References
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L., Han, X., 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob. Change Biol. 16, 358–372.
Bayliss, P., Choquenot, D., 2002. The numerical response: rate of increase and food limitation in herbivores and predators. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1233–1248. https://doi.org/10.1098/rstb.2002.1124
Belovsky, G.E., 1986. Optimal foraging and community structure: implications for a guild of generalist grassland herbivores. Oecologia 70, 35–52.
Benoit, L., Hewison, A.M., Coulon, A., Debeffe, L., Grémillet, D., Ducros, D., Cargnelutti, B., Chaval, Y., Morellet, N., 2020. Accelerating across the landscape: The energetic costs of natal dispersal in a large herbivore. J. Anim. Ecol. 89, 173–185.
Bergman, C.M., Fryxell, J.M., Gates, C.C., Fortin, D., 2001a. Ungulate foraging strategies: energy maximizing or time minimizing? J. Anim. Ecol. 70, 289–300.
Bergman, C.M., Fryxell, J.M., Gates, C.C., Fortin, D., 2001b. Ungulate foraging strategies: energy maximizing or time minimizing? J. Anim. Ecol. 70, 289–300. https://doi.org/10.1111/j.1365-2656.2001.00496.x
Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V.M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T.G., Chaput-Bardy, A., Clobert, J., Dytham, C., Hovestadt, T., Meier, C.M., Palmer, S.C.F., Turlure, C., Travis, J.M.J., 2012. Costs of dispersal. Biol. Rev. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x
Brown, J.S., Kotler, B.P., Porter, W.P., 2017. How foraging allometries and resource dynamics could explain Bergmann’s rule and the body‐size diet relationship in mammals. Oikos 126, oik.03468. https://doi.org/10.1111/oik.03468
Chimienti, M., Desforges, J.-P., Beumer, L.T., Nabe-Nielsen, J., van Beest, F.M., Schmidt, N.M., 2020. Energetics as common currency for integrating high resolution activity patterns into dynamic energy budget-individual based models. Ecol. Model. 434, 109250. https://doi.org/10.1016/j.ecolmodel.2020.109250
Fagan, W.F., Lewis, M.A., Auger‐Méthé, M., Avgar, T., Benhamou, S., Breed, G., LaDage, L., Schlägel, U.E., Tang, W., Papastamatiou, Y.P., 2013. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329.
Fortin, D., 2006. The Allometry of Plant Spacing That Regulates Food Intake Rate in Mammalian Herbivores. Ecology 87, 1861–1866. https://doi.org/10.1890/0012-9658(2006)87[1861:TAOPST]2.0.CO;2
Gleiss, A.C., Wilson, R.P., Shepard, E.L., 2011. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol. 2, 23–33.
Gregorini, P., Gunter, S.A., Beck, P.A., 2008. Matching plant and animal processes to alter nutrient supply in strip-grazed cattle: Timing of herbage and fasting allocation1. J. Anim. Sci. 86, 1006–1020. https://doi.org/10.2527/jas.2007-0432
Gross, J.E., Zank, C., Hobbs, N.T., Spalinger, D.E., 1995. Movement rules for herbivores in spatially heterogeneous environments: responses to small scale pattern. Landsc. Ecol. 10, 209–217.
Halsey, L.G., Shepard, E.L., Wilson, R.P., 2011. Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158, 305–314.
Hazen, E.L., Friedlaender, A.S., Goldbogen, J.A., 2015. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469. https://doi.org/10.1126/sciadv.1500469
Hudson, L.N., Isaac, N.J., Reuman, D.C., 2013. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020.
Hudson, R., 2018. Body size, energetics, and adaptive radiation, in: Bioenergetics of Wild Herbivores. CRC Press, pp. 1–24.
Illius, A.W., Gordon, I.J., 1992. Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89, 428–434.
John R., S., Król, E., 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746. https://doi.org/10.1111/j.1365-2656.2010.01689.x
Kamra, D.N., Pawar, M., Singh, B., 2012. Effect of plant secondary metabolites on rumen methanogens and methane emissions by ruminants. Diet. Phytochem. Microbes 351–370.
Karasov, W.H., 1992. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32, 238–248.
Klarevas‐Irby, J.A., Wikelski, M., Farine, D.R., 2021. Efficient movement strategies mitigate the energetic cost of dispersal. Ecol. Lett. 24, 1432–1442. https://doi.org/10.1111/ele.13763
Li, C., Alatengdalai, Xue, S., Tajima, A., Ishikawa, N., 2015. Estimation of herbage intake and digestibility of grazing sheep in Zhenglan Banner of Inner Mongolia by using n-alkanes. Anim. Nutr. 1, 324–328. https://doi.org/10.1016/j.aninu.2015.11.004
McLean, J.A., 1972. On the calculation of heat production from open-circuit calorimetric measurements. Br. J. Nutr. 27, 597–600.
Miwa, M., Oishi, K., Nakagawa, Y., Maeno, H., Anzai, H., Kumagai, H., Okano, K., Tobioka, H., Hirooka, H., 2015. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: relationship with heart rate. PloS One 10, e0128042.
Mysterud, A., 2006. The concept of overgrazing and its role in management of large herbivores. Wildl. Biol. 12, 129–141.
Nagy, K.A., 2005. Field metabolic rate and body size. J. Exp. Biol. 208, 1621–1625.
Nagy, K.A., Girard, I.A., Brown, T.K., 1999. ENERGETICS OF FREE-RANGING MAMMALS, REPTILES, AND BIRDS. Annu. Rev. Nutr. 19, 247–277. https://doi.org/10.1146/annurev.nutr.19.1.247
Norberg, R.Å., 2021. To minimize foraging time, use high‐efficiency, energy‐expensive search and capture methods when food is abundant but low‐efficiency, low‐cost methods during food shortages. Ecol. Evol. 11, 16537–16546.
Oonincx, D.G.A.B., Broekhoven, S. van, Huis, A. van, Loon, J.J.A. van, 2015. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLOS ONE 10, e0144601. https://doi.org/10.1371/journal.pone.0144601
Pyke, G.H., 1984. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575.
Roehe, R., Dewhurst, R.J., Duthie, C.-A., Rooke, J.A., McKain, N., Ross, D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M., Wallace, R.J., 2016. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLOS Genet. 12, e1005846. https://doi.org/10.1371/journal.pgen.1005846
Sanna, F., Re, G.A., Piluzza, G., Campesi, G., Sulas, L., 2019. Forage yield, nutritive value and N-fixation ability of legume based swards are affected by light intensity in a Mediterranean agroforestry system. Agrofor. Syst. 93, 2151–2161.
Shipley, L.A., 2007. The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116, 1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x
Sollenberger, L.E., Agouridis, C.T., Vanzant, E.S., Franzluebbers, A.J., Owens, L.B., 2012. Prescribed grazing on pasturelands.
Spalinger, D.E., Hobbs, N.T., 1992. Mechanisms of foraging in mammalian herbivores: new models of functional response. Am. Nat. 140, 325–348.
Speakman, J.R., Chi, Q., Ołdakowski, Ł., Fu, H., Fletcher, Q.E., Hambly, C., Togo, J., Liu, X., Piertney, S.B., Wang, X., Zhang, L., Redman, P., Wang, L., Tang, G., Li, Y., Cui, J., Thomson, P.J., Wang, Z., Glover, P., Robertson, O.C., Zhang, Y., Wang, D., 2021. Surviving winter on the Qinghai-Tibetan Plateau: Pikas suppress energy demands and exploit yak feces to survive winter. Proc. Natl. Acad. Sci. 118, e2100707118. https://doi.org/10.1073/pnas.2100707118
Speakman, J.R., Król, E., 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746. https://doi.org/10.1111/j.1365-2656.2010.01689.x
Stigter, J.D., Van Langevelde, F., 2004. Optimal harvesting in a two-species model under critical depensation: the case of optimal harvesting in semi-arid grazing systems. Ecol. Model. 179, 153–161.
Vallentine, J.F., 2000. Grazing management. Elsevier.
Van der Graaf, A.J., Stahl, J., Bakker, J.P., 2005. Compensatory Growth of Festuca rubra after Grazing: Can Migratory Herbivores Increase Their Own Harvest during Staging? Funct. Ecol. 19, 961–969.
Van Dyck, H., Baguette, M., 2005. Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic Appl. Ecol. 6, 535–545. https://doi.org/10.1016/j.baae.2005.03.005
Van Soest, P.J., 2018. Nutritional ecology of the ruminant. Cornell university press.
Van Soest, P.J., 1996. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 15, 455–479.
Venter, J.A., Vermeulen, M.M., Brooke, C.F., 2019. Feeding ecology of large browsing and grazing herbivores. Ecol. Brows. Grazing II 127–153.
Wang, J., Bell, M., Liu, X., Liu, G., 2020. Machine-learning techniques can enhance dairy cow estrus detection using location and acceleration data. Animals 10, 1160.
White, C.R., Blackburn, T.M., Seymour, R.S., 2009. Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63, 2658–2667.
Williams, T.M., Wolfe, L., Davis, T., Kendall, T., Richter, B., Wang, Y., Bryce, C., Elkaim, G.H., Wilmers, C.C., 2014. Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. Science 346, 81–85. https://doi.org/10.1126/science.1254885
Wilmshurst, J.F., Fryxell, J.M., Bergman, C.M., 2000. The allometry of patch selection in ruminants. Proc. R. Soc. Lond. B Biol. Sci. 267, 345–349. https://doi.org/10.1098/rspb.2000.1007
Wilson, R.P., Neate, A., Holton, M.D., Shepard, E.L.C., Scantlebury, D.M., Lambertucci, S.A., Di Virgilio, A., Crooks, E., Mulvenna, C., Marks, N., 2018. Luck in Food Finding Affects Individual Performance and Population Trajectories. Curr. Biol. 28, 3871-3877.e5. https://doi.org/10.1016/j.cub.2018.10.034
Yu, H., Klaassen, M., 2021. R package for animal behavior classification from accelerometer data—rabc. Ecol. Evol. 11, 12364–12377.
Zubieta, A.S., Marín, A., Savian, J.V., Soares Bolzan, A.M., Rossetto, J., Barreto, M.T., Bindelle, J., Bremm, C., Quishpe, L.V., Valle, S. de F., 2021. Low-intensity, high-frequency grazing positively affects defoliating behavior, nutrient intake and blood indicators of nutrition and stress in sheep. Front. Vet. Sci. 8, 631820.