References
1. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027-34.
2. Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80:106221.
3. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369-95.
4. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42.
5. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089-96.
6. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183(8):4984-93.
7. Razi-Wolf Z, Freeman GJ, Galvin F, Benacerraf B, Nadler L, Reiser H. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proc Natl Acad Sci U S A. 1992;89(9):4210-4.
8. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704.
9. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813-24.
10. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191-212.
11. Dai S, Jia R, Zhang X, Fang Q, Huang LJ. The PD-1/PD-Ls pathway and autoimmune diseases. Cellular immunology. 2014;290(1):72-9.
12. Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang STJ. Alternative splice variants of the human PD-1 gene. Cellular immunology. 2005;235(2):109-16.
13. Mariotti FR, Quatrini L, Munari E, Vacca P, Moretta L. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions. Front Immunol. 2019;10:910.
14. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654-68.
15. Quatrini L, Wieduwild E, Escaliere B, Filtjens J, Chasson L, Laprie C, et al. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat Immunol. 2018;19(9):954-62.
16. Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics. 1994;23(3):704-6.
17. Mishra A, Verma MJ. Epigenetic and genetic regulation of PDCD1 gene in cancer immunology. Cancer Epigenetics for Precision Medicine. 2018:247-54.
18. Miura Y, Miyake K, Yamashita Y, Shimazu R, Copeland NG, Gilbert DJ, et al. Molecular cloning of a human RP105 homologue and chromosomal localization of the mouse and human RP105 genes (Ly64 and LY64). Genomics. 1996;38(3):299-304.
19. Bally AP, Austin JW, Boss JMJ. Genetic and epigenetic regulation of PD-1 expression. The Journal of Immunology. 2016;196(6):2431-7.
20. Jelinek T, Mihalyova J, Kascak M, Duras J, Hajek R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology. 2017;152(3):357-71.
21. Xiao G, Deng A, Liu H, Ge G, Liu XJ. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proceedings of the National Academy of Sciences. 2012;109(38):15419-24.
22. Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008;181(4):2513-21.
23. Thompson CB, Allison JP. The emerging role of CTLA-4 as an immune attenuator. Immunity. 1997;7(4):445-50.
24. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541-7.
25. Fife BT, Bluestone JAJ. Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways. Immunological reviews. 2008;224(1):166-82.
26. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166-82.
27. Fuller MJ, Callendret B, Zhu B, Freeman GJ, Hasselschwert DL, Satterfield W, et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A. 2013;110(37):15001-6.
28. Dotti G. Blocking PD-1 in cancer immunotherapy. Blood. 2009;114(8):1457-8.
29. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17(2):133-44.
30. Malyshkina A, Littwitz-Salomon E, Sutter K, Ross JA, Paschen A, Windmann S, et al. Chronic retroviral infection of mice promotes tumor development, but CD137 agonist therapy restores effective tumor immune surveillance. Cancer Immunol Immunother. 2019;68(3):479-88.
31. Robert C, Soria JC, Eggermont AM. Drug of the year: programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies. Eur J Cancer. 2013;49(14):2968-71.
32. McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev. 1998;165:231-47.
33. Brown KE, Freeman GJ, Wherry EJ, Sharpe AHJ. Role of PD-1 in regulating acute infections. Current opinion in immunology. 2010;22(3):397-401.
34. Fabrizio FP, Trombetta D, Rossi A, Sparaneo A, Castellana S, Muscarella LAJ. Gene code CD274/PD-L1: from molecular basis toward cancer immunotherapy. Therapeutic advances in medical oncology. 2018;10:1758835918815598.
35. Keir ME, Butte MJ, Freeman GJ, Sharpe AHJ. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26(1):677-704.
36. HE Xh, XU Lh, Liu YJ. Identification of a novel splice variant of human PD‐L1 mRNA encoding an isoform‐lacking Igv‐like domain. Acta pharmacologica Sinica. 2005;26(4):462-8.
37. He YF, Zhang GM, Wang XH, Zhang H, Yuan Y, Li D, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol. 2004;173(8):4919-28.
38. Cha J-H, Chan L-C, Li C-W, Hsu JL, Hung M-CJ. Mechanisms controlling PD-L1 expression in cancer. Molecular cell
2019;76(3):359-70.
39. Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR. PD-L1 Expression in Lung Cancer. J Thorac Oncol. 2016;11(7):964-75.
40. Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14(1):10.
41. Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015;14(4):847-56.
42. Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):278.
43. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nature communications. 2017;8(1):1-11.
44. Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature. 2016;534(7607):402-6.
45. Shklovskaya E, Rizos H. Spatial and Temporal Changes in PD-L1 Expression in Cancer: The Role of Genetic Drivers, Tumor Microenvironment and Resistance to Therapy. Int J Mol Sci. 2020;21(19).
46. Conroy JM, Pabla S, Nesline MK, Glenn ST, Papanicolau-Sengos A, Burgher B, et al. Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):18.
47. Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber JJ. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 BlockadeHDAC Inhibition Upregulates PD-1 Ligands in Melanoma. Cancer immunology research. 2015;3(12):1375-85.
48. Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang CJ. HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti–PD-L1 therapy. Molecular Cancer Therapeutics. 2019;18(5):900-8.
49. Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;48(3):434-52.
50. Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. JNCI: journal of the National Cancer Institute. 2017;109(6).
51. Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol. 2020;11:584626.
52. Yamaguchi H, Du Y, Nakai K, Ding M, Chang S-S, Hsu JL, et al. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer. Oncogene. 2018;37(2):208-17.
53. Brody R, Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, et al. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer. 2017;112:200-15.
54. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen M-K, Hsu J-M, et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated ImmunosuppressionPARPi Upregulates PD-L1 Expression. Clinical Cancer Research. 2017;23(14):3711-20.
55. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J Cell Physiol. 2019;234(2):1313-25.
56. He X-H, Liu Y, Xu L-H, Zeng Y-YJ. Cloning and identification of two novel splice variants of human PD-L2. Acta biochimica et biophysica Sinica. 2004;36(4):284-9.
57. Philips EA, Garcia-España A, Tocheva AS, Ahearn IM, Adam KR, Pan R, et al. The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. Journal of Biological Chemistry. 2020;295(14):4372-80.
58. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TLJ. PD‐L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for VH11/VH12 and phosphatidylcholine binding. European journal of immunology. 2007;37(9):2405-10.
59. Loke Pn, Allison JPJ. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proceedings of the National Academy of Sciences. 2003;100(9):5336-41.
60. Francisco LM, Sage PT, Sharpe AHJ. The PD‐1 pathway in tolerance and autoimmunity. Immunological reviews. 2010;236(1):219-42.
61. Norton S, Zuckerman L, Urdahl K, Shefner R, Miller J, Jenkins MJ. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. The Journal of Immunology. 1992;149(5):1556-61.
62. Fusaki N, Iwamatsu A, Iwashima M, Fujisawa J-iJ. Interaction between Sam68 and Src Family Tyrosine Kinases, Fyn and Lck, in T Cell Receptor Signaling §. Journal of Biological Chemistry. 1997;272(10):6214-9.
63. Fox CJ, Hammerman PS, Thompson CBJ. Fuel feeds function: energy metabolism and the T-cell response. Nature Reviews Immunology. 2005;5(11):844-52.
64. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 2000;13(3):313-22.
65. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular cellular biology
2005;25(21):9543-53.
66. Juntilla MM, Koretzky GAJ. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunology letters. 2008;116(2):104-10.
67. Marengère LE, Waterhouse P, Duncan GS, Mittrücker H-W, Feng G-S, Mak TWJ. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272(5265):1170-3.
68. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JLJ. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. The Journal of Immunology
2004;173(2):945-54.
69. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo TJ. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences. 2001;98(24):13866-71.
70. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JLJ. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. The Journal of Immunology. 2004;173(2):945-54.
71. Riley JLJ. PD‐1 signaling in primary T cells. Immunological reviews. 2009;229(1):114-25.
72. Ulyanova T, Blasioli J, Thomas MLJ. Regulation of cell signaling by the protein tyrosine phosphatases, CD45 and SHP-1. Immunologic research. 1997;16(1):101-13.
73. Eichbaum QJ. PD-1 signaling in HIV and chronic viral infection-potential for therapeutic intervention? Current medicinal chemistry
2011;18(26):3971-80.
74. Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar H-I, Wang Q, Council A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Communications biology. 2020;3(1):1-13.
75. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VAJ. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Molecular cellular biology
2013;33(16):3091-8.
76. Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK, et al. Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. Journal of Biological Chemistry. 2003;278(33):30652-60.
77. Vazquez F, Ramaswamy S, Nakamura N, Sellers WRJ. Phosphorylation of the PTEN tail regulates protein stability and function. Molecular cellular biology
2000;20(14):5010-8.
78. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature communications. 2015;6(1):1-13.
79. Thaventhiran T, Sethu S, Yeang H, Al-Huseini L, Hamdam J, Sathish JJ. T Cell Co-inhibitory Receptors: Functions and Signalling Mechanisms. J Clin Cell Immunol S. 2012;12:1-12.
80. Polanczyk MJ, Hopke C, Vandenbark AA, Offner HJ. Estrogen‐mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD‐1 costimulatory pathway. Journal of neuroscience research. 2006;84(2):370-8.
81. Zhang J-Y, Zhang Z, Wang X, Fu J-L, Yao J, Jiao Y, et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood, The Journal of the American Society of Hematology. 2007;109(11):4671-8.
82. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proceedings of the National Academy of Sciences. 2013;110(27):E2480-E9.
83. Blackburn SD, Shin H, Freeman GJ, Wherry EJJ. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proceedings of the National Academy of Sciences. 2008;105(39):15016-21.
84. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354(6316):1160-5.
85. Jin H-T, Anderson AC, Tan WG, West EE, Ha S-J, Araki K, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proceedings of the National Academy of Sciences. 2010;107(33):14733-8.
86. Edwards J. Mechanisms of response and resistance to anti-PD-1 immunotherapy 2022.
87. Kuol N, Stojanovska L, Nurgali K, Apostolopoulos VJ. PD-1/PD-L1 in disease. Immunotherapy. 2018;10(2):149-60.
88. Nishimura H, Nose M, Hiai H, Minato N, Honjo TJ. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141-51.
89. Won TJ, Jung YJ, Kwon SJ, Lee YJ, Lee DI, Min H, et al. Forced expression of programmed death-1 gene on T cell decreased the incidence of type 1 diabetes. Arch Pharm Res. 2010;33(11):1825-33.
90. Keir ME, Butte MJ, Freeman GJ, Sharpe AHJ. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26(1):677-704.
91. He Y-F, Zhang G-M, Wang X-H, Zhang H, Yuan Y, Li D, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. The Journal of Immunology. 2004;173(8):4919-28.
92. Ansari MJI, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. The Journal of experimental medicine. 2003;198(1):63-9.
93. Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 2003;198(1):63-9.
94. Kadri N, Korpos E, Gupta S, Briet C, Löfbom L, Yagita H, et al. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes. J Immunol. 2012;188(7):3138-49.
95. Serreze DV, Chapman HD, Varnum DS, Gerling I, Leiter EH, Shultz LDJ. Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. The Journal of Immunology. 1997;158(8):3978-86.
96. Yadav D, Hill N, Yagita H, Azuma M, Sarvetnick NJ. Altered availability of PD-1/PD ligands is associated with the failure to control autoimmunity in NOD mice. Cellular immunology. 2009;258(2):161-71.
97. Guleria I, Bupp MG, Dada S, Fife B, Tang Q, Ansari MJ, et al. Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clinical immunology. 2007;125(1):16-25.
98. Guleria I, Bupp MG, Dada S, Fife BT, Tang Q, Ansari MJ, et al. Corrigendum to’Mechanisms of PDL1-mediated regulation of autoimmune diabetes’[Clin. Immunol. 125 (2007) 16-25]. Clinical immunology. 2014;150(1):134.
99. Wang C-J, Chou F-C, Chu C-H, Wu J-C, Lin S-H, Chang D-M, et al. Protective role of programmed death 1 ligand 1 (PD-L1) in nonobese diabetic mice: the paradox in transgenic models. Diabetes. 2008;57(7):1861-9.
100. Paterson AM, Brown KE, Keir ME, Vanguri VK, Riella LV, Chandraker A, et al. The programmed death-1 ligand 1: B7-1 pathway restrains diabetogenic effector T cells in vivo. The Journal of Immunology. 2011;187(3):1097-105.
101. Paterson AM, Brown KE, Keir ME, Vanguri VK, Riella LV, Chandraker A, et al. The programmed death-1 ligand 1: B7-1 pathway restrains diabetogenic effector T cells in vivo. The Journal of Immunology. 2011;187(3):1097-105.
102. Burrack AL, Martinov T, Fife BTJ. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Frontiers in endocrinology. 2017;8:343.
103. Mellati M, Eaton KD, Brooks-Worrell BM, Hagopian WA, Martins R, Palmer JP, et al. Anti–PD-1 and anti–PDL-1 monoclonal antibodies causing type 1 diabetes. Diabetes care. 2015;38(9):e137-e8.
104. Hughes J, Vudattu N, Sznol M, Gettinger S, Kluger H, Lupsa B, et al. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes care. 2015;38(4):e55-e7.
105. Li S, Zhang Y, Sun Z, Hu J, Fang CJ. Anti-PD-1 pembrolizumab induced autoimmune diabetes in Chinese patient: a case report. Medicine. 2018;97(45).
106. Yun K, Daniels G, Gold K, Mccowen K, Patel SPJ. Rapid onset type 1 diabetes with anti-PD-1 directed therapy. Oncotarget. 2020;11(28):2740.
107. Okamoto M, Okamoto M, Gotoh K, Masaki T, Ozeki Y, Ando H, et al. Fulminant type 1 diabetes mellitus with anti‐programmed cell death‐1 therapy. Journal of Diabetes Investigation. 2016;7(6):915-8.
108. Yoneda S, Imagawa A, Hosokawa Y, Baden MY, Kimura T, Uno S, et al. T-lymphocyte infiltration to islets in the pancreas of a patient who developed type 1 diabetes after administration of immune checkpoint inhibitors. Diabetes Care. 2019;42(7):e116-e8.
109. Jehl A, Cugnet-Anceau C, Vigouroux C, Legeay AL, Dalle S, Harou O, et al. Acquired generalized lipodystrophy: a new cause of anti-PD-1 immune-related diabetes. Diabetes care. 2019;42(10):2008-10.
110. Kong SH, Lee SY, Yang YS, Kim TM, Kwak SHJ. Anti-programmed cell death 1 therapy triggering diabetic ketoacidosis and fulminant type 1 diabetes. Acta diabetologica. 2016;53(5):853-6.
111. Matsumura K, Nagasawa K, Oshima Y, Kikuno S, Hayashi K, Nishimura A, et al. Aggravation of diabetes, and incompletely deficient insulin secretion in a case with type 1 diabetes‐resistant human leukocyte antigen DRB 1* 15: 02 treated with nivolumab. Journal of Diabetes Investigation. 2018;9(2):438-41.
112. Sun P, Jin Q, Nie S, Jia S, Li Y, Li X, et al. Unlike PD-L1, PD-1 is downregulated on partial immune cells in type 2 diabetes. Journal of diabetes research. 2019;2019.
113. Gauci M-L, Boudou P, Baroudjian B, Vidal-Trecan T, Da Meda L, Madelaine-Chambrin I, et al. Occurrence of type 1 and type 2 diabetes in patients treated with immunotherapy (anti-PD-1 and/or anti-CTLA-4) for metastatic melanoma: a retrospective study. Cancer Immunology, Immunotherapy. 2018;67(8):1197-208.
114. Zhao C, Tella SH, Del Rivero J, Kommalapati A, Ebenuwa I, Gulley J, et al. Anti–PD-L1 treatment induced central diabetes insipidus. The Journal of Clinical Endocrinology Metabolism
2018;103(2):365-9.
115. Hickmott L, De La Peña H, Turner H, Ahmed F, Protheroe A, Grossman A, et al. Anti-PD-L1 atezolizumab-induced autoimmune diabetes: a case report and review of the literature. Targeted oncology. 2017;12(2):235-41.
116. Lee RC, Feinbaum RL, Ambros VJ. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell. 1993;75(5):843-54.
117. Ben Nasr M, Tezza S, D’Addio F, Mameli C, Usuelli V, Maestroni A, et al. PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science translational medicine. 2017;9(416):eaam7543.
118. Mok C, Lau CJ. Pathogenesis of systemic lupus erythematosus. Journal of clinical pathology. 2003;56(7):481-90.
119. Curran CS, Gupta S, Sanz I, Sharon E. PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun. 2019;97:1-9.
120. Guo Y, Walsh AM, Canavan M, Wechalekar MD, Cole S, Yin X, et al. Immune checkpoint inhibitor PD-1 pathway is down-regulated in synovium at various stages of rheumatoid arthritis disease progression. PloS one. 2018;13(2):e0192704.
121. Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol. 2020;67:87-94.
122. Yang X, Yang J, Chu Y, Xue Y, Xuan D, Zheng S, et al. T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PloS one. 2014;9(2):e88441.
123. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nature communications. 2018;9(1):1-14.
124. Han L, Yang X, Yu Y, Wan W, Lv L, Zou HJ. Associations of circulating CXCR3–PD-1+ CD4+ T cells with disease activity of systemic lupus erythematosus. Modern Rheumatology. 2019;29(3):461-9.
125. Shi H, Ye J, Teng J, Yin Y, Hu Q, Wu X, et al. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis research therapy
2017;19(1):1-10.
126. Luo Q, Kong Y, Fu B, Li X, Huang Q, Huang Z, et al. Increased TIM-3+ PD-1+ NK cells are associated with the disease activity and severity of systemic lupus erythematosus. Clinical experimental medicine
2022;22(1):47-56.
127. Crispin JC, Martınez A, Alcocer-Varela JJ. Quantification of regulatory T cells in patients with systemic lupus erythematosus. Journal of autoimmunity. 2003;21(3):273-6.
128. Lee JH, Wang LC, Lin YT, Yang YH, Lin DT, Chiang BLJ. Inverse correlation between CD4+ regulatory T‐cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology. 2006;117(2):280-6.
129. Wong M, La Cava A, Hahn BHJ. Blockade of programmed death-1 in young (New Zealand Black× New Zealand White) F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. The Journal of Immunology. 2013;190(11):5402-10.
130. Kristjansdottir H, Steinsson K, Gunnarsson I, Gröndal G, Erlendsson K, Alarcón‐Riquelme MEJ. Lower expression levels of the programmed death 1 receptor on CD4+ CD25+ T cells and correlation with the PD‐1.3 A genotype in patients with systemic lupus erythematosus. Arthritis Rheumatism
2010;62(6):1702-11.
131. Curran CS, Gupta S, Sanz I, Sharon EJ. PD-1 immunobiology in systemic lupus erythematosus. Journal of autoimmunity. 2019;97:1-9.
132. Chua KH, Lian LH, Sim XJ, Cheah TE, Lau TPJ. Association between PDCD1 gene polymorphisms and risk of systemic lupus erythematosus in three main ethnic groups of the Malaysian population. International Journal of Molecular Sciences. 2015;16(5):9794-803.
133. Gao J, Gai N, Wang L, Liu K, Liu X-H, Wei L-T, et al. Meta-analysis of programmed cell death 1 polymorphisms with systemic lupus erythematosus risk. Oncotarget. 2017;8(22):36885.
134. Kasagi S, Kawano S, Okazaki T, Honjo T, Morinobu A, Hatachi S, et al. Anti-programmed cell death 1 antibody reduces CD4+ PD-1+ T cells and relieves the lupus-like nephritis of NZB/W F1 mice. The Journal of Immunology. 2010;184(5):2337-47.
135. Wong M, La Cava A, Singh RP, Hahn BHJ. Blockade of programmed death-1 in young (New Zealand black× New Zealand white) F1 mice promotes the activity of suppressive CD8+ T cells that protect from lupus-like disease. The Journal of Immunology. 2010;185(11):6563-71.
136. Frey O, Petrow PK, Gajda M, Siegmund K, Huehn J, Scheffold A, et al. The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+ CD25+ T cells. Arthritis Res Ther. 2005;7(2):1-11.
137. Kinne RW, Palombo-Kinne E, Emmrich FJ. T-cells in the pathogenesis of rheumatoid arthritis villains or accomplices? Biochimica et Biophysica Acta -Molecular Basis of Disease. 1997;1360(2):109-41.
138. Wan B, Nie H, Liu A, Feng G, He D, Xu R, et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. The Journal of Immunology. 2006;177(12):8844-50.
139. Li S, Liao W, Chen M, Shan S, Song Y, Zhang S, et al. Expression of programmed death-1 (PD-1) on CD4+ and CD8+ T cells in rheumatoid arthritis. Inflammation. 2014;37(1):116-21.
140. Canavan M, Floudas A, Veale DJ, Fearon UJ. The PD-1: PD-L1 axis in inflammatory arthritis. BMC rheumatology. 2021;5(1):1-10.
141. Koohini Z, Hossein-Nataj H, Mobini M, Hosseinian-Amiri A, Rafiei A, Asgarian-Omran HJ. Analysis of PD-1 and Tim-3 expression on CD4+ T cells of patients with rheumatoid arthritis; negative association with DAS28. Clinical Rheumatology. 2018;37(8):2063-71.
142. Raptopoulou AP, Bertsias G, Makrygiannakis D, Verginis P, Kritikos I, Tzardi M, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62(7):1870-80.
143. Uhlig HH, Coombes J, Mottet C, Izcue A, Thompson C, Fanger A, et al. Characterization of Foxp3+ CD4+ CD25+ and IL-10-secreting CD4+ CD25+ T cells during cure of colitis. The Journal of Immunology. 2006;177(9):5852-60.
144. Raptopoulou AP, Bertsias G, Makrygiannakis D, Verginis P, Kritikos I, Tzardi M, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up‐regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheumatism
2010;62(7):1870-80.
145. Hamel KM, Cao Y, Wang Y, Rodeghero R, Kobezda T, Chen L, et al. B7‐H1 expression on non‐B and non‐T cells promotes distinct effects on T‐and B‐cell responses in autoimmune arthritis. European journal of immunology. 2010;40(11):3117-27.
146. Greisen SR, Yan Y, Hansen AS, Venø MT, Nyengaard JR, Moestrup SK, et al. Extracellular vesicles transfer the receptor programmed death-1 in rheumatoid arthritis. Frontiers in immunology. 2017;8:851.
147. Wang G, Hu P, Yang J, Shen G, Wu XJ. The effects of PDL-Ig on collagen-induced arthritis. Rheumatology international. 2011;31(4):513-9.
148. Dobson R, Giovannoni GJ. Multiple sclerosis–a review. European journal of neurology. 2019;26(1):27-40.
149. Rostami A, Ciric BJ. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Journal of the neurological sciences. 2013;333(1-2):76-87.
150. Mi Y, Han J, Zhu J, Jin TJ. Role of the PD‐1/PD‐L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Molecular Neurobiology. 2021;58(12):6249-71.
151. Salama AD, Chitnis T, Imitola J, Ansari MJI, Akiba H, Tushima F, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. The Journal of experimental medicine. 2003;198(1):71-8.
152. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, et al. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. Journal of neuroimmunology
2007;182(1-2):124-34.
153. Wang C, Li Y, Proctor TM, Vandenbark AA, Offner HJ. Down‐modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. Journal of neuroscience research. 2010;88(1):7-15.
154. Herold M, Posevitz V, Chudyka D, Hucke S, Groß C, Kurth F, et al. B7-H1 Selectively Controls TH17 Differentiation and Central Nervous System Autoimmunity via a Novel Non–PD-1–Mediated Pathway. The Journal of Immunology. 2015;195(8):3584-95.
155. Chauhan P, Lokensgard JRJ. Glial cell expression of PD-L1. International journal of molecular sciences. 2019;20(7):1677.
156. Pittet CL, Newcombe J, Prat A, Arbour NJ. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. Journal of neuroinflammation. 2011;8(1):1-12.
157. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. The Journal of Immunology. 2009;183(8):4984-93.
158. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Mäurer M, et al. A PD‐1 polymorphism is associated with disease progression in multiple sclerosis. Annals of neurology. 2005;58(1):50-7.
159. Pawlak-Adamska E, Nowak O, Karabon L, Pokryszko-Dragan A, Partyka A, Tomkiewicz A, et al. PD-1 gene polymorphic variation is linked with first symptom of disease and severity of relapsing-remitting form of MS. Journal of Neuroimmunology. 2017;305:115-27.
160. Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother. 2016;12(11):2777-89.
161. González-Rodríguez E, Rodríguez-Abreu D. Immune Checkpoint Inhibitors: Review and Management of Endocrine Adverse Events. Oncologist. 2016;21(7):804-16.
162. Zarour HM. Reversing T-cell Dysfunction and Exhaustion in Cancer. Clin Cancer Res. 2016;22(8):1856-64.
163. Kochupurakkal NM, Kruger AJ, Tripathi S, Zhu B, Adams LT, Rainbow DB, et al. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One. 2014;9(2):e89561.
164. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A. 2005;102(33):11823-8.
165. Ruiz-Cordero R, Devine WP. Targeted Therapy and Checkpoint Immunotherapy in Lung Cancer. Surg Pathol Clin. 2020;13(1):17-33.
166. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018;4(2):173-82.
167. Xu C, Chen YP, Du XJ, Liu JQ, Huang CL, Chen L, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. Bmj. 2018;363:k4226.
168. Araki K, Youngblood B, Ahmed R. Programmed cell death 1-directed immunotherapy for enhancing T-cell function. Cold Spring Harb Symp Quant Biol. 2013;78:239-47.
169. Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med. 2015;373(16):1490-2.
170. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517-9.
171. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23-34.
172. Okamoto M, Okamoto M, Gotoh K, Masaki T, Ozeki Y, Ando H, et al. Fulminant type 1 diabetes mellitus with anti-programmed cell death-1 therapy. J Diabetes Investig. 2016;7(6):915-8.
173. Rajasalu T, Brosi H, Schuster C, Spyrantis A, Boehm BO, Chen L, et al. Deficiency in B7-H1 (PD-L1)/PD-1 coinhibition triggers pancreatic beta-cell destruction by insulin-specific, murine CD8 T-cells. Diabetes. 2010;59(8):1966-73.
174. Fujisawa R, Haseda F, Tsutsumi C, Hiromine Y, Noso S, Kawabata Y, et al. Low programmed cell death-1 (PD-1) expression in peripheral CD4(+) T cells in Japanese patients with autoimmune type 1 diabetes. Clin Exp Immunol. 2015;180(3):452-7.
175. Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes. 2005;54 Suppl 2:S52-61.