REFERENCES
1. Schwartz RM. What Price Prematurity? Fam Plann Perspect.
1989;21(4):170–4.
2. Russell RB, Green NS, Steiner CA, Meikle S, Howse JL, Poschman K, et
al. Cost of Hospitalization for Preterm and Low Birth Weight Infants in
the United States. Pediatrics. 2007;120(1).
3. Delaney L, Smith JP. Childhood Health: Trends and Consequences over
the Life Course. Future Child. 2012;22(1):43–63.
4. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan
D, et al. Global, Regional, and National Estimates of Levels of Preterm
Birth in 2014: A Systematic Review and Modelling Analysis. Lancet Glob
Health. 2019;7(1):e37–46.
5. Institute of Medicine, National Research Council. U.S. Health in
International Perspective: Shorter Lives, Poorer Health. Washington, DC:
The National Academies Press; 2013.
6. Issel LM, Forrestal SG, Slaughter J, Wiencrot A, Handler A. A Review
of Prenatal Home-Visiting Effectiveness for Improving Birth Outcomes.
JOGNN - J Obstet Gynecol Neonatal Nurs. 2011;40(2):157–65.
7. Lee H, Crowne SS, Estarziau M, Kranker K, Michalopoulos C, Warren A,
et al. The Effects of Home Visiting on Prenatal Health, Birth Outcomes,
and Health Care Use in the First Year of Life: Final Implementation and
Impact Findings from the Mother and Infant Home Visiting Program
Evaluation-Strong Start. Washington, DC; 2019.
8. Olds DL. Prenatal and Infancy Home Visiting by Nurses: From
Randomized Trials to Community Replication. Prev Sci. 2002;3(3):153–72.
9. Kistka ZAF, Palomar L, Lee KA, Boslaugh SE, Wangler MF, Cole FS, et
al. Racial Disparity in the Frequency of Recurrence of Preterm Birth. Am
J Obstet Gynecol. 2007;196(2):131.e1-131.e6.
10. Petersen CB, Mortensen LH, Morgen CS, Madsen M, Schnor O, Arntzen A,
et al. Socio-Economic Inequality in Preterm Birth: A Comparative Study
of the Nordic Countries from 1981 to 2000. Paediatr Perinat Epidemiol.
2009;23(1):66–75.
11. Snelgrove JW, Murphy KE. Preterm Birth and Social Inequality:
Assessing the Effects of Material and Psychosocial Disadvantage in a UK
Birth Cohort. Acta Obstet Gynecol Scand. 2015;94(7):766–75.
12. Nurse-Family Partnership. Nurse-Family Partnership Homepage
[Internet]. 2020 [cited 2020 May 4]. Available from:
https://www.nursefamilypartnership.org/
13. Valero De Bernabé J, Soriano T, Albaladejo R, Juarranz M, Calle ME,
Martínez D, et al. Risk Factors for Low Birth Weight: A Review. Eur J
Obstet Gynecol Reprod Biol. 2004;116(1):3–15.
14. Kleinman JC, Madans JH. The Effects of Maternal Smoking, Physical
Stature, and Educational Attainment on the Incidence of Low Birth
Weight. Am J Epidemiol. 1985;121(6):843–55.
15. Tu J V., Weinstein MC, McNeil BJ, Naylor CD. Predicting Mortality
after Coronary Artery Bypass Surgery: What Do Artificial Neural Networks
Learn? Med Decis Making. 1998;18(2):229–35.
16. Saritas I. Prediction of Breast Cancer Using Artificial Neural
Networks. J Med Syst. 2012;36(5):2901–7.
17. Han DH, Lee S, Seo DC. Using Machine Learning to Predict Opioid
Misuse among U.S. Adolescents. Prev Med. 2020;130.
18. Scarafoni D, Telfer BA, Ricke DO, Thornton JR, Comolli J. Predicting
Influenza A Tropism with End-to-End Learning of Deep Networks. Health
Secur. 2019;17(6):468–76.
19. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T,
Scheuerecker J, et al. Use of Neuroanatomical Pattern Classification to
Identify Subjects in At-Risk Mental States of Psychosis and Predict
Disease Transition. JAMA Psychiatry. 2009;66(7):700–12.
20. Lecun Y, Bengio Y, Hinton G. Deep Learning. Nature.
2015;521(7553):436–44.
21. Roth J. NCHS’ Vital Statistics Natality Birth Data [Internet].
The National Bureau of Economic Research. 2018 [cited 2019 Dec 5].
Available from:
http://www.nber.org/data/vital-statistics-natality-data.html
22. Joyce A Martin, Hamilton BE, Osterman MJK, Driscoll AK, Drake P.
Births: Final Data for 2016. Natl Vital Stat Rep. 2018;67(1):1–55.
23. Brämer GR. ICD-10 : International Statistical Classification of
Diseases and Related Health Problems : Tenth Revision. 2nd ed. 2004.
24. Bishop CM. Pattern Recognition and Machine Learning. New York, NY:
Springer; 2006.
25. Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. International Joint Conference of
Artificial Intelligence. 1995.
26. Johnson JM, Khoshgoftaar TM. Survey on Deep Learning with Class
Imbalance. J Big Data. 2019;6(1).