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Abstract—With the increasing occurrence of wildfires globally,
quick and effective detection methods are vital. This paper
proposes an innovative solution for wildfire detection using
Unmanned Aerial Vehicle (UAV)-assisted detection systems. On
the other hand, semantic communication, a technology designed
for efficient data transmission in specialized tasks, plays a crucial
role in next-generation wireless communications systems. In this
paper, the deep joint source-channel coding (DJSCC) scheme has
been used for efficient image transmission as a deep learning-
based semantic communication technique for wildfire detec-
tion. DJSCC improves source and channel coding for semantic
communications, offering advantages such as improved energy
efficiency, reduced latency, and improved reliability compared
to traditional source and channel code schemes. In this paper,
the transmitter-receiver operations of the UAV communication
system are modeled as a DJSCC, and they are jointly trained
while taking into account the effects of the fading channel.
The encoder transforms captured images into compact feature
vectors, subsequently transmitting them using a reduced number
of channels to minimize latency. Rather than engaging in the
reconstruction of the input image in the receiver, the classifier
performs a classification task using the received signals at the
receiver. Alternatively, if the recovery of an image is required to
understand the spread of the wildfire, the decoder reconstructs
it by using the received signal at the receiver.

Index Terms—Unmanned Aerial Vehicles (UAV), joint source-
channel coding, semantic communication, deep learning, wildfire

I. INTRODUCTION

In recent years, there has been a notable increase in the

frequency, size, and severity of wildfires worldwide. This surge

has had significant effects on economies, ecosystems, and local

communities [1], [2]. For example, approximately 23 million

acres of land [3] are lost to wildfires annually around the world

and experts predict a further increase in fire risks in the near

future. Effective management of wildfires is a considerable

challenge, with early detection crucial [4]. However, current

methods such as satellite imagery and infrared cameras have
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limitations, especially in adverse weather conditions such as

cloudy conditions.

To prevent wildfires from spreading uncontrollably, using

Internet of Things (IoT) networks has emerged as a promising

solution [5]. These networks can link various cost-effective

self-powered IoT sensors known for their simplicity. Although

projections suggest that by the end of 2023, IoT networks

could accommodate up to 100,000 IoT devices per square

kilometer [6], shortcomings in infrastructure in forested areas

and the inherent limitations of IoT devices, including power

and computational constraints, make traditional IoT networks

unsuitable for efficient data gathering. To overcome this,

Unmanned Aerial Vehicles (UAVs) are a viable option [7].

UAVs can handle the demanding data rate and reliability

requirements of cellular communication networks. Further-

more, UAVs offer advantages such as flexibility and reduced

costs, making them suitable for reaching hazardous and remote

disaster-stricken areas [8]. Thus, recent studies propose the

use of UAV-added communication networks in managing

natural disasters such as wildfires [9]. This paper presents

an innovative approach to identifying wildfires using UAVs

along with a deep learning-powered semantic communication

system. This semantic communication-based approach aims to

enable the rapid and accurate identification of wildfires.

In recent years, the field of wireless communication has

undergone a significant transformation due to the emergence

of semantic communication principles, which are surpassing

conventional wireless communication techniques. Unlike tra-

ditional methods that prioritize the accurate transmission of

separate symbols or bits, semantic communication places its

emphasis on effectively conveying the intended meaning and

context from the source of information [10]–[12].

As far back as 1949, Weaver [13] introduced the concept of

transmitting messages with meaningful intent. He extended

Shannon’s communication theory by incorporating two ad-

ditional levels: the semantic level and the effective level.

The semantic communication system aims to convey semantic

information, while an effective system focuses on an efficient

and goal-oriented design. However, the concept of semantic

communication or goal-oriented communication did not ini-

tially attract significant attention [14], [15]. This was primarily



due to the pressing need for Shannon’s high-rate and reliable

communication methods and the limited computational power

to develop semantic-aware communication systems [16].

On the other hand, current mobile wireless communication

systems have significantly improved their data transmission

speed, surpassing previous generations by a considerable mar-

gin. This progress is bringing the achievable rate of current

wireless communication systems closer to the theoretical lim-

its defined by Shannon’s theorem, thanks to more efficient

channel coding schemes such as Polar codes and Low-Density

Parity Check codes [17], [18].

Simultaneously, various new and innovative applications

have emerged in wireless communications, such as IoT ap-

plications, industrial automation, smart agriculture, environ-

mental and healthcare monitoring, and smart sensor networks

[19], [20]. The integration of these applications into wireless

communication networks generates an enormous amount of

data, potentially reaching zettabyte scales [21]. This surge in

data poses a significant challenge for wireless communication

networks, as it requires robust methods to maintain strong con-

nectivity despite the limited availability of wireless spectrum

resources. Additionally, there is a growing need for low latency

and high reliability to support the real-time requirements of

mission-critical applications such as wildfire detection and

healthcare monitoring. These complex challenges are pushing

us to move away from the traditional channel coding schemes

that increase the transmission time by increasing the block

length and adding a large number of parity bits for error

correction. On the other hand, semantic-based communica-

tion approaches offer a potential solution by focusing on

the meaning within the transmitted information itself. This

involves extracting the semantic meanings from the data while

filtering out unnecessary information. This process allows

for efficient data compression while retaining the essential

semantic content. Notably, this approach to communication is

particularly resilient, even in challenging conditions where the

signal is weak compared to the background noise (low Signal-

to-Noise Ratios (SNRs)). This resilience makes it well-suited

for applications that demand a high level of reliability.

One effective strategy for developing a semantic communi-

cation system is treating it as a joint source-channel coding

problem [22], [23]. Joint Source-Channel Coding (JSCC) has

posed a challenge in communication and coding theory for a

long time. However, recent breakthroughs have shown signif-

icant performance improvements over traditional systems that

treat source and channel coding separately. This improvement

is especially pronounced in scenarios where low latency and

low power consumption are critical. These advancements are

largely due to the integration of deep learning techniques into

the design of JSCC, which has proven to outperform traditional

JSCC methods that have been developed over decades of

research. In this work, we employ a deep learning-based JSCC

known as DeepJSCC (DJSCC) for image transmission [24],

[25].

While numerous theoretical studies exist related to DJSCC,

its practical implementation has not been extensively explored
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Fig. 1. Communication System model of UAV-assisted Wildfire Detection
System.

[26]. This paper focuses on establishing a DJSCC framework

for detecting wildfires, comprising an encoder, a decoder, and a

classifier. The core objective is to create a seamless end-to-end

training system for image classification, specifically tailored

for wildfire detection. To emulate real-world conditions in a

UAV communication network, this paper models the wireless

communication channel as a Rician fading channel. This ap-

proach effectively replicates the communication environment

present in such networks. Subsequently, the DJSCC framework

is implemented to recover images at the Ground Control Sta-

tion (GCS) in addition to classification since image recovery

is a crucial capability, especially in situations where assessing

the wildfire’s extent is of utmost importance. Additionally,

this work determines the optimal altitude of the UAV which

achieves the highest levels of classification accuracy and

Peak Signal-to-Noise Ratio (PSNR) for image recovery. This

capability significantly contributes to a better understanding

of wildfire scenarios and facilitates more informed decision-

making processes.

II. SYSTEM MODEL

In Fig. 1, we examine a wildfire detection system utiliz-

ing a UAV. The UAV (U ) is positioned at an altitude H
and equipped with cameras for image capture. The UAV

and GCS (G) have coordinates DU = (XU ;YU ;H) and

DG = (XG;YG; 0), respectively. The horizontal distance is

dU,G =
√

(XU −XG)2 + (YU − YG)2. The angle of eleva-

tion is θ = arctan
(

H
dU,G

)

. Communication involves Line-of-

Sight (LoS) and Non-Line-of-Sight (NLoS) links between the

UAV and GCS.

This study introduces a deep learning-based communication

system arrangement consisting of transmitter, channel, and

receiver components, as depicted in Fig. 2. The main purpose

of the transmitter is to transmit images captured by the camera

embedded in the UAV. The transmitter employs the DJSCC

technique for wireless image transmission. In contrast to

traditional methods that rely on explicit codes for compression

and error correction, DJSCC takes a more direct approach

by mapping image pixel values onto complex-valued channel



input symbols. This eliminates the necessity for distinct coding

mechanisms.

These complex-valued channel input symbols are subse-

quently transmitted through a wireless communication channel

connecting the UAV and GCS [24]. The attributes of the

channel are modeled using the Rician fading model, which

effectively captures signal fading and other fluctuations in the

UAV-aided wireless communication system. A key aspect is

the joint training of both the transmitter and receiver. This

collaborative training strategy enables adaptation to changing

channel conditions, ensuring robust image transmission despite

the inherently dynamic nature of the channel.

In the considered system, the receiver fulfils both classifi-

cation and image reconstruction tasks at the GCS utilizing the

channel output in accordance with the requirements of GCS.

The input image is denoted as I ∈ R
IH×IW×IC , where IH ,

IW , and IC represent the height, width, and number of colour

channels, respectively. The total number of pixels in the image

is denoted as kP = IH × IW × IC . The wireless transmission

of the image source is then considered.

The transmitter employs a deep neural network (DNN) as

the DJSCC encoder at the UAV, denoted as f(·, ϑ), where ϑ
represents the learnable parameters of the network. Given an

input source signal I , the output encoded semantic features s

produced by f(·, ϑ) are expressed as s = f(I, ϑ), where s

belongs to the real vector space R
2nT , and nT is a specific

dimensionality. These encoded semantic features s are then

reshaped into complex-valued symbols of dimension nT to

form the encoded signal ŝ.

After encoding the task-relevant semantic signal s from the

transmitted signal I , a normalization process is applied to

ensure that ŝ adheres to the average power constraint as

1

nT

E∥ŝ∥2 ≤ P. (1)

where P denotes the transmission power of the UAV,

Subsequently, the encoded signal ŝ is transmitted through

the wireless channel. Specifically, we consider a narrow-band

or frequency-flat block fading channel, where the channel is

assumed to remain constant during the transmission of a single

image and may change independently for subsequent images.

Thus, the received signal z ∈ C
nT is formulated as follows:

z =
√

βP ŝ+Wn, (2)

Where Wn ∈ C
nT represents independent identically

distributed (i.i.d.) circularly symmetric complex Gaussian

(CSCG) noise with an average noise power of σ2. In other

words, n ∼ CN (0, σ2
In), where In represents the identity

matrix. The parameter β signifies the channel gain. In this

UAV communication configuration, the channel gain β is

considered as the product of the large-scale channel gain and

the small-scale channel gain. Both the small- and large-scale

channel gains are influenced by both LoS and NLoS channels.

Consequently, it is essential to compute the LoS probability

between the transmitter and the receiver. The LoS probability

between the UAV and GCS can be expressed as in [27],

PLoS(θ) =
1

1 +A exp (−B(θ −A))
, (3)

where A and B are parameters characterizing the S-curve and

are environment-dependent. The large-scale channel gain α
for the channel between the UAV and GCS is determined as

follows [28]:

−10 logα = 20 log (H csc θ) + 20 log

(

4πfc
c

)

+ ηNLOS +
ηLOS − ηNLOS

1 +A exp (−B(θ −A))
. (4)

where fc and c are the carrier frequency (Hz) and the speed

of light (m/s), respectively. ηNLOS and ηNLOS represent

the expectations of additional environmental-dependent excess

path loss for the LoS and NLoS components, respectively.

Assuming that the UAV and GCS remain static during the

transmission of a block and ignoring the Doppler effect, we

employ the Rician fading model to investigate the small-

scale channel characteristics and multi-path propagation in this

system. The probability distribution of the small-scale channel

gain (g) follows a non-central chi-square distribution, and the

probability density function for the small-scale channel gain

can be expressed as:

fg(z) =
(K + 1)e−K

ḡ
e

−(K+1)z
ḡ I0

(

2

√

K(K + 1)z

ḡ

)

, (5)

where z ≥ 0, ḡ = 1, I0(·) is the zero-order modified Bessel

function of the first kind, and K is the Rician factor, which

can be expressed as follows [29]:

K =
PLoS(θ)

1− PLoS(θ)
=

1

A exp(−B(θ −A))
. (6)

Then, the channel gain, and average SNR at the receiver

can be calculated as β = αg, γ̄SNR = αP
σ2 respectively.

The receiver then facilitates image recovery and execution of

classification tasks, thereby enabling the detection of wildfire

occurrence. In the receiver, the real and imaginary components

of z are amalgamated (reshaped) to form ẑ ∈ R
2b for

subsequent processing. Following this, the receiver undertakes

data recovery and classification tasks based on ẑ.

From one perspective, the receiver performs the classifi-

cation task directly within the feature space. This involves

entering the derived features ẑ into a pragmatic function M(ẑ)
to obtain the classification result denoted as L = M(ẑ).
In this system, a DNN serves as the pragmatic function for

classification. On the other hand, the decoder at the GCS in the

receiver maps received ẑ to the estimated reconstruction of the

original transmitted image, denoted as Î ∈ R
kp . The decoder

at the GCS performs image reconstruction using the function

Î = q(z̄, γ), where the decoding DNN is represented as q(·, γ)
and is parameterized by γ. Our goal is to extract and transmit

task-relevant semantic information ŝ of the original image I

to minimize the communication overhead (in terms of the
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Fig. 2. The proposed DJSCC-based communication system for image recovery and classification for wildfire detection

number of symbols nT to be transmitted) while guaranteeing

the performance of image recovery and classification tasks to

detect wildfires. Specifically, the performance of the image

recovery task is evaluated using PSNR and the performance

of the image classification task is evaluated using classification

accuracy. The PSNR is a quantitative measure to evaluate the

similarity between two images. For an original image I and its

corresponding reconstructed or processed image Î , the PSNR

is calculated using the following equation:

PSNR(I, Î) = 10 · log10

(

MAX2

1
kP

∥I − Î∥2

)

, (7)

where MAX represents the maximum possible value of the

image pixels.

III. SIMULATION RESULTS

In this section, simulation results are presented to validate

the functionality of the system model in terms of image re-

covery and classification for the detection of wildfires. Specif-

ically, experiments are conducted using the wildfire detection

image dataset [30]. This dataset comprises colorful images

with dimensions of 250 × 250 × 3 pixels, depicting various

real-world wildfire scenarios, as well as non-fire scenarios in

forest environments. The DNN architecture for the encoder

at the UAV comprises an input layer for images, followed

by four convolutional layers with the Generalized Divisive

Normalization (GDN) activation function. The decoder at the

GCS in this system comprises four layers, utilizing inverse

convolutional operations and GDN activations to reconstruct

images. During training, the model is optimized with the

Adam optimizer, aiming to minimize the Mean Squared Error

(MSE) between the reconstructed image and the original input.

The classifier has dense layers for feature processing and

binary classification. The classifier is trained using the Adam

optimizer and sparse categorical cross-entropy loss. Unless

otherwise specified, the simulation parameters are configured

as follows: dG,U = 1500m, fc = 900MHz, c = 3 ×
108 ms−1, ηLOS = 0.1 dB, ηNLOS = 21dB, P = 30dBmW,

nT /kP = 1/6, and σ2 = −100 dBmW [29].

Fig. 3 illustrates the average SNR plotted against the

altitude of the UAV for different transmission power levels

and distances. The results indicate that the optimal altitude

for maximum average SNR is approximately 400m. At lower

altitudes, the average SNR remains low due to the weak LoS

signal. As altitude increases towards the optimal value, the

average SNR experiences rapid growth due to a stronger LoS

component that outweighs the impact of path loss. However,

beyond optimal altitude, path loss dominates other factors,

resulting in a decrease in the average SNR. In addition, de-

creasing distance and increasing transmission power increase

the average SNR level significantly as illustrated in the graph.

Fig. 4 depicts the classification task of the DJSCC across

varying average SNR levels. As depicted in the figure, the

DJSCC framework was initially trained for two scenarios:

γ̄SNR = 10dB and γ̄SNR = 20dB. These trained DJSCC

frameworks were subsequently applied directly to different

channel conditions. The purpose of this simulation was to

evaluate the DJSCC’s performance across various average

SNR levels, offering insights into its behavior before integrat-

ing it into the UAV communication model and simulating it

under UAV channel conditions. The results clearly demonstrate
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that higher average SNR levels during training lead to better

performance at high SNR levels. However, frameworks trained

at lower SNR levels maintain a high accuracy rate for very

low SNR levels when compared to their high SNR-trained

counterparts. This phenomenon arises from the fact that a

high average SNR during training causes DJSCC to prioritize

the signal, which is advantageous for strong signals but may

struggle with weaker ones. In contrast, training at a lower SNR

makes DJSCC more sensitive to weak signals, enabling it to

detect them even in the presence of noise.

Fig. 5 presents the relationship between UAV altitude and

classification accuracy. Initially, the DJSCC is trained with

γ̄SNR = 20dB and K = 0.5. The DJSCC’s performance

is contingent on the SNR level; consequently, at low UAV

altitudes, classification accuracy is reduced due to weak LoS

channels. However, as depicted in Fig. 5, the classification

accuracy increases towards its optimal point. This trend aligns
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with the observation in Fig. 3, where the average SNR value

increases towards its optimum due to strong LoS conditions.

Subsequently, similar to the average variation in SNR, the

classification accuracy also decreases. This decline can be

attributed to the increased influence of path loss, which is

more prominent under strong LoS channel conditions.
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Fig. 6 presents the relationship between UAV altitude and

PSNR for image recovery. In this scenario as well, the DJSCC

is trained with γ̄SNR = 20dB. Subsequently, the trained

DJSCC is used for image transmission. The transmitted image

is reconstructed using a received signal, and then the PSNR

is measured. In Fig. 6, the PSNR is measured for different

UAV altitudes, simulating changes in the channel as well. The

performance of the DJSCC depends on the SNR level. Thus, at

lower UAV altitudes, the PSNR is low due to low average SNR

levels caused by weaker LoS channels. However, the PSNR



increases dramatically as it approaches its optimal point. This

trend aligns with the observation in Fig. 3, where the average

SNR value increases towards its optimum due to stronger LoS

conditions. Similarly, as the average SNR varies, the PSNR

also experiences a sharp decrease after reaching its optimal

point. Notably, the reduction in PSNR is more significant

compared to the reduction in classification accuracy. This is

due to image reconstruction demands a higher SNR compared

to classification.

IV. CONCLUSION

This paper presents an innovative solution for wildfire

detection utilizing UAV-assisted systems and a deep learning-

based semantic communication approach. The DJSCC scheme

is employed for streamlining the image transmission, and

with a jointly trained encoder-classifier/decoder framework, it

accomplishes the data transmission and classification.

This study thoroughly assessed the performance of the

proposed system, with a particular focus on crucial metrics

like classification accuracy and image PSNR. Our evaluation

involved varying UAV flying altitudes, power levels, and

transmitter-receiver distances to gauge the system’s perfor-

mance. The Kaggle wildfire detection image dataset was used

to train the encoder and decoder, leveraging its diverse image

collection.

Future studies may involve latency issues and compare

them with conventional communication systems that utilize

typical channels and source coding techniques. Such explo-

rations could provide crucial understanding into the efficiency

and benefits of the suggested semantic-aware UAV-supported

wildfire detection system.
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