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Abstract 5 

 6 

Water resources planning and management requires the estimation of extreme design events. 7 

Anticipated climate change is playing an increasingly prominent role in the planning and design 8 

of long-lived infrastructure, as changes to climate forcings are expected to alter the distribution 9 

of extremes in ways and to extents that are difficult to predict. One approach is to use climate 10 

projections to force hydrologic models, but this raises two challenges. First, global climate 11 

models generally focus on much larger scales than are relevant to hydrologic design, and 12 

regional climate models that better capture small scale dynamics are too computationally 13 

expensive for large ensemble analyses. Second, hydrologic models systematically misrepresent 14 

the variance and higher moments of streamflow response to climate, resulting in a 15 

mischaracterization of the extreme flows of most interest. To address both issues, we propose a 16 

new framework for non-stationary risk-based hydrologic design that combines a stochastic 17 

weather generator (SWG) that accurately replicates basin-scale weather and a stochastic 18 

watershed model (SWM) that accurately represents the distribution of extreme flows. The joint 19 

SWG-SWM framework can generate large ensembles of future hydrologic simulations under 20 

varying climate conditions, from which design statistics and their uncertainties can be estimated. 21 

The SWG-SWM framework is demonstrated for the Squannacook River in the Northeast United 22 
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States. Standard approaches to design flows, like the T-year flood, are difficult to interpret under 23 

non-stationarity, but the SWG-SWM simulations can readily be adapted to risk and reliability 24 

metrics which bare the same interpretation under stationary and non-stationary conditions. As an 25 

example, we provide an analysis comparing the use of risk and more traditional T-year design 26 

events, and conclude that risk-based metrics have the potential to reduce regret of over- and 27 

under-design compared to traditional return-period based analyses. 28 

 29 

1.    Introduction 30 

Water resources infrastructure is generally designed to manage hydrologic extremes. 31 

Conventionally, such designs have leveraged historical extreme events to estimate the magnitude 32 

of future extremes associated with some annual exceedance probability (AEP). For instance, 33 

design floods and design storms associated with different return periods are commonly used to 34 

size infrastructure (Haghighatafshar et al. 2020), and such analyses form the basis of standard 35 

design criteria in many countries (e.g., Bulletin 17C). Here, a flood or storm magnitude 36 

associated with the T-year return period (or recurrence interval) is an event with a p = 1/T AEP 37 

(Gumbel 1941). The terms ‘return period’ and ‘recurrence interval’ arise because 𝑇 is the 38 

average time until a 𝑇-year event is exceeded, assuming the events are independent and 39 

stationary (Stedinger 1993). 40 

However, climate change complicates water resources planning in general, and the use of 41 

design events and return periods in particular. Human-induced climate change is expected to 42 

have various impacts on atmospheric and hydrologic systems, such as intensified and 43 

intermittent precipitation (Intergovernmental Panel On Climate Change (IPCC) 2023), changes 44 

in snow accumulation and timing, unprecedented rates of snow and glacier melt (Pörtner et al. 45 

2022), sea level rise (Oki and Kanae 2006), and longer droughts and dry periods due to increased 46 

potential evapotranspiration and decline in soil moisture (Balting et al. 2021), among others. 47 
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These climate impacts are expected to alter the distribution of hydrologic extremes over time as 48 

the Earth continues to warm. Mapping changes in climate drivers to changes in hydrologic 49 

extremes is challenging because of the complicated and nonlinear nature of the hydrologic cycle 50 

and the path dependence of extreme events (Vogel 2017). 51 

Even if it is possible to estimate the evolution of non-stationary hydrologic extremes, 52 

Read and Vogel (2015) raised several concerns with the use of return periods and AEPs in 53 

hydrologic design in a non-stationary world. First, the interpretation of a return period is 54 

ambiguous when the AEP associated with a design flow is changing over time, and alternative 55 

definitions have been proposed. Read and Vogel (2015) show that the mean and distribution of 56 

the actual return period of a design event changes substantially as a function of the long-term 57 

trend in the annual maximum series, its variability, and the severity of the design event. If the 58 

annual maximum series is increasing over time, the relative reduction in the true return period of 59 

a design flow increases with the extremity of the design flow. For example, the true return period 60 

of the stationary 100-year flood will decrease relatively more than the true return period of the 61 

stationary 10-year flood. 62 

Read and Vogel 2015, Fernández and Salas 1999,and Pielke 1999 have also critiqued the 63 

use of return periods and AEPs in design under stationary conditions. In addition to a general 64 

misunderstanding of their meaning by practitioners and the public alike (Fernández and Salas 65 

1999; Pielke 1999; Douglas, Vogel, and Kroll 2002; Cooley 2012; Serinaldi 2015; Serinaldi and 66 

Kilsby 2015), return periods and AEPs do not account for the design-life of the structure 67 

(Haghighatafshar et al. 2020), and so do not directly relate the risk-of-failure or reliability of a 68 

design over its intended design life. The lifetime risk of failure is likely of more use to planners 69 
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and engineers than the average return period or one year AEP. This problem only compounds 70 

when the likelihood of extremes changes over time under climate change. 71 

An alternative approach for water resources infrastructure design that is more suitable 72 

under non-stationarity is design-life specific risk or reliability. Here risk is defined as the 73 

probability a critical threshold is exceeded over the design-life, and reliability is the probability 74 

the critical threshold is not exceeded (reliability = 1-risk). Thus, the calculation is tailored 75 

towards the question: how likely is it that a project will fail over a T-year planning horizon? 76 

Engineers can then size, design, and manage infrastructure to meet a pre-selected level of risk 77 

deemed acceptable. Even if the probability of extremes evolves over the planning horizon, as is 78 

expected under climate change, the risk of project failure can still be presented as a single design 79 

value, assuming the time-varying distribution of extremes is integrated into the calculation of 80 

risk. This is in contrast to the traditional planning approaches that use design events for specific 81 

return periods. Return periods do not account for climate change dynamic impacts on hydrologic 82 

processes that govern extreme events. Under these approaches, engineers would first need to 83 

select both a return period and a future target year before calculating the associated design event 84 

and would still face the challenge of resolving the meaning of that return period as the likelihood 85 

of extremes changes over the planning horizon (e.g., Salas and Obeysekera 2014).  86 

Despite the potential benefits of design-life specific risk as a criterion to guide 87 

infrastructure planning under climate change, there are several challenges in calculating this risk. 88 

Ideally, an analyst would have access to a very large ensemble of transient climate traces that 1) 89 

were unbiased with respect to key meteorological characteristics that impact hydrologic extremes 90 

(e.g., the space-time distribution of precipitation across multiple temporal and spatial scales); and 91 

2) encompassed the full range of plausible future climate conditions with an accurate 92 
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representation of the likelihood of different climate states in the future. If such ensembles were 93 

available, they could be used to estimate the risk of failure over a planning period of interest. 94 

Unfortunately, neither of these conditions usually holds.  95 

First, the current generation of global climate models (GCMs) remain biased with respect 96 

to key aspects of local weather, and statistically correcting these biases remains challenging. 97 

Changes to atmospheric dynamics can play a critical role in regional climate change (Lu et al. 98 

2014; O’Gorman 2015), but there is significant bias in the representation of major patterns of 99 

atmospheric circulation in GCMs, complicating the direct use of precipitation projections 100 

(Hawcroft et al. 2018; Woollings 2010; Zappa, Shaffrey, and Hodges 2013; Stephenson et al. 101 

2012; Kyselý et al. 2016; Tan et al. 2018). Statistical correction of dynamical biases is difficult 102 

since they are linked to modeled physical processes that could change under warming, thus 103 

changing the bias over time (Stephenson et al. 2012; Muñoz et al. 2017; Maher et al. 2019). In 104 

addition, the coarse spatial resolution of GCMs can introduce additional biases into precipitation 105 

extremes. While higher resolution climate models can help address these biases (Kendon et al. 106 

2017), the increase in computational expense precludes large enough ensembles for risk-based 107 

planning (Tebaldi, Snyder, and Dorheim 2022; Steinschneider et al. 2019). Furthermore, even 108 

large GCM ensembles often cannot provide a formal estimate of probability of future climate 109 

states, as they represent the lower bound of future climate uncertainty (Stainforth et al. 2007) and 110 

depend on emissions scenarios that are inherently non-probabilistic. In response, some have 111 

argued for the use of stochastic weather generators (SWGs) to efficiently generate very large 112 

ensembles of future climate (100s of ensemble members, each decades-centuries long) for use in 113 

hydrologic design exercises (Fowler, Blenkinsop, and Tebaldi 2007; Steinschneider et al. 2019; 114 

Daniel S Wilks and Wilby 1999; Richardson 1981). These models, which are trained to historical 115 
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weather data, can produce scenarios that are by design unbiased in key attributes of weather such 116 

as extreme events, but that also can span a very wide but plausible range of future climate change 117 

to ensure that key vulnerabilities are identified.  118 

Beyond the challenge of future climate data to support design-life specific risk 119 

estimation, there is also the need to use rainfall-runoff or other hydrologic models to convert 120 

future climate into hydrologic variables of interest for design. Hydrologic models are needed to 121 

capture the complicated relationship between changes in climatic conditions and hydrologic 122 

response, which is a function of complicated, non-linear dynamics and depends on other factors 123 

like antecedent conditions (Sharma, Wasko, and Lettenmaier 2018). In other words, it is not as 124 

simple as noting that an increase of X% in rainfall intensity will result in an increase of Y% in 125 

flood magnitude. However, deterministic hydrologic models usually underrepresent the variance 126 

and asymmetry of daily streamflow, which results in a systematic mischaracterization of the 127 

hydrologic extremes of most interest to engineers and planners (Farmer and Vogel 2016). As a 128 

result, hydrologic simulations of future conditions are likely to mischaracterize hydrologic 129 

extremes under climate change. Farmer and Vogel (2016) attribute this systematic error to a 130 

general failure to account for the variability contained in the model residuals when simulating 131 

from hydrologic models. Vogel (2017) coined the term stochastic watershed models (SWM) for 132 

the approach that adds stochastic error to hydrologic simulations. SWMs have been shown to 133 

improve the representation of hydrologic extremes as compared to their deterministic 134 

counterparts (Shabestanipour et al. 2023), and thus present a promising approach for projecting 135 

future hydrologic extremes under climate change. A hydrologic model’s predictive uncertainty is 136 

due to model structure, parameter uncertainties, calibration, and input data (Moges et al. 2020). 137 

Shabestanipour et al. (2023) suggest that assuming that the impact of all sources of uncertainty 138 
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are contained in the residuals is an effective approach to propagate uncertainty in 139 

characterization of extreme flows (see also Koutsoyiannis and Montanari 2022). While SWMs 140 

are effective at addressing structural uncertainties in a hydrologic model, they need to be 141 

integrated with multiple input scenarios in order to capture changes caused by warmer climates 142 

or land use change. 143 

In response to the challenges above, this study contributes a framework for risk-based 144 

decision making for water resources infrastructure planning under climate change. This 145 

framework pairs a stochastic weather generator (SWG) with a stochastic watershed model 146 

(SWM) to provide large ensembles of streamflow simulations reflecting varying levels of 147 

potential future warming. Using these ensembles, it is possible to compute risk- and reliability-148 

based design criterion that reflect the infrastructure’s design life and the appropriate risk-of-149 

failure under alternative future climate scenarios. The framework also allows planners to project 150 

the evolution of key design criteria, such as critical flood or low flow statistics, over the 21st 151 

century under alternative climate scenarios. We apply the proposed framework to the 152 

Squannacook River in Massachusetts to illustrate the changes in critical design statistics under 153 

varying levels of climate change and the application of risk-based metrics to engineering design. 154 

 155 

2.    Methodology 156 

The approach detailed in this work is composed of four primary components (see Figure 157 

1). First, a SWG is used to develop ensembles of future climate scenarios associated with 158 

different signals of climate change. These ensembles are used to force a deterministic watershed 159 

model (DWM), creating ensembles of future streamflow. Ensembles of hydrologic model error 160 

are then sampled and added to each streamflow trace from the DWM, to create an ensemble of 161 
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ensembles (or super ensemble) of future streamflow traces that capture various signals of climate 162 

change as well as the effects of hydrologic model uncertainty. Finally, this super ensemble is 163 

used to calculate the risk-of-failure for water resources infrastructure associated with a T-year 164 

design life. After introducing the case study basin used in this work, we describe each of these 165 

framework components in more detail in the sections below.  166 

 167 

Figure 1: Integrated Stochastic Weather Generator (SWG)-Stochastic Watershed Model (SWM) 168 

framework to estimate hydrologic risk under climate change. 169 

 170 

2.1.    Study Basin 171 

We demonstrate the proposed framework for the Squannacook River basin located in 172 

north-central Massachusetts and southern New Hampshire in the United States (see Figure 2). To 173 

demonstrate SWG-SWM framework’s generalizability, the SWG-SWM procedure was applied 174 

to a second basin (Shasta River basin, California, United States), with an alternative DWM, and 175 

different climate realizations. The results of that analysis are reported in the supplementary 176 

material. Previous studies suggest that the Northeast United States will experience the largest 177 

temperature increases in the contiguous United States (Hayhoe et al. 2018). Furthermore, a 178 

recent study in the state of Massachusetts projected an increase of more than 50% in the 100-year 179 

24-hour rainfall event for much of the state under both RCP4.5 and RCP8.5 emission scenarios 180 
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(Siddique and Palmer 2021). The Squannacook River basin was selected because it contains a 181 

72-year continuous daily streamflow record, has relatively low regulation and hydrologic 182 

disturbance, and served as a pilot study for a previous SWM demonstration project 183 

(Shabestanipour et al. 2023). 184 

The Squannacook River drains southeasterly into the Nashua River, which in turn flows 185 

to the Merrimack River watershed and ultimately the Atlantic Ocean. The portion of the 186 

Squannacook River basin modeled in this study corresponds to the USGS streamgage 01096000, 187 

which has a drainage area of 173.8 km2. The watershed is primarily forested and contains more 188 

than 28 km2 of state and town forests. There are developed areas along key transportation 189 

corridors and in the center of Townsend, Massachusetts. Less than 8% of this basin area is 190 

impervious and it contains five dams. The basin topography ranges from a hilly upland plateau 191 

with maximum elevation of 450 m in the north and west to flat coastal plain in the south and 192 

east. 193 
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 194 

Figure 2: Location of the Squannacook River basin in Massachusetts, USA. 195 

 196 

The climate in the Squannacook River basin is temperate, with mild summers and cold 197 

winters. The mean annual air temperature during 1981–2010 was about 46 °F (7.78 °C ) with mean 198 

monthly air temperatures ranging from about 22 °F (-5.5 °C ) in January to 69 °F (20.5 °C) in July 199 

(ETOPO 2022 15 Arc-Second Global Relief Model). The mean annual precipitation is 48 inches 200 

(1219 mm) (ETOPO 2022 15 Arc-Second Global Relief Model), while the basin’s average annual 201 

potential evapotranspiration for the period of 1981–2010 is 23 inches (584 mm) (Northeast 202 

Regional Climate Center, 2021). 203 
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The DWM used in this pilot study is the USGS National Hydrologic Model Precipitation 204 

Runoff Modeling System (NHM-PRMS) version 5.1.0 (Markstrom et al. 2015; Regan et al. 2019). 205 

NHM-PRMS is a medium-complexity continuous watershed simulation model that is calibrated 206 

for the entire continental United States (Regan et al. 2019). The DAYMET climate dataset 207 

(Thornton et al. 2016) and available USGS streamflow records were used to configure and 208 

calibrate the NHM-PRMS. Calibration of NHM-PRMS is accomplished through a normalized 209 

squared error on streamflow along several calibration steps (e.g., high flows, low flows, monthly 210 

flows, and daily flows) for hydrologic response units. See Regan et al. (2019) for a full description 211 

of the calibration procedure. Minimal modification to the NHM-PRMS calibration was performed 212 

for this pilot study, including adjustment factors for minimum and maximum temperature, 213 

precipitation, precipitation-to-snow conversion, monthly air temperature coefficients used for 214 

potential evapotranspiration, and the groundwater discharge coefficient. The performance of the 215 

model in the Squannacook is adequate, with a Nash Sutcliffe efficiency of 0.64 and a log Nash 216 

Sutcliffe efficiency of 0.71. This is very similar to the average performance of PRMS across the 217 

United States (Farmer and Vogel 2016).   218 

 219 

2.2.    Stochastic Weather Generator and Climate Scenarios 220 

Stochastic weather generators provide a computationally efficient and complementary 221 

alternative to GCMs for hydrologic systems’ analysis under climate change. These models are 222 

structured based on historical meteorological records and are used to generate large ensembles of 223 

simulated daily weather records that are similar to but not bound by variability in past 224 

observations (Richardson, 1981; Wilks and Wilby, 1999; Fowler et al. 2007). For hydrologic 225 

impact assessment studies, weather generators must develop timeseries of multiple weather 226 
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variables (e.g., precipitation and temperature) at multiple locations while maintaining the 227 

persistence and covariance structures associated with transient, multi-day storm events and over 228 

longer (seasonal-inter-annual) timescales. After a weather generator has been calibrated to 229 

historical data, model parameters can be adjusted to produce new realizations of weather, 230 

presenting changes in intensity and frequency of average and extreme precipitation, heatwaves, 231 

and cold spells (Wilks 2002; Wilks 2010; Wilks 2012) The reasoning behind the specific 232 

methodological choices in the SWG used in this study are described in (Najibi and 233 

Steinschneider 2023). 234 

We adopt the SWG developed for the state of Massachusetts by Steinschneider and 235 

Najibi (2022). This SWG is based on the model described in Steinschneider et al. (2019), Rahat 236 

et al. (2022), and Najibi, Mukhopadhyay, and Steinschneider (2021). An advantage of the SWG 237 

over direct use of GCM projections, is the ability of the SWG to produce a larger number of 238 

climate change realizations at a spatial and temporal scale that is meaningful for hydrologic 239 

simulation, than what is typically available through direct use of downscaled GCMs. This 240 

weather generator is a semiparametric, multivariate, and multisite model that is designed to 241 

separately model dynamic and thermodynamic atmospheric mechanisms of climate variability 242 

and change through statistical abstractions of these processes. To capture atmospheric dynamics, 243 

the weather generator uses a non-homogenous Hidden Markov Model (NHMM) to identify and 244 

simulate sequences of weather regimes (WRs), which are recurring large-scale atmospheric flow 245 

patterns (e.g., upper-level, quasi-stationary blocks and troughs) that organize high-frequency 246 

weather systems (Robertson and Ghil 1999; Robertson et al. 2015). Precipitation and both 247 

maximum and minimum temperature are simulated through bootstrapping from the historical 248 

record conditional on the simulated WRs. Noise is added to resampled heavy precipitation events 249 
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to ensure that simulated extreme events can exceed those in the observations. To capture 250 

thermodynamic mechanisms of climate change, the weather generator post-processes simulated 251 

precipitation and temperature data to reflect patterns of warming and thermodynamic scaling of 252 

precipitation rates with that warming (i.e., precipitation intensification).  253 

This model was developed for 20 separate river basins across the entire state of 254 

Massachusetts (at the 8-digit Hydrologic Unit Code: Huc8 level), using gridded (~6 km) daily 255 

precipitation and maximum and minimum temperature between January 1, 1950 and December 256 

31, 2013 from the dataset developed by Livneh et al. (2015). For every HUC8 watershed, the 257 

model was used to simulate 100 ensemble members, each 64-years long (the length of the 258 

instrumental record), for temperature changes that range from 0°F to 8°F (0 °C to 4.44 °C) 259 

warming at 0.5°F (0.28°C) increments (17 warming scenarios altogether). This was the range of 260 

warming projected in the CMIP5 ensemble of future projections across the state of 261 

Massachusetts for all emission scenarios.  262 

For each level of warming, extreme precipitation simulated by the model was scaled 263 

upwards using a quantile mapping approach. Specifically, the daily, non-zero precipitation 264 

distribution for each grid cell was stretched such that the 99.9th percentile was increased at the 265 

theoretical Clausius-Clapeyron (CC) scaling rate (~7% per °C warming), which is the rate at 266 

which the water holding capacity of the atmosphere increases with warming (Held and Soden 267 

2006). If all other factors controlling precipitation intensity remain unchanged, it is often 268 

assumed that extreme precipitation will scale with temperature at this same rate (Allan and 269 

Soden 2008; Allen and Ingram 2002). The reasoning is that under conditions that lead to extreme 270 

precipitation (i.e., near saturated atmospheric conditions; intense surface convergence and uplift), 271 

changes in atmospheric moisture content will translate directly to changes in precipitation 272 
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amount. A separate analysis of extreme precipitation scaling across the Northeast US was used to 273 

support this choice (Najibi, Mukhopadhyay, and Steinschneider 2022; Steinschneider and Najibi 274 

2022a). Mean precipitation was held at historical levels in these scenarios. 275 

The climate change mechanisms that lead to hydrologic impact are categorized into 276 

thermodynamic or dynamic impacts of climate change. Thermodynamic impacts are directly 277 

related to the temperature change of the atmosphere. Thermodynamic modes include snow 278 

accumulation and melt, higher evapotranspiration, and more intense precipitation due to an 279 

increase in the moisture holding capacity of atmosphere. Dynamic atmospheric mechanisms refer 280 

to the frequency of weather regimes (i.e., shifts in atmospheric circulation) (Steinschneider and 281 

Najibi 2022), which are significantly more uncertain than thermodynamic change (Shepherd, 282 

2014; Pfahl et al., 2017). The climate scenarios included in this analysis only reflect mechanisms 283 

of thermodynamic climate change, which are direct responses of the climate to warming and are 284 

often deemed some of the most credible projections of future climate (Pfahl et al., 2017). In this 285 

study we used the SWG simulations over the Squannacook River basin as the forcing to our 286 

hydrologic model, described next. Steinschneider and Najibi (2022a) found a substantial increase 287 

in the extreme rainfall intensity in the scenarios used for this study. 288 

 289 

2.3.    Stochastic Watershed Model  290 

In this work we employ a SWM to translate scenarios of climate from the SWG into 291 

streamflow simulations. SWMs use a deterministic watershed model (DWM) to simulate the 292 

hydrologic response to climate, and then re-introduce errors back into the DWM prediction to 293 

address the bias in extreme flows (Vogel 2017). In this work, we adopt the SWM developed in 294 

Shabestanipour et al. (2023), which was verified and validated for the Squannacook River basin. 295 
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As described above, the USGS National Hydrologic Model Precipitation Runoff Modeling 296 

System (NHM-PRMS) (Regan et al. 2019) segment for the Squannacook River was used as the 297 

core DWM.   298 

To add error back to the DWM predictions, the SWM in Shabestanipour et al. (2023) fits 299 

an autoregressive (AR(3)) model to the log-ratio (denoted 𝜆) of simulated and observed 300 

streamflow from the NHM-PRMS. Simulations of new log-ratios are then generated by first 301 

bootstrapping residuals from the fitted AR model, then using those resampled residuals in the 302 

AR model to re-introduce autocorrelation, and finally using those simulated log-ratios to adjust 303 

DWM simulated flows into a stochastic trace of simulated streamflow. There is also a separate 304 

bias correction factor (BCF) applied to address biases that can arise when operating on log-305 

transformed flows. All equations for this model can be found in Figure 1.  306 

We note that the PRMS model and the SWM in Shabestanipour et al. (2023) were both 307 

calibrated using observed meteorological data from the Daymet dataset (Thornton et al. 2016), 308 

but the SWG produces weather traces based on the meteorological data in Livneh et al. (2015). 309 

This change in input data introduces a bias to our simulated streamflows, which we address using 310 

a quantile mapping bias correction calibrated over the historical period (see Supporting 311 

Information; Teegavarapu, Salas, and Stedinger 2019).  312 

Ultimately, we force the DWM with the 17 different warming scenarios from the SWG, 313 

each containing 100 ensemble members, for a total of 1,700 separate time series of deterministic 314 

streamflow predictions. We then used the SWM to simulate 10,000 stochastic streamflow traces 315 

for each of these 1,700 realizations, producing a super ensemble of 17,000,000 streamflow 316 

traces. Here, each of the 17 warming scenarios (which capture future climate change uncertainty) 317 
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have 1,000,000 hydrologic simulations that capture both natural climate variability and 318 

hydrologic model uncertainty.  319 

 320 

2.4.    Risk-of-Failure Design Criterion 321 

By integrating the SWG and SWM above, we can simulate a super ensemble of 322 

streamflow traces associated with 17 separate levels of future warming. However, these traces 323 

(which are each 64 years long) reflect a different step change in temperature rather than gradual, 324 

transient scenarios of warming. Therefore, the ensemble of 1,000,000 streamflow traces 325 

associated with each level of warming can be used to calculate the stationary risk of 326 

infrastructure failure for a particular level of warming, but they cannot be directly used to 327 

calculate the risk of failure over a T-year planning horizon during which temperatures gradually 328 

warm. 329 

We address this challenge by first calculating the stationary risk of failure for each 330 

warming scenario generated by the SWG-SWM ensemble, and then integrate this risk of failure 331 

over transient pathways of warming projected by GCMs. To demonstrate this approach, let A be 332 

a particular flood magnitude of concern (e.g., the flood level that would exceed the capacity of a 333 

planned infrastructure project). We then define the probability that the flood magnitude A will 334 

not be exceeded for a particular warming scenario W ∊ (0 °F (0 °C), 8 °F (4.44 °C)) as:  335 

 
𝑃(𝐴|𝑊) =  

N umber of years in warming scenario W that flow A is not exceeded

Number of all years in scenario W
 

(1) 

 336 
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For a planning horizon of T years, we can then calculate the risk of infrastructure failure over 337 

that horizon as follows: 338 

 339 

 𝑅𝑖𝑠𝑘 (𝐴)𝑇 = 1 −  ∏ 𝑃(𝐴|𝑊𝑡 )

𝑇

𝑡=1

 (2) 

Here, 𝑅𝑖𝑠𝑘 (𝐴)𝑇  is the risk associated with flood A over T years, and 𝑊𝑡  is the amount of 340 

warming at year t over the planning horizon.  341 

There are two considerations in the formulation above that require discussion. First, the 342 

transient warming 𝑊𝑡  for each year t in the planning horizon needs to be specified. For 343 

illustration, we do this using a transient projection of temperature from the GFDL-ESM2G GCM 344 

forced with two separate emission scenarios (RCP 4.5 and RCP8.5) and downscaled using the 345 

Multivariate Adaptive Constructed Analogs approach (MACA; (Abatzoglou and Brown 2012)). 346 

For each RCP, we compare the historical temperatures from this model to the predicted future 347 

temperatures and set 𝑊𝑡  to the warming level at the end of each decade out to 2100. That is, 348 

annual values of 𝑊𝑡  increase upwards once every decade over a planning horizon of T=77 years 349 

(assuming a starting year of 2025). In this step, we used the decadal time steps in order to both 350 

decrease the noise from interannual variability and the necessary computational power.  351 

Second, the probability P(A|W) is only available for the discrete levels of warming 352 

generated by the SWG (0 °F to 8 °F at 0.5 °F increments), but 𝑊𝑡  can reflect any level of 353 

warming occurring at year t in the planning horizon. Therefore, if 𝑊𝑡  is between one of the 354 

increments of warming produced by the SWG, the probability 𝑃(𝐴|𝑊𝑡 ) is estimated by linearly 355 
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interpolating between the probabilities P(A|W) for SWG-informed warming levels that are 356 

directly above and below 𝑊𝑡 .  357 

 358 

3. Results and Discussion 359 

The integrated SWG-SWM framework described in Section 2 allows planners and 360 

engineers to track the impacts of climate change on the distribution of key design statistics for 361 

varying levels of warming or over climate change scenarios, or alternatively to evaluate the risk 362 

of a given flow being exceeded over the intended design life of a project. We address each of 363 

these two cases in turn for the Squannacook River in Sections 3.1 and 3.2 below. 364 

3.1. Non-Stationary Design Events  365 

Figure 3 compares the distribution of several common drought and flood design statistics 366 

under vary levels of warming to the observed values over the historical period (1950-2013). 367 

Observed values are derived by fitting a log-Pearson Type III distribution to the annual 368 

maximum or 7-day low flow series (Chowdhury and Stedinger 1991). For each of the flood 369 

statistics, the SWG-SWM simulations for 0 ⁰F /⁰C warming closely match the observational 370 

record, producing similar median and 90% confidence intervals. This indicates that the SWG-371 

SWM framework can replicate flood characteristics under historical conditions and suggests the 372 

model should provide reasonable projections of flood characteristics under warming conditions. 373 

The SWG-SWM framework struggles to capture the uncertainty in the estimate of the 7Q10 374 

(minimum annual 7-day average flow with 10-year recurrence interval) from the observational 375 

record, which is likely due in part to the underlaying hydrologic model’s poor performance in 376 

simulating low flows in the Squannacook (Shabestanipour et al. 2023). Despite this, the SWM-377 



 19 

SWG median 7Q10 is close to the observed 7Q10 and is well within the 90% confidence interval 378 

(see 0 °C scenario width of calculated 7Q10s in Figure 3a). 379 

 380 

Figure 3: Impact of fixed warming levels on the distribution of the a) 7Q10, b) 50-year flood, c) 381 

100-year flood, and d) 500-year flood. 382 

 383 

The SWG-SWM framework projects that both droughts and floods will become more 384 

extreme as temperatures increase in the Squannacook. For example, under 4 ⁰F (2.22 °C) 385 

warming the SWG-SWM projects an increase in the median100-year flood of 19% over 0 ⁰F (0 386 

°C) conditions, and an increase of 68% under 8 ⁰F (4.44 °C) warming. For a fixed AEP flood, the 387 

marginal flood magnification with respect to an increase in warming also increases, so flood 388 

magnification is a non-linear function of warming for the Squannacook. For a fixed warming 389 

level, the flood magnification also increases with return period. For example, under 8 ⁰F (4.44 390 
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°C), the SWG-SWM projects an increase of 63%, 68%, and 78% for the 50-, 100-, and 500-year 391 

floods, respectively. There is significant uncertainty in both the observed and projected flood 392 

magnitudes, as reflected in the wide 90% confidence intervals in Figure 3. The projected median 393 

100- and 500-year floods are within the 90% confidence interval of the observed historical 394 

record, as estimating such extreme flood quantiles from a limited historical record includes 395 

significant uncertainty. The projected distributions of extreme floods are positively skewed, with 396 

upper tails that extend to extreme flood magnitudes, and this asymmetry grows with warming 397 

conditions. 398 

While the fixed warming levels in Figure 3 are useful to track the basin response to 399 

warming, climate change is expected to evolve through the course of the 21st century and most 400 

planning exercises use climate scenarios, such as the representative concentration pathways 401 

(RCPs) (Van Vuuren et al. 2011). Figure 4 plots the evolution of the median daily flow, the 100-402 

year flood, and the 500-year flood for RCP4.5 and RCP8.5 by decade through 2100, by mapping 403 

the GCM-projected temperature change under each emission scenario and for each target year to 404 

a SWG-SWM warming scenario. The no-warming scenario is also shown as a baseline. The 405 

SWG-SWM framework projects a decline in the median daily flow through 2100 under both 406 

climate scenarios: a 21% decline for RCP4.5 and a 33% decline for RCP8.5. Despite this, 407 

extreme flood magnitudes are projected to increase under both RCPs. Under RCP4.5 extreme 408 

flood magnification is modest, with a median flood magnification of 15% for the 100-year flood 409 

and 17% for the 500-year flood by 2100. Even by the end of the century, under RCP4.5 the 410 

median 100- and 500-year flood magnitudes are well within the 90% confidence interval for the 411 

no-warming case, reflecting both the uncertainty in extreme flood estimation and the limited 412 

impact of modest warming on extreme flood quantiles (see also Figure 3). RCP8.5 sees more 413 
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substantial shifts in the distribution of extreme floods by 2100, with a 67% and 77% increase in 414 

the 100- and 500-year median floods, respectively. Flood magnification quickens after 2050, 415 

when RCP8.5 projects a more rapid rise in global warming levels. By 2100 under RCP8.5, the 416 

SWG-SWM framework projects that the 100-year flood magnitude will exceed the estimated 417 

500-year flood over the historical period. This behavior is due to the fact that global temperature 418 

change of the RCP8.5 scenario starts to vary significantly from the RCP4.5 scenario after 2050 419 

(Ansuategi et al. 2015). 420 

 421 
Figure 4: Design floods and median daily flows by decade under RCP4.5 and RCP8.5 and under 422 

0 °F/°C warming. 423 

 424 

Previous studies in the region project approximately a 30% increase in the 100-year flood in 425 

western and central Massachusetts under RCP8.5 (Siddique and Palmer 2021; Siddique et al. 426 

2020), which is less extreme than our results. Both our study and previous studies suggest greater 427 

increase around the end of the century. Our results for RCP4.5 are in general agreement with 428 

previous work, which estimate an approximate 15% increase of the 100-year flood under this 429 

warming trajectory (Siddique and Palmer 2021). 430 
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 431 

3.2. Risk of Failure 432 

Figure 4 provides a useful demonstration of shifting extremes in a non-stationary world 433 

by tracking changes in common design statistics over time for different climate scenarios. Figure 434 

4 also highlights the deficiency of the “return period” or the AEP as a concept for 435 

communicating risk under non-stationarity. The median 100-year flood can be expected to 436 

change over the design life of infrastructure built today due to climate change (Milly et al. 2002). 437 

In the case of the Squannacook, the 100-year flood is expected to get larger over time. Planning 438 

for the 100-year flood today risks under-design, whereas planning for the 100-year flood at the 439 

end of the planning horizon risks over-design. Non-stationary return periods have been proposed 440 

(Olsen, Lambert, and Haimes 1998; Salas and Obeysekera 2014), but their meaning can be 441 

difficult to interpret. A more natural design criteria is risk (or conversely, reliability), whose 442 

interpretation is the same under stationary or non-stationary conditions (Read and Vogel 2015).  443 

 444 

 445 

Figure 5: A) The impact of warming on the risk of no-warming design events over a 50-year 446 

design life. B) Percent change in risk of no-warming design events over a 50-year design life. 447 
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 448 

Figure 5 reports the relationship between risk and various fixed return period floods 449 

under a range of warming conditions, for a 50-year design life. Figure 5A illustrates how the risk 450 

of the no-warming 50-year, 100-year, and 500-year floods change for the Squannacook as 451 

temperatures increase. As expected from equation 2, the risk of the no-warming 50-, 100-, and 452 

500-year events being exceeded in a 50-year design life under the no-warming case are about 453 

60%, 40%, and 10%, respectively. As temperatures warm in the Squannacook, the risk of each 454 

design event being exceeded increases substantially, with 4.5 ⁰F of warming the risk of the no-455 

warming 100-year event exceeding the theoretical risk of the 50-year flood in stationary 456 

conditions. The relationship between risk and warming is nonlinear and varies by return period. 457 

At low warming levels, the risk of the 50-year flood increases more rapidly with temperature in 458 

absolute terms than risk of the 500-year event. However, the opposite is true at high warming 459 

levels, with the 500-year flood’s risk increasing with temperature faster than the 50-year flood. 460 

Figure 5B shows the percent change in risk for the three design events under varying degrees of 461 

warming. For a fixed level of warming, the relative increase in risk grows with return period. For 462 

example, under 6 ⁰F of warming, the risk of the 50-year flood has increased 58% while the 500-463 

year flood risk has increased 186%. As temperatures increase, the relative increase in the risk of 464 

the 500-year flood grows rapidly, while the relative increase in the risk of the 50-year event 465 

stagnates as it approaches 100% risk in absolute terms (e.g., near certainty that it will be 466 

exceeded over the 50-year design life). 467 
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 468 
Figure 6: Accumulated risk of no-warming design events over the 21st century for the RCP4.5, 469 

RCP8.5, and no-warming scenarios. 470 

 471 

Figure 6 reports the accumulated risk of various design floods (computed under no 472 

warming), being exceeded over time under three future climate scenarios: no-warming, RCP4.5, 473 

and RCP8.5. Risk increases over time, as each year there is a chance the specified design flow 474 

will be exceeded. The risk increases faster for less-extreme floods (e.g., 50-year flood), as each 475 

year there is a higher probability that that flow level will be exceeded. Risk also grows more 476 

quickly for the two warming scenarios than for the no-warming case, because the SWG-SWM 477 

projects that increasing temperatures will increase extreme floods. The difference in risk between 478 

RCP4.5 and the no-warming case is notable, given the SWG-SWM framework projects only 479 

modest increases in extreme floods under RCP4.5 (see Figure 4). This highlights that even small 480 

increases in annual flood risk compound over time to yield substantial differences in risk over a 481 

long planning horizon. There is very little difference between RCP4.5 and RCP8.5 through 2050, 482 

because those two climate scenarios follow similar warming trajectories until mid-century. After 483 

2050, risk accumulates quicker for RCP8.5 than RCP4.5, as the SWM-SWG projects that floods 484 

will become more extreme under RCP8.5 than RCP4.5. Figure 6 suggests that the choice of 485 
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climate scenario (RCP4.5 vs. RCP8.5) does not meaningfully impact flood risk if the planning 486 

horizon terminates around 2050, but that after 2050 the choice of climate scenario can impact the 487 

projected flood risk. 488 

To further explore generalizability of this framework we implemented the SWG-SWM 489 

integration process for the Shasta River basin in California, United States. We have included the 490 

results of secondary basin’s analysis in the supplementary material. Implementation of the 491 

framework on a second basin supports the applicability of this method on basins with different 492 

hydrologic characteristics.  493 

3.3. Risk-based Decision Making using the SWM-SWG framework 494 

To demonstrate the application of the SWG-SWM framework for risk-based decision 495 

making, we consider the design of culvert with a 50-year design life being constructed in 2025. 496 

In Massachusetts, the recommended design flow for a culvert is the 100-year flood 497 

(Massachusetts Department of Transportation 2020). Under stationary conditions, this implies a 498 

39.5% risk over the design life. When designing a culvert in non-stationary conditions, the 499 

planner has at least three choices in selecting a design flow: (1) design to the current 100-year 500 

flood (here represented by the no-warming case), (2) design to the 100-year flood at the end of 501 

the design life under a climate scenario, or (3) design to a flow that matches the desired risk 502 

implied by current design standards (i.e., 39.5%). Figure 7 plots the design-life risk associated 503 

with each of those options for RCP4.5 and RCP8.5 versus the design flow. For choice 1 and 2 504 

the associated risk of the design flow is calculated by equation (2) and the third design flow was 505 

found by a grid search for the associated risks of flows in between the two initial flows.  Here the 506 

design flow can be considered a proxy for cost, albeit an approximate and non-linear one. Each 507 

line represents an alternative climate scenario, which is uncertain and represents a design choice. 508 

An ideal solution (given a climate scenario) would be one in the lower left of Figure 7: a low-509 
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risk solution with a small design flow and consequently a smaller cost. Unfortunately, the ideal is 510 

not possible, and a compromise must be selected. 511 

 512 

 513 

Figure 7: Risk over a 50-year design life under RCP4.5 and RCP8.5 for alternative design flows. 514 

 515 

The current (no-warming) 100-year flood is roughly 3,800 cfs (107 𝑚3/𝑠) and 516 

corresponds to a life-time risk of about 40% under stationary conditions. However, the risk of the 517 

current design flow is substantially higher under climate scenarios: rising to 48% under RCP4.5 518 

and 58% under RCP8.5. Thus, utilizing the current 100-year flood results in under-design and 519 

unacceptable levels of risk in the Squannacook under climate change, according to design 520 
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standards. Instead, planners may opt to design for the 100-year flood at the end of the design life, 521 

in this case 2075. As the SWG-SWM framework projects increasing flood magnitudes through 522 

the course of the 21st century, this may be perceived as a sensible, conservative choice. 523 

However, this will result in significantly lower risk than desired in the design codes. Under 524 

RCP8.5, the SWG-SWM projects the 2075 100-year flood to be about 5,000 cfs (141.5 𝑚3/𝑠), 525 

corresponding to a risk of 25.3%. On its face, a lower risk seems desirable, but it also represents 526 

a significant over design: a flow of about 4,400 cfs (124.6 𝑚3/𝑠) achieves the desired 39.5% risk 527 

under RCP8.5. If the actual warming is less extreme than RCP8.5, which is likely (Hausfather et 528 

al. 2022; Voosen 2022; Hausfather and Peters 2020), then the overdesign and consequently the 529 

regret will be even more extreme. A thorough economic analysis of the costs of over- vs. under-530 

design is beyond the scope of this simple example, but if the design standards reflect societal 531 

risk-tolerance, then selecting the 100-year flood at the end of the design life reflects over design, 532 

and a potential inefficient use of resources that might be spent elsewhere in support of other 533 

societal objectives. 534 

As shown in Figure 4, RCP4.5 projects more moderate changes to extreme floods over 535 

the 21st century than RCP8.5. The SWG-SWM projects the 100-year flood to be about 4,200 cfs 536 

(118.9 𝑚3/𝑠) in 2075 under RCP4.5, while the flow required to achieve the desired 39.5% is 537 

about 4,100 cfs (116 𝑚3/𝑠). Thus, designing for the 100-year flood in 2075 under RCP4.5 538 

represents only a slight overdesign, with an actual risk of 35.7%. Of course, the future will not 539 

follow exactly the scenario selected for planning, so it is instructive to consider the loss or gain 540 

of risk if an alternative climate scenario occurs than the one planned for. For example, if the 541 

2075 100-year flood from RCP8.5 is used for planning, but RCP4.5 actually occurs, the associate 542 

risk is 19.7% compared to the desired 39.5% and the infrastructure would be designed for a flow 543 
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that is nearly 1,000 cfs (28.3 𝑚3/𝑠) larger than required to achieve the desired risk. The regret of 544 

overdesign could be quantified monetarily in a more applied problem. In contrast, if the design 545 

flow is selected to achieve 39.5% risk under RCP8.5, and RCP4.5 actually occurs, the associated 546 

risk would be 31.3% rather than the desired 39.5% and the infrastructure would be designed to a 547 

flow only about 300 cfs (8.5 𝑚3/𝑠) larger than required. Thus, if planning for RCP8.5, adopting 548 

a risk framing rather than the end-of-horizon 100-year flood reduces the regret of overdesign 549 

substantially. This result arises in part because RCP4.5 and RCP8.5 follow similar trajectories 550 

through 2050, so the flow associated with a life-time risk of 39.5% is quite similar, even if their 551 

2075 100-year floods are quite different. 552 

 553 

 554 

Figure 8: Risk versus flood magnitude for infrastructure built in 2025 with either a 50-year or 555 

70-year design life, under a) RCP8.5 and b) RCP4.5. 556 

 557 
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Figure 8 plots risk vs. flow for two planning horizons (50 and 70 years starting in 2025) 558 

and two climate scenarios (RCP4.5 and RCP8.5). This diagram can be used by practitioners to 559 

identify a design flow associated with a desired risk, planning horizon, and climate scenario, or 560 

alternatively a practitioner could identify the risk associated with a given flow, planning horizon, 561 

and climate scenario. The 50-year planning horizon risk profiles are similar between RCP4.5 and 562 

RCP8.5, largely because their warming trajectories are quite close into the middle of the 21st 563 

century. Because both RCP4.5 and RCP8.5 project rising temperatures through the end of the 564 

21st century, the SWM-SWM projects increasing flood magnitudes through 2100 (see Figure 4). 565 

Thus, the longer the planning horizon stretches into the future, the more the risk-profile shifts to 566 

the right (greater flows associated with a fixed risk). The relative shift in the risk profile between 567 

the 50- and 70-year planning horizon is greater for RCP8.5 than RCP4.5, reflecting the greater 568 

projected late-century warming under RCP8.5. Using the simulation ensemble from the SWG-569 

SWM framework, Figure 8 can be expanded to include alternative planning horizons or new 570 

climate scenarios. 571 

 572 

4. Conclusions 573 

Climate change is expected to alter the distribution and arrival of hydrologic extremes, 574 

and this presents a significant challenge to long-term water resources planning and management. 575 

Mapping the hydrologic response to changing climate drivers is challenging, in part because of a 576 

mismatch in the scale and focus of common climate and hydrologic models with the needs of 577 

local planners. More fundamentally, non-stationarity renders the interpretation of common 578 

design statistics, like the 100-year flood, technically ambiguous and of dubious practical value. 579 

To address both issues, this work presents a computational framework for risk-based decision 580 
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making at the basin-scale, composed of a Stochastic Weather Generator (SWG) and a Stochastic 581 

Watershed Model (SWM). The SWG is used to produce many synthetic weather sequences 582 

reflecting different levels of warming and associated intensification of extreme precipitation, 583 

while using abstractions of dynamic atmospheric mechanisms to capture key signals of natural 584 

climate variability. The SWM captures the hydrologic response to changing climate forcing, 585 

correcting bias in the deterministic hydrologic models’ representation of extreme flows by 586 

properly capturing the variance of daily streamflow. The integrated SWG-SWM framework is 587 

applied to the Squannacook River basin in Massachusetts to illustrate the impact of climate 588 

change on the distribution of hydrologic extremes and use of risk in hydrologic design. 589 

For the Squannacook, the SWG-SWM framework projects that warming temperatures 590 

will produce more extreme floods and low flow events. The increase in flood magnitude is non-591 

linear with respect to warming: the marginal increase in flood magnitude with respect to an 592 

increase in temperature increases with the warming level. The increase in flood magnitude with 593 

warming is also greater for more extreme floods: the relative increase of the 500-year flood is 594 

greater than the relative increase of the 100-year flood for a fixed warming level. Still, the 595 

uncertainty in extreme floods under no warming is sufficiently large to encompass median 596 

estimates of extreme flooding under a high degree of warming.  597 

A similar non-linear pattern is seen for the risk of failure of a specified flood magnitude 598 

over a given planning horizon. For smaller flood magnitudes, the risk saturates towards unity for 599 

moderate horizons (e.g., T=50 years) as it becomes near certain that those events will be 600 

exceeded, while for larger floods the risk grows exponentially (on a percentage basis). 601 

Importantly, the accumulated risk associated with flooding is similar between moderate and high 602 

emission scenarios during the first half of the 21st century because the two scenarios follow 603 
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similar warming trajectories until around 2050. This result has large implications for reducing 604 

regret in hydrologic design. Our results show that basing hydrologic designs on return period 605 

estimates at either the beginning or the end of a planning horizon can lead to large regret (under- 606 

or over-design), especially if a different climate future occurs than the one used to guide design. 607 

This regret can be reduced if design is based on a risk framing, largely because different 608 

emission scenarios (RCP4.5 and RCP8.5) follow similar warming trajectories through mid-609 

century, so the flow associated with a given life-time risk of failure is more similar than the end-610 

of-horizon return period events.  611 

While the SWG-SWM framework to support risk-based hydrologic design proposed in this 612 

work shows promise, several limitations of the method require discussion. First, the SWG is 613 

designed to propagate key signals of climate change into large ensembles of future weather for 614 

risk analysis, but the model is not governed by the physical laws of the climate system and 615 

therefore may produce weather ensembles that are not physically plausible, especially for 616 

extreme climate change scenarios. In addition, the SWG was only used in this study to create 617 

scenarios of warming and extreme precipitation intensification, without consideration of other 618 

signals of potential climate change (e.g., shifts in seasonality, changes in mean precipitation, 619 

etc.). A more in-depth analysis could use the SWG to expand the set of scenarios tested, or 620 

alternatively, multiple single model initial condition large ensembles (SMILES, Lehner et al. 621 

2020) could be used as the basis for the weather ensembles in our risk-based framework. In 622 

either case, multiple signals of future climate change beyond just warming could interact to 623 

influence hydrologic risk-of-failure, and these effects should be disentangled (e.g., using 624 

variance decomposition; (Steinschneider et al. 2023) to understand the relative importance of 625 

different climate change signals on risk. This effort will be the focus of future work.  626 
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A second important limitation of this work is the assumption in the SWM that the error 627 

structure observed historically can be used to propagate hydrologic model uncertainty under new 628 

climate conditions. Climate change will alter the frequency, timing, and intensity of hydrologic 629 

model states, activate model components in configurations not seen in the historical record, and 630 

change the way meteorological forcing is converted to streamflow. These changes could alter the 631 

structure and distribution of hydrologic model errors, although it is difficult to anticipate these 632 

changes because no future observations are available against which to estimate shifts in the error 633 

distribution. One promising approach to address this challenge is to link the error distribution in 634 

SWMs to hydrologic model state variables, so that changes in the frequency of different states 635 

under climate change trigger an associate shift in the error distribution. This is an active topic of 636 

ongoing research.  Another limitation of this work is we do not consider any land-use change for 637 

future scenarios. Future work for long-term decision making should consider various 638 

combinations of land-use change scenarios and warming scenarios. 639 

More broadly, we argue that there is a need for practitioners in hydrologic engineering to 640 

move away from conventional approaches to design such as return period-based design event 641 

estimation. These techniques, while suitable in the past, are no longer justified given the 642 

accelerating rate at which the risk of extreme events is changing, and the propensity of these 643 

methods to lead to the future under- or over-design of infrastructure. Instead, we argue that risk-644 

based approaches like the one forwarded in this work and advocated elsewhere (Read and Vogel 645 

2015) provides an intuitive approach that is well-suited for a future in which risk is highly 646 

uncertain and dynamic. We recognize that the legacy of return period event-based design is 647 

entrenched in the current state of practice for hydrologic engineering. Therefore, as new 648 

methodologies emerge to support risk-based approaches, we argue that equal or more effort is 649 
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needed to advocate for their use in practice, including the introduction of such alternative 650 

approaches in undergraduate and graduate school curricula. 651 

 652 

Data Availability Statement  653 

The data and code for the analysis in this study is available at: 654 

https://doi.org/10.5281/zenodo.8393390 655 
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