from oxidative stress
via activating the Akt/Nrf2 pathway [J]. Nanoscale, 2019, 11(43):
20667-75.
[173] OSBORNE N N, JI D, ABDUL MAJID A S, et al. ACS67, a hydrogen
sulfide-releasing derivative of latanoprost acid, attenuates retinal
ischemia and oxidative stress to RGC-5 cells in culture [J].
Investigative ophthalmology & visual science, 2010, 51(1): 284-94.
[174] BIERMANN J, LAGRèZE W A, SCHALLNER N, et al. Inhalative
preconditioning with hydrogen sulfide attenuated apoptosis after retinal
ischemia/reperfusion injury [J]. Molecular vision, 2011, 17:
1275-86.
[175] GERSZTENKORN D, COLETTA C, ZHU S, et al. Hydrogen Sulfide
Contributes to Retinal Neovascularization in Ischemia-Induced
Retinopathy [J]. Investigative ophthalmology & visual science,
2016, 57(7): 3002-9.
[176] LIU H, PERUMAL N, MANICAM C, et al. Proteomics Reveals the
Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion
Cells in an Ischemia/Reperfusion Injury Animal Model [J].
Pharmaceuticals (Basel, Switzerland), 2020, 13(9).
[177] SCHEID S, GOELLER M, BAAR W, et al. Hydrogen Sulfide Reduces
Ischemia and Reperfusion Injury in Neuronal Cells in a Dose- and
Time-Dependent Manner [J]. International journal of molecular
sciences, 2021, 22(18).
[178] SCHEID S, GOELLER M, BAAR W, et al. Inhalative as well as
Intravenous Administration of H(2)S Provides Neuroprotection after
Ischemia and Reperfusion Injury in the Rats’ Retina [J].
International journal of molecular sciences, 2022, 23(10).
[179] KRARUP T. The testes after torsion [J]. British journal of
urology, 1978, 50(1): 43-6.
[180] AIHOLE J S. Testicular torsion; clinical diagnosis or imaging
diagnosis? [J]. Radiology case reports, 2022, 17(8): 2665-7.
[181] ABDELZAHER W Y, MOSTAFA-HEDEAB G, SAYED ABOBAKR ALI A H, et
al. Idebenone regulates sirt1/Nrf2/TNF-α pathway with inhibition of
oxidative stress, inflammation, and apoptosis in testicular
torsion/detorsion in juvenile rats [J]. Human & experimental
toxicology, 2022, 41: 9603271221102515.
[182] DJURHUUS J C. Preclinical studies of testicular
ischemia-reperfusion treatment [J]. Journal of pediatric urology,
2021, 17(2): 168.
[183] YUKSEL S, ERGINEL B, BINGUL I, et al. The effect of hydrogen
sulfide on ischemi̇a /reperfusion injury in an experimental testicular
torsion model [J]. Journal of pediatric urology, 2022, 18(1):
16.e1-.e7.
[184] BOZKURT M, DEGIRMENTEPE R B, POLAT E C, et al. Protective
effect of hydrogen sulfide on experimental testicular ischemia
reperfusion in rats [J]. Journal of pediatric urology, 2020, 16(1):
40.e1-.e8.