References
Arora, N., Schuenemann, V. J., Jäger, G., Peltzer, A., Seitz, A., Herbig, A., … Bagheri, H.C. (2016). Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol, 2, 16245. https://doi.org/10.5167/uzh-134132
Avril, A., Léonard, Y., Letty, J., Péroux, R., Guitton, J.- S., & Pontier, D. (2011). Natal dispersal of European hare in a high-density population. Mamm Biol, 76, 148–156. https://doi.org/10.1016/j.mambio.2010.07.001
Beale, M. A., Marks, M., Cole, M. J., Lee, M.- K., Pitt, R., Ruis, … Thomson, N.R. (2021). Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol, 6, 1549–1560. https://doi.org/10.1038/s41564-021-01000-z
Canu, A., Scandura, M., Luchetti, S., Cossu, A., Iacolina, L., Bazzanti, M., & Apollonio, M. (2013). Influence of management regime and population history on genetic diversity and population structure of brown hares (Lepus europaeus ) in an Italian province. Eur J Wildlife Res, 59, 783–793. https://doi.org/10.1007/s10344-013-0731-x
Castillo-Lizardo, M., Henneke, G., & Viguera, E. (2014). Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi . Front Microbiol, 5, 403. https://doi.org/10.3389/fmicb.2014.00403
Čejková, D., M. Zobaníková, L. Chen, P. Pospíšilová, M. Strouhal, X. Qin, L. Mikalová, S.J. Norris, D.M. Muzny, R.A. Gibbs, L.L. Fulton, E. Sodergren, G.M. Weinstock, and D. Šmajs, 2012: Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. Plos Neglect Trop D 6, e1471, https://doi.org/10.1371/journal.pntd.0001471
Chambers, L. C., Srinivasan, S., Lukehart, S. A., Ocbamichael, N., Morgan, J. L., Lowens, M. S., … Manhart, L. E. (2018). Primary Syphilis in the Male Urethra: A Case Report. Clin Infect Dis, 68, 1231–1234. https://doi.org/10.1093/cid/ciy771
Chuma, I. S., Batamuzi, E. K., Collins, D. A., Fyumagwa, R. D., Hallmaier-Wacker, L. K., Kazwala, R. R., … Knauf, S. (2018). Widespread Treponema pallidum Infection in Nonhuman Primates, Tanzania. Emerg Infect Dis, 24,1002–1009. https://doi.org/10.3201/eid2406.180037
Chuma, I. S., Roos, C., Atickem, A., Bohm, T., Collins, D. A., Grillová, L., … Knauf, S. (2019). Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep, 9, 14243. https://doi.org/10.1038/s41598-019-50779-9
Deitsch, K. W., Lukehart, S. A., & Stringer, J. R. (2009). Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol, 7, 493–503. https://doi.org/10.1038/nrmicro2145
Gao, F., Chen, C., Arab, D. A., Du, Z., He, Y., & Ho, S. Y. W. (2019). EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol Evol, 9, 3891–3898. https://doi.org/10.1002/ece3.5015
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statist Sci, 7, 457-472. https://doi.org/10.1214/ss/1177011136
Gogarten, J. F., Düx, A., Mubemba, B., Pléh, K., Hoffmann, C., Mielke, A., … Leendertz, F. H. (2019). Tropical rainforest flies carrying pathogens form stable associations with social nonhuman primates. Mol Ecol, 28, 4242–4258. https://doi.org/10.1111/mec.15145
Grillova, L., K. Jolley, D. Šmajs, and M. Picardeau, 2019: A public database for the new MLST scheme for Treponema pallidum subsp.pallidum  : surveillance and epidemiology of the causative agent of syphilis. PeerJ 6, e6182, https://doi.org/10.7717/peerj.6182.
Hisgen, L., Abel, L., Hallmaier-Wacker, L., Lüert, S., Lavazza, A., Trogu, T., … Knauf, S. (2021). The distribution of lagomorph syphilis caused by Treponema paraluisleporidarum in Europe. Eur J Wildlife Res, 67, 92. https://doi.org/10.1007/s10344-021-01535-w
Hisgen, L., Abel, L., Hallmaier‐Wacker, L. K., Lueert, S., Siebert, U., Faehndrich, M., … Knauf, S. (2020). High syphilis seropositivity in European brown hares (Lepus europaeus ), Lower Saxony, Germany. Transbound Emerg Dis, 67, 2240–2244. https://doi.org/10.1111/tbed.13551
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol, 35, 518–522. https://doi.org/10.1093/molbev/msx281
Houinei, W., Godornes, C., Kapa, A., Knauf, S., Mooring, E. Q., González-Beiras, C., … Mitjá, O. (2017). Haemophilus ducreyi DNA is detectable on the skin of asymptomatic children, flies and fomites in villages of Papua New Guinea. Plos Negl Trop Dis, 11, e0004958. https://doi.org/10.1371/journal.pntd.0004958
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
Knauf, S., Gogarten, J. F., Schuenemann, V. J., Nys, H. M. D., Düx, A., Strouhal, M., … Calvignac-Spencer, S. (2018). Nonhuman primates across sub-Saharan Africa are infected with the yaws bacteriumTreponema pallidum subsp. pertenue . Emerg Microbes Infec, 7, 157. https://doi.org/10.1038/s41426-018-0156-4
Knauf, S., Raphael, J., Mitjà, O., Lejora, I. A. V., Chuma, I. S., Batamuzi, E. K., … Lukehart, S. A. (2016). Isolation ofTreponema DNA from Necrophagous Flies in a Natural Ecosystem. EBioMedicine, 11, 85–90. https://doi.org/10.1016/j.ebiom.2016.07.033
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
Lavazza, A., Cavadini, P., Barbieri, I., Tizzani, P., Pinheiro, A., Abrantes, J., … Capucci, L. (2015). Field and experimental data indicate that the eastern cottontail (Sylvilagus floridanus ) is susceptible to infection with European brown hare syndrome (EBHS) virus and not with rabbit haemorrhagic disease (RHD) virus. Vet Res, 46, 13. https://doi.org/10.1186/s13567-015-0149-4
Lukehart, S. A. (2008). Biology of Treponemes. In: Holmes, K. K., Sparling, P. F., Stamm, W. E., Piot, P., Wasserheit, J. N., Corey, L., … Watts, D. H. (Eds), Sexually Transmitted Diseases (pp. 647–659). New York: Mc Graw Hill Medical.
Lukehart, S. A., & Marra, C. M. (2007). Isolation and Laboratory Maintenance of Treponema pallidum . Curr Protoc Microbiol, 7, 12A.1.1-12A.1.18. https://doi.org/10.1002/9780471729259.mc12a01s7
Maděránková, D., Mikalová, L., Strouhal, M., Vadják, Š., Kuklová, I., Pospíšilová, P., … Šmajs, D. (2019). Identification of positively selected genes in human pathogenic treponemes: syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. Plos Neglect Trop Dis, 13, e0007463. https://doi.org/10.1371/journal.pntd.0007463
Majander, K., Pfrengle, S., Kocher, A., Neukamm, J., du Plessis, L., Pla-Díaz, M., … Schuenemann, V. J. (2020). Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Curr Biol, 30, 3788-3803.e10. https://doi.org/10.1016/j.cub.2020.07.058
Marques, J. P., Farelo, L., Vilela, J., Vanderpool, D., Alves, P. C., Good, J. M., … Melo-Ferreira, J. (2017). Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci Rep-uk 7, 40788, https://doi.org/10.1038/srep40788
Marques, J. P., Ferreira, M. S., Farelo, L., Callahan, C. M., Hackländer, K., Jenny, H., … Melo-Ferreira, J. (2017). Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Sci Data 4, 170178, https://doi.org/10.1038/sdata.2017.178
Masseti, M., & Marinis, A. M. D. (2008). Prehistoric and Historic Artificial Dispersal of Lagomorphs on the Mediterranean Islands. In: Alves, P. C., Ferrand, N., & Hackländer, K. (Eds.), Lagomorph Biology: Evolution, Ecology, and Conservation (pp. 13–25). Heidelberg: Springer
Matějková, P., Flasarová, M., Zákoucká, H., Bořek, M., Křemenová, S., Arenberger, P., … Šmajs, D. (2009). Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum . J Med Microbiol, 58, 832–836. https://doi.org/10.1099/jmm.0.007542-0
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Pond, S. L. K. (2012) Detecting Individual Sites Subject to Episodic Diversifying Selection. Plos Genet, 8, e1002764. https://doi.org/10.1371/journal.pgen.1002764
Nováková, M., Najt, D., Mikalová, L., Kostková, M., Vrbová, E., Strouhal, M., … Šmajs, D. (2019). First report of hare treponematosis seroprevalence of European brown hares (Lepus europaeus ) in the Czech Republic: seroprevalence negatively correlates with altitude of sampling areas. BMC Vet Res, 15, 350. https://doi.org/10.1186/s12917-019-2086-3
Pětrošová, H., Pospíšilová, P., Strouhal, M., Čejková, D., Zobaníková, M., Mikalová, L., … Šmajs, D. (2013). Resequencing ofTreponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. Plos One, 8, e74319. https://doi.org/10.1371/journal.pone.0074319
Pierpaoli, M., Riga, F., Trocchi, V., & Randi, E. (1999). Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus ) as described by mitochondrial DNA sequencing. Mol Ecol, 8, 1805–1817. https://doi.org/10.1046/j.1365-294x.1999.00766.x
Pohjoismäki, J. L. O., Michell, C., Levänen, R., & Smith, S. (2021). The best of both worlds: Shortcutting evolution through adaptive hybridization in hares. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-329700/v1
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biol, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sánchez-García, C., Pérez, J. A., Armenteros, J. A., Gaudioso, V. R., & Tizado, E. J. (2021). Survival, spatial behaviour and resting place selection of translocated Iberian hares Lepus granatensis in Northwestern Spain. Eur J Wildl Res, 67, 22. https://doi.org/10.1007/s10344-021-01464-8
Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol, 19, 91. https://doi.org/10.1186/s13059-018-1471-8
Šmajs, D., Zobaníková, M., Strouhal, M., Čejková, D., Dugan-Rocha, S., Pospíšilová, P., … Weinstock, G. M. (2011). Complete Genome Sequence of Treponema paraluiscuniculi , Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay. Plos One, 6, e20415. https://doi.org/10.1371/journal.pone.0020415
Sokos, C., Birtsas, P., Papaspyropoulos, K. G., Giannakopoulos, A., Athanasiou, L. V., Manolakou, K., … Billinis, C. (2015). Conservation Considerations for a Management Measure: An Integrated Approach to Hare Rearing and Release. Environ Manage, 55, 19–30. https://doi.org/10.1007/s00267-014-0388-6
Strouhal, M., Šmajs, D., Matejková, P., Sodergren, E., Amin, A., Howell, J., … Weinstock, G. M. (2007). Genome differences betweenTreponema pallidum subsp. pallidum strain Nichols andT. paraluiscuniculi strain Cuniculi A. Infect Immun, 75, 5859–5866. https://doi.org/10.1128/IAI.00709-07
Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Pond, S. L. K. (2018). Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol, 35, 773–777. https://doi.org/10.1093/molbev/msx335
Zhou, Z., Alikhan, N. F., Sergeant, M. J., Luhmann, N., Vaz, C., Francisco, A. P., … Achtmann, M. (2018). GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome research, 28, 1395–1404. https://doi.org/10.1101/gr.232397.117