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Key Points (3) 9 

• A flexible, CO2-driven parameterization of foliar C:N in the Community Land Model 10 

produced a 2-fold reduction in the projected land C sink.  11 

• The flexible foliar C:N parameterization also had large effects on the hydrologic cycle, 12 

reducing evapotranspiration and increasing runoff. 13 

• N cycling rates were reduced under the flexible C:N scenario but highlight the need for 14 

additional research on modeled plant-soil feedbacks.   15 
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Abstract  24 

Increased plant growth under elevated CO2 slows the pace of climate warming and underlies 25 

projections of terrestrial carbon (C) and climate dynamics. However, this important ecosystem 26 

service may be diminished by concurrent changes to vegetation carbon to nitrogen (C:N) ratios. 27 

Despite clear observational evidence of increasing foliar C:N under elevated CO2 , our 28 

understanding of potential ecological consequences of foliar stoichiometric flexibility is 29 

incomplete. Here, we show that incorporating CO2-driven foliar stoichiometry into the 30 

Community Land Model reduced the projected land C sink two-fold by the end of the century 31 

compared to simulations with fixed foliar chemistry. Further, flexible foliar C:N profoundly 32 

altered Earth’s hydrologic cycle, reducing evapotranspiration and increasing runoff. 33 

Belowground N cycling rates were reduced in the flexible scenario, highlighting the urgency of 34 

further research examining both the direct and indirect effects of changing foliar stoichiometry 35 

on soil N cycling and plant productivity. 36 

 37 

Plain Language Summary 38 

As atmospheric carbon dioxide (CO2) increases plant growth also increases, which could offset 39 

some of the impacts of climate change. However, higher CO2 dilutes leaf nutrient concentrations, 40 

which could ultimately limit plant growth as CO2 continues to rise. The change in leaf chemistry 41 

in response to rising CO2 is not currently represented in models used to predict future 42 

productivity and the land carbon sink. We produced a new representation of leaf chemistry in the 43 

Community Land Model to examine potential effects of shifting leaf chemistry on future 44 

vegetation growth and global C, nutrient, and hydrologic cycles. We found that our new model 45 

simulation reduced the strength of the land C sink 2-fold compared to simulations where foliar 46 
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chemistry does not change in response to atmospheric CO2. The reduction in plant growth also 47 

produced large hydrologic changes, including reduced global evapotranspiration and increased 48 

runoff. Nitrogen cycling rates were reduced in the flexible simulation but highlighted a gap in 49 

our understanding of aboveground-belowground feedbacks that warrants further research. Thus, 50 

the ways we represent foliar chemistry in models are important for understanding the future 51 

conditions of the planet and our capacity to respond to climate change.   52 

 53 

1 Introduction 54 

Terrestrial ecosystems provide myriad ecosystem services, including a sink for ~30% of historic 55 

anthropogenic carbon dioxide (CO2) emissions (Friedlingstein et al., 2022; Costanza et al., 56 

1997). Despite the important role of terrestrial ecosystems in reducing the atmospheric CO2 57 

burden, considerable uncertainty remains about the persistence of this C sink under climate 58 

change (Friedlingstein et al., 2022; Arora et al., 2020). Even over the historical record (when 59 

observational data are available), land models show significant uncertainty in the magnitude of 60 

the terrestrial carbon (C) sink, and especially the role of the CO2 fertilization effect (O’Sullivan 61 

et al., 2022). Therefore, considerable attention has been given to calibrating model parameters 62 

that may reduce uncertainty in terrestrial C cycle projections (Dagon et al., 2020; Friend et al., 63 

2007; Smallman et al., 2021). These efforts often reduce the spread in model results, but they 64 

also omit other important sources of uncertainty, notably model structural uncertainty related to 65 

the representation of some important ecological processes and biotic feedbacks that may regulate 66 

the integrated Earth system response to climate change under elevated CO2.   67 

  68 
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Uncertainty surrounding the representation of ecological process in land models originates from 69 

both an incomplete understanding of ecological processes and feedbacks themselves, as well as 70 

how to mathematically integrate those processes into models (Bonan & Doney, 2018; Bradford 71 

et al., 2016; O’Neill & Melnikov, 2008). Both factors contribute to model structural uncertainty 72 

that often leads to different outcomes when multiple models attempt to simulate the same 73 

phenomena. Large structural uncertainty related to the representation of nitrogen (N) cycling, 74 

soil biogeochemistry, and photosynthesis, for example, highlight the importance of considering 75 

ecological processes in land models with the goal of more accurately simulating biogeochemical 76 

and biophysical dynamics in response to climate change (Bradford et al., 2016; Meyerholt et al., 77 

2020; Wieder et al., 2015). Moreover, integrating new data and insights into global-scale models 78 

can reveal outstanding gaps in our mechanistic understanding of Earth systems. Indeed, much of 79 

the uncertainty in quantifying Earth’s terrestrial C sink originates from model structural 80 

uncertainty (Bonan & Doney, 2018), necessitating extensive interdisciplinary research 81 

examining ecosystem responses to climate change and increasing CO2.  82 

 83 

Rising atmospheric CO2 creates multiple ecosystem feedbacks that may interact to regulate long-84 

term CO2 fertilization effects, but a better understanding of those feedbacks is needed to improve 85 

predictions of the terrestrial C sink. Widely reported plant physiological responses to elevated 86 

CO2 include decreases in stomatal conductance, increases in leaf mass per area, and 87 

downregulated photosynthesis over time, which are associated with feedbacks on ecosystems and 88 

climate (Ellsworth et al., 2004; Kovenock et al., 2021; Medlyn et al., 2015, Sellers et al., 1996; 89 

Zarakas et al., 2020). One especially important ecological response to elevated CO2 is a well-90 

documented shift in foliar stoichiometry, the ratios of C-to-nutrients in leaf tissues (Mason et al., 91 
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2022; Myers et al., 2014; Penuelas et al., 2020). Foliar C:N ratios increase under elevated CO2 in 92 

both field and manipulation experiments (Du et al., 2019; Penuelas et al., 2020; Wang et al., 93 

2021). This direct stoichiometric response is likely due to a combination of processes, including 94 

nutrient dilution in leaves with enhanced C uptake, reduced N uptake by vegetation, and reduced 95 

soil N availability (Dong et al., 2022; Gojon et al., 2022; Mason et al., 2020). Flexible foliar 96 

stoichiometry (i.e. ranges of foliar C:N values at which vegetation can still grow) may allow 97 

sustained productivity with CO2 fertilization even as nutrients become increasingly scarce (Dong 98 

et al., 2022; Dynarski et al., 2022; Meyerholt et al., 2020). However, declines in foliar and litter 99 

N may directly reduce photosynthetic rates (Ellsworth et al., 2004) as well as produce indirect 100 

negative feedbacks on plant production via reduced rates of decomposition and nutrient 101 

mineralization that could dampen global terrestrial C storage over time (Liang et al., 2016; Luo 102 

et al., 2004). Thus, the relationship between foliar C:N and atmospheric CO2 concentration may 103 

strongly influence the ability of terrestrial ecosystems to act as a global C sink.   104 

 105 

While models demonstrate high sensitivity to foliar C:N (Dagon et al., 2020; Fisher et al., 2019), 106 

the rate and magnitude of foliar C:N change with increasing CO2 is unclear. This represents an 107 

important source of model structural uncertainty that limits our understanding of terrestrial 108 

biogeochemical cycles. While much of this uncertainty reflects a paucity of empirical 109 

information about the ways vegetation will respond to elevated CO2, it is compounded by the 110 

fact that models represent foliar stoichiometry in different ways. For example, many models hold 111 

foliar C:N at fixed values that are specific to plant functional types (Goll et al., 2017; 112 

Huntingford et al., 2022), despite evidence that foliar C:N changes over time with increasing 113 

CO2  (Du et al., 2019; Wang et al., 2021). Changes in flexible foliar stoichiometry in response to 114 
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simulated variations in N deposition and variations in vegetation C for N tradeoffs have been 115 

applied in some models (Lawrence et al., 2019; Meyerholt et al., 2020; Meyerholt & Zaehle, 116 

2015; Zhu et al., 2020), but none have parameterized a global scale increase in foliar C:N over 117 

time in response to rising CO2 that reflects observed, directional stoichiometric changes. This 118 

leaves a critical gap in our understanding of the ways the land C sink will respond to elevated 119 

CO2. 120 

 121 

Here, we conducted a modeling experiment in which we used empirical data describing changes 122 

in foliar C:N under elevated atmospheric CO2 to parameterize foliar C:N as a function of 123 

atmospheric CO2 in the Community Land Model, version 5 (CLM5; Lawrence et al., 2019). We 124 

used this parameterization to explore model sensitivity to fixed versus flexible foliar 125 

stoichiometry in response to elevated CO2. We ran both flexible and fixed foliar C:N simulations 126 

through the year 2100 to quantify the potential effects of changing leaf stoichiometry on global 127 

C, N, hydrologic, and energy cycles. Thus, we illuminate the role of foliar chemistry in driving 128 

large-scale ecological responses to elevated CO2.  129 

 130 

2 Methods and data 131 

2.1 Development of Community Land Model simulations  132 

To explore the effects of flexible foliar stoichiometry on modeled C, N, and water cycling, we 133 

synthesized data from Free Air Carbon Enrichment (FACE) studies and datasets available on the 134 

Long Term Ecological Research database to quantify the degree of change to foliar C:N under 135 

elevated CO2 (See Supporting Information Text S1 and Table S1; Du et al., 2019; Munger & 136 

Wofsy, 2022; Sardans et al., 2012; Wang et al., 2021; Welti, 2021; Yang et al., 2011; Yue et al., 137 
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2017; Zou et al., 2020). Our analysis revealed that foliar C:N is ~20% higher under elevated CO2 138 

treatments compared to ambient CO2 treatments and that foliar C:N is increasing under elevated 139 

CO2 over time. We used this knowledge to inform a new parameterization of foliar C:N that we 140 

implemented into the Community Land Model (CLM, Lawrence et al., 2019). Our new equation 141 

represents the change to foliar C:N per ppm atmospheric CO2 increase:  142 

 143 

CNnow = CNPFT + max(0, CNslope*log(CO2_now/ CO2_base))                           eqn. 1 144 

 145 

where CNnow represents foliar C:N at any given point in the model run. CNPFT is the default 146 

parameter foliar C:N values for each plant functional type used in CLM5 (Lawrence et al., 2019). 147 

CNslope is the slope of the linear relationship between foliar C:N and atmospheric CO2 148 

concentration, and our simulations used values of 20 and 0 for flexible C:N and fixed C:N 149 

simulations, respectively. CO2_now represents the atmospheric CO2 concentration at any given 150 

point in time. Finally, CO2_base is a baseline CO2 concentration when leaf C:N ratios start 151 

responding to elevated CO2; here, we used 310 ppm CO2, which occurred in year 1936 in our 152 

simulations. The global effect of our parameterization on changes in foliar stoichiometry is 153 

illustrated in Supporting Information Fig. S1. We acknowledge that there is significant 154 

uncertainty in some of these parameters, but values used here were chosen to provide ranges of 155 

foliar stoichiometry in the flexible C:N simulation over the entire 20th and 21st centuries that 156 

remained within realistic ranges based on our data syntheses. Further, prescribing changes in 157 

foliar stoichiometry based on empirical data alone may produce ecological changes that could be 158 

better represented by altering additional model structures alongside our new parameterization. 159 

However, identifying all possible feedbacks that may result from increasing foliar C:N and 160 

changing additional model structures was beyond the scope of this work.  161 
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 162 

We implemented eqn. 1 into CLM5 and ran the model offline with land only, GSWP3 data 163 

atmosphere forcing from 1850-2014 following standard protocols (Lawrence et al., 2019; Wieder 164 

et al., 2019). We subsequently ran future projections from 2015-2100 by cycling over the 165 

GSWP3 input data (2000-2014) and applying a climate change anomaly forcing to atmospheric 166 

fields that were derived from the Community Earth System Model 2 (CESM2; Danabasoglu et 167 

al., 2020) under the SSP3-7.0 scenario (a business as usual, moderate to high emissions 168 

scenario). Land use change, land cover change, atmospheric CO2 concentration, nitrogen 169 

deposition, and all other forcings followed the CMIP6 protocols as applied in CESM2 and 170 

CLM5 simulations (Lawrence et al., 2019; Danabasoglu et al., 2020). The use of the anomaly 171 

forcing ensures a smooth transition from historical to future climate for land-only simulations 172 

and offers a method to isolate potential terrestrial responses to projected climate change (see also 173 

Wieder et al., 2015a).  174 

 175 

We compared our newly parameterized flexible stoichiometry simulation to a simulation run 176 

under the same conditions but with foliar C:N values set to fixed values specific to each plant 177 

functional type (PFT). These values remained constant over the course of the simulation in the 178 

fixed scenario, but increased over time in the flexible scenario (Supplementary Information Fig. 179 

S1). We ran both simulations through the year 2100 to project possible changes to the global C, 180 

N and hydrologic cycles in response to the CO2 driven foliar C:N parameterization. 181 

 182 

2.2 Contextualization with CMIP6 and GCP data 183 
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To contextualize our findings, we compared CLM simulation results with estimates of the net 184 

land C sink from two additional data products. First, we used an observationally derived dataset 185 

from the Global Carbon Project (GCP) that spans the years 1960 through 2015 (Le Quéré et al., 186 

2015). More recent iterations of the GCP use land models, including CLM, to estimate the 187 

historical terrestrial C sink (Friedlingstein et al., 2022). Data from Le Quéré et al. (2015), 188 

however, use a bookkeeping method to estimate land C uptake as the difference between CO2 189 

emissions estimates and the sum of atmospheric and ocean inventories. Accordingly, the CGP 190 

data are intended to provide an observationally based constraint for the magnitude of the 191 

historical land C sink and its associated uncertainty that we can compare with our fixed and 192 

flexible simulations (as in Lawrence et al. (2019)). Second, we compared our results to an 11-193 

member ensemble of Coupled Model Intercomparison Project (CMIP6) simulations conducted 194 

under historical and SSP3-7.0 scenarios that are available on the CMIP6 data portal (https://esgf-195 

node.llnl.gov/search/cmip6/). Briefly, monthly grid cell net biome production fluxes were 196 

summed to calculate annual fluxes and weighted by model specific grid cell area and land 197 

fraction fields and summed to calculate global totals. We acknowledge that our CMIP6 ensemble 198 

includes results from CESM2, which includes the fixed stoichiometry results presented here, but 199 

from fully coupled simulations. The CMIP6 results provide uncertainty estimates from a multi-200 

model ensemble in anticipated ranges of the potential terrestrial C sink under the SPP3-70 201 

scenario.  202 

 203 

2.3 Statistical analyses 204 

After running the simulations, we analyzed the data using the Xarray (Hoyer & Hamman, 2017) 205 

and Matplotlib (Hunter, 2007) packages in Python version 3.9.7 that was run in a Jupyter 206 
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notebook. We examined spatial and temporal changes in GPP, NPP, LAI, N mineralization, N 207 

fixation, cumulative land C uptake, ecosystem respiration, evapotranspiration, and runoff to 208 

quantify biogeochemical and biophysical effects of flexible and fixed foliar stoichiometry on 209 

land processes. 210 

 211 

3 Results and Discussion 212 

Implementing flexible foliar stoichiometry reduced the global terrestrial C sink more than two-213 

fold (179 Pg C) relative to the fixed scenario by the end of the 21st century, from 317 Pg to 138 214 

Pg C (Fig. 1a). For context, by 2100, the difference in the cumulative land C sink between the 215 

two scenarios is equivalent to an 84-ppm change in atmospheric CO2 (Ballantyne et al., 2012), 216 

comparable to the increase in atmospheric CO2 observed over the past 45 years (Keeling et al., 217 

2001). The land C sink is not uniformly distributed across the globe (Supplementary Information 218 

Fig. 2Sb), and reductions in the land C sink in the flexible scenario were also unevenly 219 

distributed. For example, tropical and boreal forests showed the largest declines in cumulative 220 

land C uptake (Fig. 1b). Under the flexible scenario, terrestrial ecosystems remained a net C sink 221 

through the end of the century, largely due to consistently high tropical C uptake, although some 222 

boreal regions became a C source by 2100 (Supplementary information Fig. 2Sc). On an annual 223 

basis, the global rate of land C uptake was reduced by 22.4 Pg C yr-1 in the flexible scenario, 224 

suggesting a weakening of the land C sink when foliar C:N responded to rising CO2 225 

(Supplementary information Fig. 2Sa). Thus, stoichiometric flexibility in Earth’s ecosystems 226 

may be a strong determinant of the future strength of the global terrestrial C sink.  227 

 228 
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 229 
 230 

Figure 1. The land C sink is reduced 2-fold in a scenario with flexible foliar C:N (FLEX) compared to a 231 

scenario with fixed foliar C:N (FIXED). (a) Cumulative land C uptake from 1960 to 2100 for FIXED and 232 

FLEX compared to observation-based estimates of the global land C sink from the Global Carbon Project 233 

(GCP, black with grey shading) and the average of 11 models from the Coupled Model Intercomparison 234 

Project (CMIP6, purple line and shading) (b) Spatial difference in land C uptake generated by the FIXED 235 

and FLEX scenarios averaged over the last 10 years of the simulation (2091-2100, calculated as FLEX – 236 

FIXED).  237 

 238 

Results generated in both the fixed and flexible scenarios were within the confidence intervals of 239 

observationally derived cumulative land C uptake values generated by the Global Carbon Project 240 

(GCP; Fig 1a, black line, Le Quéré et al., 2015), as well as results generated by 11 models from 241 

the sixth phase of the Coupled Model Intercomparison Project (CMIP6, Fig. 1a, purple line). 242 

Similarities between the models and GCP observations suggest that both fixed and flexible 243 

CLM5 simulations represent plausible land C sinks over the historical record. However, the 244 

future trajectory will depend on ecological processes that remain poorly understood and have not 245 

been fully incorporated into models. Nevertheless, our findings are comparable to other 246 
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simulated reductions in land C uptake due to future N and P constraints (240 Pg C; Wieder et al., 247 

2015b). Collectively, these findings suggest that the future global C sink will likely be smaller 248 

than current model projections, but accurately characterizing the extent of future land C uptake 249 

requires a more complete understanding of ecological responses to rising CO2 and improved 250 

model structures that represent those processes.   251 

 252 

The reduced strength of the terrestrial C sink in the flexible scenario was a direct result of 253 

reduced plant photosynthetic capacity with increasing foliar C:N. Gross primary production 254 

(GPP), net primary production (NPP), leaf area index (LAI), and heterotrophic respiration all 255 

declined in the flexible scenario relative to the fixed scenario (Fig. 2, Supplementary Information 256 

Figs. S3 & S4). These findings are consistent with previous results showing a dampening of CO2 257 

fertilization effects on photosynthesis over time (Wang et al., 2020). In our study, reductions in 258 

NPP occurred globally but were strongest in tropical and boreal forest regions. The decline in 259 

NPP stemmed directly from the fact that foliar N concentrations determine leaf-level 260 

photosynthetic rates, as seen in observations (Reich et al., 1997) and as implemented in CLM 261 

(Lawrence et al., 2019; Ali et al., 2016). In the flexible scenario, reductions in leaf-level 262 

photosynthesis rates were compounded by canopy-scale feedbacks from concurrent reductions in 263 

LAI. Thus, our simulations revealed that foliar chemistry strongly influenced leaf- and canopy-264 

level photosynthetic activity, which directly governs the magnitude of the terrestrial C sink and 265 

the uncertainty surrounding it.  266 
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 267 
 268 

Figure 2. Simulations with flexible foliar C:N (FLEX) produced lower rates of net primary productivity 269 

(NPP) and heterotrophic respiration (HR) than scenarios where foliar C:N is held constant (FIXED). (a) 270 

NPP over the course of each simulation run. (b) Spatial distribution of NPP averaged over the last 10 271 

years of the FIXED control scenario (2091 – 2100). (c) Spatial distribution of the differences between the 272 

FIXED and FLEX scenario over the last 10 years of the simulation. (d) Change in HR in the two 273 

scenarios over time. (e) HR in the control (FIXED) scenario in the last 10 years of the simulation. (f) Map 274 

of spatial differences in HR between the FIXED and FLEX scenario over the last 10 years of the 275 

simulation. C and F are calculated as FLEX - FIXED. Both HR and NPP are reduced in the flexible C:N 276 

scenario.  277 

 278 

In addition to changes in C cycling, we observed strong effects of flexible stoichiometry on 279 

hydrologic cycling. In the flexible simulation, global runoff increased by 38 mm yr-1 by the end 280 

of the century, while global evapotranspiration (ET) declined by the same amount relative to the 281 

fixed stoichiometry simulation (Fig. 3, Supplemental Information Fig. S5). The hydrologic 282 
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perturbations were especially strong in tropical regions and mirrored declines in GPP, LAI, and 283 

plant water use efficiency in the flexible scenario compared to the fixed scenario (compare 284 

Supplemental Information Figs. S3-S5). Thus, beyond the biogeochemical changes stemming 285 

from reduced photosynthetic capacity with flexible stoichiometry, the observed plant 286 

physiological responses also catalyzed ecohydrological changes that would modify terrestrial 287 

climate feedbacks in coupled simulations with an interactive model atmosphere (Langenbrunner 288 

et al., 2019; Zarakas et al., 2020). For example, lower rates of evapotranspiration would likely 289 

reduce surface humidity and evaporative cooling, thereby warming local temperatures, reducing 290 

cloud cover, altering boundary-layer dynamics, and changing regional precipitation (Cui et al., 291 

2022; Lemordant et al., 2018). Future work should consider the potential magnitude of these 292 

biophysical effects in fully coupled simulations. However, our findings highlight how nutrient 293 

feedbacks can moderate both C and water cycles in terrestrial ecosystems and underscore the 294 

importance of considering integrated Earth system responses to improve our ability to predict 295 

future biogeochemical and climate dynamics.  296 

 297 
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 298 
 299 

 300 

Figure 3. In a model scenario with flexible foliar C:N (FLEX), global evapotranspiration (ET) decreased 301 

and global runoff increased compared to a scenario with fixed foliar C:N (FIXED). (a) Change in ET 302 

between present day and the year 2100 in the FLEX and fixed foliar C:N (FIXED) scenarios averaged 303 

across latitudes. (b) Changes in runoff between present day and the year 2100 in the FLEX and FIXED 304 

scenarios averaged across latitudes. Grey shading highlights that the largest changes to ET and runoff are 305 

in the tropics.  306 

 307 

More accurately predicting the effects of changing ecosystem stoichiometry on C and hydrologic 308 

cycles will require at least two important advances: First, a more complete understanding 309 
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surrounding of the ecological drivers and effects of stoichiometric flexibility; and second, 310 

improved model structures that accurately represent those ecological processes. Our empirical 311 

understanding of the consequences of stoichiometric flexibility is still poor, but our results 312 

provide compelling evidence of its importance. Moreover, the large declines in C storage we 313 

observed in the flexible scenario most strongly reflect the direct effects of declining plant 314 

productivity as foliar C:N ratios increase. This is consistent with the downregulation of 315 

photosynthesis under elevated CO2 commonly observed in longer-term studies (Ellsworth et al, 316 

2004) as vegetation optimizes photosynthetic processes to cope with reduced plant N. However, 317 

concurrent declines in litter quality (Supplemental Information Fig. S1d-f) are also known to 318 

reduce decomposition and N mineralization rates, which could further suppress plant production 319 

indirectly via enhanced N limitation (Supplemental information Fig. S6; Craine et al., 2018; Luo 320 

et al., 2004; Mason et al., 2022).   321 

 322 

Our experimental design did not allow for direct quantification of indirect biogeochemical 323 

effects because soil organic matter stocks in CLM – which also have fixed stoichiometry – are 324 

much larger than litter pools and provide the bulk of mineral N required plant growth in the 325 

model. Future empirical work should evaluate this assumption by quantifying indirect effects of 326 

plant-soil feedbacks on ecosystem responses to elevated CO2. Given theoretical expectations that 327 

changes in plant stoichiometry should elicit strong indirect effects on ecosystem responses to 328 

elevated CO2 (Liang et al., 2016; Mason et al., 2022), the overall declines in C and water cycling 329 

we observed under the flexible foliar C:N scenario may be conservative. Therefore, future 330 

studies exploring the indirect effects of shifting foliar C:N and potential feedbacks on plant 331 
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productivity are critical for more accurately predicting the land C sink as atmospheric CO2 332 

concentrations continue to rise. 333 

 334 

As our understanding of the effects of stoichiometric flexibility improves, model structures will 335 

need to be modified. No model includes all possible ecological processes and feedbacks, creating 336 

opportunities for additional structural improvement. Such advances would reduce model 337 

structural uncertainty, a key step toward improving our ability to realistically predict the ways 338 

ecosystems will function in the future. Structural uncertainty analyses reveal areas where models 339 

may be able to predict historic patterns, but in ways that are not necessarily consistent with 340 

underlying ecological processes (i.e. we might be getting the right answer but for the wrong 341 

reason; Bonan & Doney 2018; Dietze et al., 2018; Medlyn et al., 2015). As an example, both of 342 

our simulations capture the magnitude of the historic land C sink but show large divergence in 343 

their future projections (Fig 1a). Further, another recent study implementing three different 344 

model structures to represent vegetation stoichiometry produced a larger land C sink with 345 

flexible plant tissue C:N relative to control scenarios with fixed C:N values, the opposite of our 346 

observed trends (Zhu et al., 2020). Together, these findings highlight that model structures that 347 

recreate observed patterns without fully representing underlying ecological processes limit the 348 

predictive capacity of models to accurately simulate appropriate ecosystem responses to global 349 

change (Dietze et al., 2018; Medlyn et al., 2015). The link between pattern and process can be 350 

strengthened by integrating modeling and empirical disciplines because model fidelity to 351 

ecological processes hinges on our ability to translate ecological knowledge into mathematical 352 

equations (Bonan & Doney 2018; Bradford et al., 2016; Kyker-Snowman et al., 2022). 353 

Integrating results from manipulative experiments, especially long-term elevated CO2 studies, 354 
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with model future scenarios examining the indirect effects of foliar and litter stoichiometry 355 

(Kyker-Snowman et al., 2022; Wieder et al., 2019) will help reduce model structural uncertainty 356 

that underlies the numerous and divergent predictions of the terrestrial C sink. While there are 357 

other model structural changes that likely need to follow from our change to foliar C:N, we 358 

present this parameterization of foliar chemistry as a first step toward addressing our growing 359 

understanding of the ways ecosystems are changing under elevated CO2.   360 

 361 

Our results indicate that increases in foliar C:N could have important and far-reaching effects on 362 

biogeochemical cycles, ecosystems, and climate, and could therefore have profound implications 363 

for human societies. We show that feedbacks between CO2 and foliar stoichiometry could greatly 364 

reduce the strength of the global terrestrial C sink. If so, more rapid increases in atmospheric 365 

CO2 could accelerate the pace of climate change, exacerbate climate hazards, food and water 366 

security risks, biodiversity loss, among other adverse consequences (Pörtner et al., 2022). 367 

Further, water security is central to climate change adaptation and mitigation (Caretta et al., 368 

2022). Our results suggest strong perturbations to the global hydrologic cycle due to changes to 369 

foliar stoichiometry, which is likely to alter global water distributions and the ability of 370 

communities to adapt to change.  371 

 372 

4 Conclusion 373 

The actual response of Earth’s terrestrial ecosystems to ongoing increases in atmosphere CO2 374 

concentrations will be complex, as indicated by the numerous model structures and conflicting 375 

results presented by our study and others (Friedlingstein et al. 2022; Kovenock et al., 2021; Zhu 376 

et al., 2020). Rising CO2 has already created a cascade of feedbacks in Earth’s terrestrial 377 
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ecosystems, including enhanced plant production, reduced N availability, changes in plant water 378 

use efficiency, declines in food quality, and altered trophic interactions (Friedlingstein et al., 379 

2022, Lincoln et al., 1993, Mason et al., 2022; Myers et al., 2014; Wang & Feng, 2012). Our 380 

study introduces a new, CO2 driven parameterization of foliar chemistry into CLM to attempt to 381 

explore global ecosystem responses to observed stoichiometric patterns. However, parallel 382 

empirical and experimental efforts – including modified model structures informed from those 383 

efforts – are critically needed to predict the effects of changing stoichiometry more accurately. 384 

Estimating the future of Earth’s terrestrial C sink will undoubtedly include some uncertainty but 385 

integrating new empirical and modeling and efforts will increase our confidence in the validity of 386 

those predictions.  387 
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