REFERENCES
1. European Centre for Disease Prevention and Control. COVID-19 Vaccine
Tracker. 2023.
https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab
(accessed 23 April 2023).
2. Nordström P, Ballin M, Nordström A. Risk of infection,
hospitalisation, and death up to 9 months after a second dose of
COVID-19 vaccine: a retrospective, total population cohort study in
Sweden. The Lancet 2022; 399 (10327): 814-23.
3. Tenforde MW, Weber ZA, Natarajan K, Klein NP, Kharbanda AB, Stenehjem
E, et al. Early Estimates of Bivalent mRNA Vaccine Effectiveness in
Preventing COVID-19-Associated Emergency Department or Urgent Care
Encounters and Hospitalizations Among Immunocompetent Adults - VISION
Network, Nine States, September-November 2022. MMWR Morb Mortal
Wkly Rep 2022; 71 (5152): 1616-24.
4. Mohamed Y, El-Maradny YA, Saleh AK, Nayl AA, El-Gendi H, El-Fakharany
EM. A comprehensive insight into current control of COVID-19:
Immunogenicity, vaccination, and treatment. Biomed Pharmacother2022; 153 : 113499.
5. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T,
Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181 (2): 271-80 e8.
6. Deng Q, ur Rasool R, Russell RM, Natesan R, Asangani IA. Targeting
androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to
combat COVID-19. Iscience 2021; 24 (3): 102254.
7. Qiao Y, Wang X-M, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, et al.
Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2
and TMPRSS2. Proceedings of the National Academy of Sciences2021; 118 (1): e2021450118.
8. Samuel RM, Majd H, Richter MN, Ghazizadeh Z, Zekavat SM, Navickas A,
et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is
Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell2020; 27 (6): 876-89 e12.
9. Welen K, Rosendal E, Gisslen M, Lenman A, Freyhult E,
Fonseca-Rodriguez O, et al. A Phase 2 Trial of the Effect of
Antiandrogen Therapy on COVID-19 Outcome: No Evidence of Benefit,
Supported by Epidemiology and In Vitro Data. Eur Urol 2022;81 (3): 285-93.
10. Nickols NG, Mi Z, DeMatt E, Biswas K, Clise CE, Huggins JT, et al.
Effect of Androgen Suppression on Clinical Outcomes in Hospitalized Men
With COVID-19: The HITCH Randomized Clinical Trial. JAMA Netw
Open 2022; 5 (4): e227852.
11. Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al.
Association of Circulating Sex Hormones With Inflammation and Disease
Severity in Patients With COVID-19. JAMA Network Open 2021;4 (5): e2111398-e.
12. Josefsson A. Little support for a protective effect of ADT against
COVID-19. Scand J Urol 2022; 56 (2): 112-3.
13. Lovre D, Bateman K, Sherman M, Fonseca VA, Lefante J, Mauvais-Jarvis
F. Acute estradiol and progesterone therapy in hospitalised adults to
reduce COVID-19 severity: a randomised control trial. BMJ Open2021; 11 (11): e053684.
14. Baristaite G, Gurwitz D. Estradiol reduces ACE2 and TMPRSS2 mRNA
levels in A549 human lung epithelial cells. Drug Development
Research 2022; 83 (4): 961-6.
15. Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization.JAMA 2017; 318 (19): 1925-6.
16. Smith GD, Ebrahim S. ’Mendelian randomization’: can genetic
epidemiology contribute to understanding environmental determinants of
disease? Int J Epidemiol 2003; 32 (1): 1-22.
17. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, et al.
Using human genetics to understand the disease impacts of testosterone
in men and women. Nat Med 2020; 26 (2): 252-8.
18. Schmitz D, Ek WE, Berggren E, Hoglund J, Karlsson T, Johansson A.
Genome-wide Association Study of Estradiol Levels and the Causal Effect
of Estradiol on Bone Mineral Density. The Journal of clinical
endocrinology and metabolism 2021; 106 (11): e4471-e86.
19. Tobin J. Estimation of relationships for limited dependent
variables. Econometrica: journal of the Econometric Society 1958:
24-36.
20. Day FR, Loh PR, Scott RA, Ong KK, Perry JR. A Robust Example of
Collider Bias in a Genetic Association Study. Am J Hum Genet2016; 98 (2): 392-3.
21. COVID-19 Host Genetics Initiative, Ganna A. Mapping the human
genetic architecture of COVID-19: an update. medRxiv 2022:
2021.11.08.21265944.
22. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian
randomization: avoiding the downsides of a powerful, widely applicable
but potentially fallible technique. Int J Epidemiol 2016;45 (6): 1717-26.
23. Burgess S, Butterworth A, Thompson SG. Mendelian Randomization
Analysis With Multiple Genetic Variants Using Summarized Data.Genetic Epidemiology 2013; 37 (7): 658-65.
24. Sterne JAC, Cox DR, Smith GD. Sifting the evidence—what’s wrong
with significance tests? BMJ 2001; 322 (7280): 226-31.
25. Wasserstein RL, Lazar NA. The ASA Statement on p-Values: Context,
Process, and Purpose. The American Statistician 2016;70 (2): 129-33.
26. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent
Estimation in Mendelian Randomization with Some Invalid Instruments
Using a Weighted Median Estimator. Genet Epidemiol 2016;40 (4): 304-14.
27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int J Epidemiol 2015; 44 (2): 512-25.
28. Yates T, Razieh C, Zaccardi F, Davies MJ, Khunti K. Obesity and risk
of COVID-19: analysis of UK biobank. Primary Care Diabetes 2020;14 (5): 566-7.
29. Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, et al.
Obesity and Mortality Among Patients Diagnosed With COVID-19: Results
From an Integrated Health Care Organization. Annals of Internal
Medicine 2020; 173 (10): 773-81.
30. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J,
et al. PhenoScanner V2: an expanded tool for searching human
genotype-phenotype associations. Bioinformatics (Oxford, England)2019; 35 (22): 4851-3.
31. Strope JD, Chau CH, Figg WD. Are sex discordant outcomes in COVID-19
related to sex hormones? Seminars in Oncology 2020;47 (5): 335-40.
32. Raza HA, Sen P, Bhatti OA, Gupta L. Sex hormones, autoimmunity and
gender disparity in COVID-19. Rheumatology International 2021;41 (8): 1375-86.
33. Brandi ML. Are sex hormones promising candidates to explain sex
disparities in the COVID-19 pandemic? Reviews in Endocrine and
Metabolic Disorders 2022; 23 (2): 171-83.
34. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di
Costanzo D, et al. Low testosterone levels predict clinical adverse
outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9 (1): 88-98.
35. Çayan S, Uğuz M, Saylam B, Akbay E. Effect of serum total
testosterone and its relationship with other laboratory parameters on
the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2
infected male patients: a cohort study. The Aging Male 2020;23 (5): 1493-503.
36. Cinislioglu AE, Cinislioglu N, Demirdogen SO, Sam E, Akkas F, Altay
MS, et al. The relationship of serum testosterone levels with the
clinical course and prognosis of COVID-19 disease in male patients: A
prospective study. Andrology 2022; 10 (1): 24-33.
37. Schroeder M, Schaumburg B, Mueller Z, Parplys A, Jarczak D, Roedl K,
et al. High estradiol and low testosterone levels are associated with
critical illness in male but not in female COVID-19 patients: a
retrospective cohort study. Emerging Microbes & Infections 2021;10 (1): 1807-18.
38. Li X, Zhou Y, Yuan S, Zhou X, Wang L, Sun J, et al. Genetically
predicted high IGF-1 levels showed protective effects on COVID-19
susceptibility and hospitalization: a Mendelian randomisation study with
data from 60 studies across 25 countries. eLife 2022;11 : e79720.
39. Pinna G. Sex and COVID-19: A Protective Role for Reproductive
Steroids. Trends in Endocrinology & Metabolism 2021;32 (1): 3-6.
40. Straub RH. The Complex Role of Estrogens in Inflammation.Endocrine Reviews 2007; 28 (5): 521-74.
41. Klein SL, Flanagan KL. Sex differences in immune responses.Nature Reviews Immunology 2016; 16 (10): 626-38.
42. Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone,
Immunomodulation, and COVID-19 Outcomes. Endocrinology 2020;161 (9).
43. Khan D, Ansar Ahmed S. The immune system is a natural target for
estrogen action: opposing effects of estrogen in two prototypical
autoimmune diseases. Frontiers in immunology 2016; 6 :
635.
44. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T,
Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181 (2): 271-80.e8.
45. Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, et al.
Characterization of the cardiac renin angiotensin system in
oophorectomized and estrogen-replete mRen2. Lewis rats. PLoS One2013; 8 (10): e76992.
46. Herichová I, Jendrisková S, Pidíková P, Kršková L, Olexová L, Morová
M, et al. Effect of 17β-estradiol on the daily pattern of ACE2, ADAM17,
TMPRSS2 and estradiol receptor transcription in the lungs and colon of
male rats. PLoS One 2022; 17 (6): e0270609.
47. Liu L, Fan X, Guan Q, Yu C. Bioavailable testosterone level is
associated with COVID-19 severity in female: A sex-stratified Mendelian
randomization study. Journal of Infection 2022; 85 (2):
174-211.