REFERENCES

1. Schwartz RM. What Price Prematurity? Fam Plann Perspect. 1989;21(4):170–4.
2. Russell RB, Green NS, Steiner CA, Meikle S, Howse JL, Poschman K, et al. Cost of Hospitalization for Preterm and Low Birth Weight Infants in the United States. Pediatrics. 2007;120(1).
3. Delaney L, Smith JP. Childhood Health: Trends and Consequences over the Life Course. Future Child. 2012;22(1):43–63.
4. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, et al. Global, Regional, and National Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. Lancet Glob Health. 2019;7(1):e37–46.
5. Institute of Medicine, National Research Council. U.S. Health in International Perspective: Shorter Lives, Poorer Health. Washington, DC: The National Academies Press; 2013.
6. Issel LM, Forrestal SG, Slaughter J, Wiencrot A, Handler A. A Review of Prenatal Home-Visiting Effectiveness for Improving Birth Outcomes. JOGNN - J Obstet Gynecol Neonatal Nurs. 2011;40(2):157–65.
7. Lee H, Crowne SS, Estarziau M, Kranker K, Michalopoulos C, Warren A, et al. The Effects of Home Visiting on Prenatal Health, Birth Outcomes, and Health Care Use in the First Year of Life: Final Implementation and Impact Findings from the Mother and Infant Home Visiting Program Evaluation-Strong Start. Washington, DC; 2019.
8. Olds DL. Prenatal and Infancy Home Visiting by Nurses: From Randomized Trials to Community Replication. Prev Sci. 2002;3(3):153–72.
9. Kistka ZAF, Palomar L, Lee KA, Boslaugh SE, Wangler MF, Cole FS, et al. Racial Disparity in the Frequency of Recurrence of Preterm Birth. Am J Obstet Gynecol. 2007;196(2):131.e1-131.e6.
10. Petersen CB, Mortensen LH, Morgen CS, Madsen M, Schnor O, Arntzen A, et al. Socio-Economic Inequality in Preterm Birth: A Comparative Study of the Nordic Countries from 1981 to 2000. Paediatr Perinat Epidemiol. 2009;23(1):66–75.
11. Snelgrove JW, Murphy KE. Preterm Birth and Social Inequality: Assessing the Effects of Material and Psychosocial Disadvantage in a UK Birth Cohort. Acta Obstet Gynecol Scand. 2015;94(7):766–75.
12. Nurse-Family Partnership. Nurse-Family Partnership Homepage [Internet]. 2020 [cited 2020 May 4]. Available from: https://www.nursefamilypartnership.org/
13. Valero De Bernabé J, Soriano T, Albaladejo R, Juarranz M, Calle ME, Martínez D, et al. Risk Factors for Low Birth Weight: A Review. Eur J Obstet Gynecol Reprod Biol. 2004;116(1):3–15.
14. Kleinman JC, Madans JH. The Effects of Maternal Smoking, Physical Stature, and Educational Attainment on the Incidence of Low Birth Weight. Am J Epidemiol. 1985;121(6):843–55.
15. Tu J V., Weinstein MC, McNeil BJ, Naylor CD. Predicting Mortality after Coronary Artery Bypass Surgery: What Do Artificial Neural Networks Learn? Med Decis Making. 1998;18(2):229–35.
16. Saritas I. Prediction of Breast Cancer Using Artificial Neural Networks. J Med Syst. 2012;36(5):2901–7.
17. Han DH, Lee S, Seo DC. Using Machine Learning to Predict Opioid Misuse among U.S. Adolescents. Prev Med. 2020;130.
18. Scarafoni D, Telfer BA, Ricke DO, Thornton JR, Comolli J. Predicting Influenza A Tropism with End-to-End Learning of Deep Networks. Health Secur. 2019;17(6):468–76.
19. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, et al. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition. JAMA Psychiatry. 2009;66(7):700–12.
20. Lecun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015;521(7553):436–44.
21. Roth J. NCHS’ Vital Statistics Natality Birth Data [Internet]. The National Bureau of Economic Research. 2018 [cited 2019 Dec 5]. Available from: http://www.nber.org/data/vital-statistics-natality-data.html
22. Joyce A Martin, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 2016. Natl Vital Stat Rep. 2018;67(1):1–55.
23. Brämer GR. ICD-10 : International Statistical Classification of Diseases and Related Health Problems : Tenth Revision. 2nd ed. 2004.
24. Bishop CM. Pattern Recognition and Machine Learning. New York, NY: Springer; 2006.
25. Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference of Artificial Intelligence. 1995.
26. Johnson JM, Khoshgoftaar TM. Survey on Deep Learning with Class Imbalance. J Big Data. 2019;6(1).