References
1. Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic
and research gaps: Understanding SARS-CoV-2 interaction with the ACE2
receptor and implications for therapy. Theranostics 2020; 10: 7448–64.
2. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li
B, Huang C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen
Y, Shen X-R, Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan
B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L. A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature 2020;
579: 270–3.
3. Yang J, Li H, Hu S, Zhou Y. ACE2 correlated with immune infiltration
serves as a prognostic biomarker in endometrial carcinoma and renal
papillary cell carcinoma: implication for COVID-19. Aging 2020; 12:
6518–35.
4. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ,
Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2:
SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System:
Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res
2020; 126: 1456–74.
5. Li Y, Zhou W, Yang L, You R. Physiological and pathological
regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157:
104833.
6. Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/Angiotensin
1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res
2016; 118: 1313–26.
7. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator
of the renin-angiotensin system. Trends Endocrinol Metab TEM 2004; 15:
166–9.
8. Chávez-Valencia V, Orizaga-de-la-Cruz C, Lagunas-Rangel FA. Acute
Kidney Injury in COVID-19 Patients: Pathogenesis, Clinical
Characteristics, Therapy, and Mortality. Dis Basel Switz 2022; 10: 53.
9. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link
between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020;
76: 14–20.
10. Marjot T, Webb GJ, Barritt AS, Moon AM, Stamataki Z, Wong VW, Barnes
E. COVID-19 and liver disease: mechanistic and clinical perspectives.
Nat Rev Gastroenterol Hepatol 2021; 18: 348–64.
11. Zhang Z, Li L, Li M, Wang X. The SARS-CoV-2 host cell receptor ACE2
correlates positively with immunotherapy response and is a potential
protective factor for cancer progression. Comput Struct Biotechnol J
2020; 18: 2438–44.
12. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO.
SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3
candidates. NPJ Vaccines 2021; 6: 28.
13. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison
EM, Ludden C, Reeve R, Rambaut A, COVID-19 Genomics UK (COG-UK)
Consortium, Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike
mutations and immune escape. Nat Rev Microbiol 2021; 19: 409–24.
14. Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser
BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, Sigal A, Schmidt
AG, Iafrate AJ, Naranbhai V, Balazs AB. Multiple SARS-CoV-2 variants
escape neutralization by vaccine-induced humoral immunity. Cell 2021;
184: 2372-2383.e9.
15. Cele S, Gazy I, Jackson L, Hwa S-H, Tegally H, Lustig G, Giandhari
J, Pillay S, Wilkinson E, Naidoo Y, Karim F, Ganga Y, Khan K, Bernstein
M, Balazs AB, Gosnell BI, Hanekom W, Moosa M-YS, Network for Genomic
Surveillance in South Africa, COMMIT-KZN Team, Lessells RJ, de Oliveira
T, Sigal A. Escape of SARS-CoV-2 501Y.V2 from neutralization by
convalescent plasma. Nature 2021; 593: 142–6.
16. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q,
Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y,
Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao
J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2
neutralizing antibodies. Nature 2022; 602: 657–63.
17. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F,
Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, Prot M, Gallais
F, Gantner P, Velay A, Le Guen J, Kassis-Chikhani N, Edriss D, Belec L,
Seve A, Courtellemont L, Péré H, Hocqueloux L, Fafi-Kremer S, Prazuck T,
Mouquet H, Bruel T, Simon-Lorière E, Rey FA, Schwartz O. Reduced
sensitivity of SARS-CoV-2 variant Delta to antibody neutralization.
Nature 2021; 596: 276–80.
18. Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M,
Gaebler C, Cho A, Agudelo M, Finkin S, Wang Z, Poston D, Muecksch F,
Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ,
Bloom JD. Mapping mutations to the SARS-CoV-2 RBD that escape binding by
different classes of antibodies. Nat Commun 2021; 12: 4196.
19. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall
S, Stowe J, Tessier E, Groves N, Dabrera G, Myers R, Campbell CNJ,
Amirthalingam G, Edmunds M, Zambon M, Brown KE, Hopkins S, Chand M,
Ramsay M. Effectiveness of Covid-19 Vaccines against the B.1.617.2
(Delta) Variant. N Engl J Med 2021; 385: 585–94.
20. Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S,
Ito M, Iwatsuki-Horimoto K, Chiba S, Halfmann P, Nagai H, Saito M,
Adachi E, Sullivan D, Pekosz A, Watanabe S, Maeda K, Imai M, Yotsuyanagi
H, Mitsuya H, Ohmagari N, Takeda M, Hasegawa H, Kawaoka Y. Efficacy of
Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl
J Med 2022; 386: 995–8.
21. Peng Q, Zhou R, Wang Y, Zhao M, Liu N, Li S, Huang H, Yang D, Au
K-K, Wang H, Man K, Yuen K-Y, Chen Z. Waning immune responses against
SARS-CoV-2 variants of concern among vaccinees in Hong Kong.
EBioMedicine 2022; 77: 103904.
22. Gaziano L, Giambartolomei C, Pereira AC, Gaulton A, Posner DC,
Swanson SA, Ho Y-L, Iyengar SK, Kosik NM, Vujkovic M, Gagnon DR, Bento
AP, Barrio-Hernandez I, Rönnblom L, Hagberg N, Lundtoft C, Langenberg C,
Pietzner M, Valentine D, Gustincich S, Tartaglia GG, Allara E, Surendran
P, Burgess S, Zhao JH, Peters JE, Prins BP, Angelantonio ED, Devineni P,
Shi Y, Lynch KE, DuVall SL, Garcon H, Thomann LO, Zhou JJ, Gorman BR,
Huffman JE, O’Donnell CJ, Tsao PS, Beckham JC, Pyarajan S, Muralidhar S,
Huang GD, Ramoni R, Beltrao P, Danesh J, Hung AM, Chang K-M, Sun YV,
Joseph J, Leach AR, Edwards TL, Cho K, Gaziano JM, Butterworth AS, Casas
JP, VA Million Veteran Program COVID-19 Science Initiative. Actionable
druggable genome-wide Mendelian randomization identifies repurposing
opportunities for COVID-19. Nat Med 2021; 27: 668–76.
23. Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes
CO, Hsiang T-Y, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T,
Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng
H, Clairmont NS, Castellanos J, Lin Y-R, Josephson-Day A, Baric RS,
Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M,
Blancas-Mejia LM, Yen H-L, Silva D-A. De novo design of potent and
resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020; 370:
1208–14.
24. Higuchi Y, Suzuki T, Arimori T, Ikemura N, Mihara E, Kirita Y,
Ohgitani E, Mazda O, Motooka D, Nakamura S, Sakai Y, Itoh Y, Sugihara F,
Matsuura Y, Matoba S, Okamoto T, Takagi J, Hoshino A. Engineered ACE2
receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun
2021; 12: 3802.
25. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada
T, Leong-Poi H, Crackower MA, Fukamizu A, Hui C-C, Hein L, Uhlig S,
Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2
protects from severe acute lung failure. Nature 2005; 436: 112–6.
26. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M,
Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP,
Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A,
Penninger JM. Inhibition of SARS-CoV-2 Infections in Engineered Human
Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020; 181:
905-913.e7.
27. Monteil V, Eaton B, Postnikova E, Murphy M, Braunsfeld B, Crozier I,
Kricek F, Niederhöfer J, Schwarzböck A, Breid H, Devignot S, Klingström
J, Thålin C, Kellner MJ, Christ W, Havervall S, Mereiter S, Knapp S,
Sanchez Jimenez A, Bugajska-Schretter A, Dohnal A, Ruf C, Gugenberger R,
Hagelkruys A, Montserrat N, Kozieradzki I, Hasan Ali O, Stadlmann J,
Holbrook MR, Schmaljohn C, Oostenbrink C, Shoemaker RH, Mirazimi A,
Wirnsberger G, Penninger JM. Clinical grade ACE2 as a universal agent to
block SARS-CoV-2 variants. EMBO Mol Med 2022; 14: e15230.
28. Shoemaker RH, Panettieri RA, Libutti SK, Hochster HS, Watts NR,
Wingfield PT, Starkl P, Pimenov L, Gawish R, Hladik A, Knapp S, Boring
D, White JM, Lawrence Q, Boone J, Marshall JD, Matthews RL, Cholewa BD,
Richig JW, Chen BT, McCormick DL, Gugensberger R, Höller S, Penninger
JM, Wirnsberger G. Development of an aerosol intervention for COVID-19
disease: Tolerability of soluble ACE2 (APN01) administered via
nebulizer. PloS One 2022; 17: e0271066.
29. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the
cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318:
H1084–90.
30. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, Busse LW,
Altaweel L, Albertson TE, Mackey C, McCurdy MT, Boldt DW, Chock S, Young
PJ, Krell K, Wunderink RG, Ostermann M, Murugan R, Gong MN, Panwar R,
Hästbacka J, Favory R, Venkatesh B, Thompson BT, Bellomo R, Jensen J,
Kroll S, Chawla LS, Tidmarsh GF, Deane AM, ATHOS-3 Investigators.
Angiotensin II for the Treatment of Vasodilatory Shock. N Engl J Med
2017; 377: 419–30.
31. Huang L, Sexton DJ, Skogerson K, Devlin M, Smith R, Sanyal I, Parry
T, Kent R, Enright J, Wu Q, Conley G, DeOliveira D, Morganelli L, Ducar
M, Wescott CR, Ladner RC. Novel peptide inhibitors of
angiotensin-converting enzyme 2. J Biol Chem 2003; 278: 15532–40.
32. Zhu H, Zhang H, Zhou N, Ding J, Jiang J, Liu T, Liu Z, Wang F, Zhang
Q, Zhang Z, Yan S, Li L, Benabdallah N, Jin H, Liu Z, Cai L, Thorek DLJ,
Yang X, Yang Z. Molecular PET/CT Profiling of ACE2 Expression In Vivo:
Implications for Infection and Outcome from SARS-CoV-2. Adv Sci Weinh
Baden-Wurtt Ger 2021; 8: e2100965.
33. Liu S, Li G, Ding L, Ding J, Zhang Q, Li D, Hou X, Kong X, Zou J,
Zhang S, Han H, Wan Y, Yang Z, Zhu H. Evaluation of
SARS-CoV-2-Neutralizing Nanobody Using Virus Receptor Binding
Domain-Administered Model Mice. Res Wash DC 2022; 2022: 9864089.
34. Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L,
Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S,
Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley
P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M,
Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC,
Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi
SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H,
Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell
C, Valentijn A, Illingworth CJR, UK-PBC research consortium, Dahman B,
Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta
RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee
J-H, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE,
Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR
inhibition may protect from SARS-CoV-2 infection by reducing ACE2.
Nature 2022 Dec 5. doi: 10.1038/s41586-022-05594-0
35. An X, Lin W, Liu H, Zhong W, Zhang X, Zhu Y, Wang X, Li J, Sheng Q.
SARS-CoV-2 Host Receptor ACE2 Protein Expression Atlas in Human
Gastrointestinal Tract. Front Cell Dev Biol 2021; 9: 659809.
36. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation
Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure
of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation
2021; 44: 13–34.
37. Gracia-Ramos AE, Jaquez-Quintana JO, Contreras-Omaña R, Auron M.
Liver dysfunction and SARS-CoV-2 infection. World J Gastroenterol 2021;
27: 3951–70.
38. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C.
Nervous system involvement after infection with COVID-19 and other
coronaviruses. Brain Behav Immun 2020; 87: 18–22.
39. Liguori C, Pierantozzi M, Spanetta M, Sarmati L, Cesta N, Iannetta
M, Ora J, Mina GG, Puxeddu E, Balbi O, Pezzuto G, Magrini A, Rogliani P,
Andreoni M, Mercuri NB. Subjective neurological symptoms frequently
occur in patients with SARS-CoV2 infection. Brain Behav Immun 2020; 88:
11–6.
40. Paterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha
T, Jayaseelan DL, Kumar G, Raftopoulos RE, Zambreanu L, Vivekanandam V,
Khoo A, Geraldes R, Chinthapalli K, Boyd E, Tuzlali H, Price G,
Christofi G, Morrow J, McNamara P, McLoughlin B, Lim ST, Mehta PR, Levee
V, Keddie S, Yong W, Trip SA, Foulkes AJM, Hotton G, Miller TD, Everitt
AD, Carswell C, Davies NWS, Yoong M, Attwell D, Sreedharan J, Silber E,
Schott JM, Chandratheva A, Perry RJ, Simister R, Checkley A, Longley N,
Farmer SF, Carletti F, Houlihan C, Thom M, Lunn MP, Spillane J, Howard
R, Vincent A, Werring DJ, Hoskote C, Jäger HR, Manji H, Zandi MS. The
emerging spectrum of COVID-19 neurology: clinical, radiological and
laboratory findings. Brain J Neurol 2020; 143: 3104–20.
41. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P,
Zandi MS, Lewis G, David AS. Psychiatric and neuropsychiatric
presentations associated with severe coronavirus infections: a
systematic review and meta-analysis with comparison to the COVID-19
pandemic. Lancet Psychiatry 2020; 7: 611–27.
42. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain,
fatigue, depression and disordered sleep in chronic post-SARS syndrome;
a case-controlled study. BMC Neurol 2011; 11: 37.
43. Guedj E, Million M, Dudouet P, Tissot-Dupont H, Bregeon F,
Cammilleri S, Raoult D. 18F-FDG brain PET hypometabolism in
post-SARS-CoV-2 infection: substrate for persistent/delayed disorders?
Eur J Nucl Med Mol Imaging 2021; 48: 592–5.
44. de Paula JJ, Paiva RERP, Souza-Silva NG, Rosa DV, Duran FL de S,
Coimbra RS, Costa D de S, Dutenhefner PR, Oliveira HSD, Camargos ST,
Vasconcelos HMM, de Oliveira Carvalho N, da Silva JB, Silveira MB,
Malamut C, Oliveira DM, Molinari LC, de Oliveira DB, Januário JN, Silva
LC, De Marco LA, Queiroz DM de M, Meira W, Busatto G, Miranda DM,
Romano-Silva MA. Selective visuoconstructional impairment following mild
COVID-19 with inflammatory and neuroimaging correlation findings. Mol
Psychiatry 2022; 1–11.
45. Rudroff T, Workman CD, Ponto LLB. 18F-FDG-PET Imaging for
Post-COVID-19 Brain and Skeletal Muscle Alterations. Viruses 2021; 13:
2283.
46. Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M,
Thurow J, Wagner D, Waller C, Niesen WD, Frings L, Urbach H, Prinz M,
Weiller C, Schroeter N, Meyer PT. Cognitive impairment and altered
cerebral glucose metabolism in the subacute stage of COVID-19. Brain J
Neurol 2021; 144: 1263–76.
47. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y.
ACE2 inhibits breast cancer angiogenesis via suppressing the
VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res CR 2019; 38: 173.
48. Chai P, Yu J, Ge S, Jia R, Fan X. Genetic alteration, RNA
expression, and DNA methylation profiling of coronavirus disease 2019
(COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J
Hematol OncolJ Hematol Oncol 2020; 13: 43.
49. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang
Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D,
Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A
crucial role of angiotensin converting enzyme 2 (ACE2) in SARS
coronavirus-induced lung injury. Nat Med 2005; 11: 875–9.