References
Blum, T. R., Liu, H., Packer, M. S., Xiong, X., Lee, P.-G., Zhang, S., Richter, M., Minasov, G., Satchell, K. J. F., Dong, M., & Liu, D. R. (2021). Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. Science , 371 (6531), 803-810. https://doi.org/doi:10.1126/science.abf5972
Chang, C., Amer, B. R., Osipiuk, J., McConnell, S. A., Huang, I.-H., Hsieh, V., Fu, J., Nguyen, H. H., Muroski, J., Flores, E., Ogorzalek Loo, R. R., Loo, J. A., Putkey, J. A., Joachimiak, A., Das, A., Clubb, R. T., & Ton-That, H. (2018). In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proceedings of the National Academy of Sciences , 115 (24), E5477-E5486. https://doi.org/doi:10.1073/pnas.1800954115
Chen, I., Dorr, B. M., & Liu, D. R. (2011). A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A , 108 (28), 11399-11404. https://doi.org/10.1073/pnas.1101046108
Chung, H. K., & Lin, M. Z. (2020). On the cutting edge: protease-based methods for sensing and controlling cell biology. Nature Methods ,17 (9), 885-896. https://doi.org/10.1038/s41592-020-0891-z
Chung, H. K., & Lin, M. Z. (2020). On the cutting edge: protease-based methods for sensing and controlling cell biology. Nat Methods ,17 (9), 885-896. https://doi.org/10.1038/s41592-020-0891-z
Cleveland, J. D., Taslimi, A., Liu, Q., Van Keuren, A. M., Churchill, M. E. A., & Tucker, C. L. (2022). Reprogramming the Cleavage Specificity of Botulinum Neurotoxin Serotype B1. ACS Synth Biol ,11 (10), 3318-3329. https://doi.org/10.1021/acssynbio.2c00235
Denard, C. A., Paresi, C., Yaghi, R., McGinnis, N., Bennett, Z., Yi, L., Georgiou, G., & Iverson, B. L. (2021). YESS 2.0, a Tunable Platform for Enzyme Evolution, Yields Highly Active TEV Protease Variants. ACS Synth Biol , 10 (1), 63-71. https://doi.org/10.1021/acssynbio.0c00452
Deweid, L., Neureiter, L., Englert, S., Schneider, H., Deweid, J., Yanakieva, D., Sturm, J., Bitsch, S., Christmann, A., Avrutina, O., Fuchsbauer, H.-L., & Kolmar, H. (2018). Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. Chemistry – A European Journal , 24 (57), 15195-15200. https://doi.org/https://doi.org/10.1002/chem.201803485
Dickgiesser, S., Deweid, L., Kellner, R., Kolmar, H., & Rasche, N. (2019). Site-Specific Antibody-Drug Conjugation Using Microbial Transglutaminase. Methods Mol Biol , 2012 , 135-149. https://doi.org/10.1007/978-1-4939-9546-2_8
Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L., & Liu, D. R. (2014). Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A , 111 (37), 13343-13348. https://doi.org/10.1073/pnas.1411179111
Dyer, R. P., & Weiss, G. A. (2022). Making the cut with protease engineering. Cell Chemical Biology , 29 (2), 177-190. https://doi.org/https://doi.org/10.1016/j.chembiol.2021.12.001
Ezagui, J., Russell, B., Mairena, Y., & Stern, L. A. (2022). Endoplasmic reticulum sequestration empowers phosphorylation profiling on the yeast surface. AIChE Journal , 68 (12), e17931. https://doi.org/https://doi.org/10.1002/aic.17931
Fink, T., & Jerala, R. (2022). Designed protease-based signaling networks. Curr Opin Chem Biol , 68 , 102146. https://doi.org/10.1016/j.cbpa.2022.102146
Gai, S. A., & Wittrup, K. D. (2007). Yeast surface display for protein engineering and characterization. Current Opinion in Structural Biology , 17 (4), 467-473. https://doi.org/https://doi.org/10.1016/j.sbi.2007.08.012
Gao, X. J., Chong, L. S., Kim, M. S., & Elowitz, M. B. (2018). Programmable protein circuits in living cells. Science ,361 (6408), 1252-1258. https://doi.org/doi:10.1126/science.aat5062
Giansanti, P., Tsiatsiani, L., Low, T. Y., & Heck, A. J. (2016). Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc , 11 (5), 993-1006. https://doi.org/10.1038/nprot.2016.057
Guerrero, J. L., O’Malley, M. A., & Daugherty, P. S. (2016). Intracellular FRET-based Screen for Redesigning the Specificity of Secreted Proteases. ACS Chem Biol , 11 (4), 961-970. https://doi.org/10.1021/acschembio.5b01051
Johnson, J. L., Yaron, T. M., Huntsman, E. M., Kerelsky, A., Song, J., Regev, A., Lin, T.-Y., Liberatore, K., Cizin, D. M., Cohen, B. M., Vasan, N., Ma, Y., Krismer, K., Robles, J. T., van de Kooij, B., van Vlimmeren, A. E., Andrée-Busch, N., Käufer, N. F., Dorovkov, M. V., . . . Cantley, L. C. (2023). An atlas of substrate specificities for the human serine/threonine kinome. Nature , 613 (7945), 759-766. https://doi.org/10.1038/s41586-022-05575-3
Kim, M. W., Wang, W., Sanchez, M. I., Coukos, R., von Zastrow, M., & Ting, A. Y. (2017). Time-gated detection of protein-protein interactions with transcriptional readout. Elife , 6 , e30233. https://doi.org/10.7554/eLife.30233
Knyphausen, P., Rangel Pereira, M., Brear, P., Hyvönen, M., Jermutus, L., & Hollfelder, F. (2023). Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture.Nature Communications , 14 (1), 768. https://doi.org/10.1038/s41467-023-36099-7
Lamote, B., da Fonseca, M. J. M., Vanderstraeten, J., Meert, K., Elias, M., & Briers, Y. (2023). Current challenges in designer cellulosome engineering. Appl Microbiol Biotechnol , 107 (9), 2755-2770. https://doi.org/10.1007/s00253-023-12474-8
Li, Q., Yi, L., Hoi, K. H., Marek, P., Georgiou, G., & Iverson, B. L. (2017). Profiling Protease Specificity: Combining Yeast ER Sequestration Screening (YESS) with Next Generation Sequencing. ACS Chem Biol ,12 (2), 510-518. https://doi.org/10.1021/acschembio.6b00547
Lim, S., Glasgow, J. E., Filsinger Interrante, M., Storm, E. M., & Cochran, J. R. (2017). Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnology Journal , 12 (5), 1600696. https://doi.org/https://doi.org/10.1002/biot.201600696
Lopez, T., Mustafa, Z., Chen, C., Lee, K. B., Ramirez, A., Benitez, C., Luo, X., Ji, R. R., & Ge, X. (2019). Functional selection of protease inhibitory antibodies. Proc Natl Acad Sci U S A , 116 (33), 16314-16319. https://doi.org/10.1073/pnas.1903330116
Mei, M., Zhai, C., Li, X., Zhou, Y., Peng, W., Ma, L., Wang, Q., Iverson, B. L., Zhang, G., & Yi, L. (2017). Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem ,292 (50), 20707-20719. https://doi.org/10.1074/jbc.M117.812107
Morgan, H. E., Turnbull, W. B., & Webb, M. E. (2022). Challenges in the use of sortase and other peptide ligases for site-specific protein modification [10.1039/D0CS01148G]. Chemical Society Reviews ,51 (10), 4121-4145. https://doi.org/10.1039/D0CS01148G
Pethe, M. A., Rubenstein, A. B., & Khare, S. D. (2019). Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc Natl Acad Sci U S A ,116 (1), 168-176. https://doi.org/10.1073/pnas.1805256116
Pishesha, N., Ingram, J. R., & Ploegh, H. L. (2018). Sortase A: A Model for Transpeptidation and Its Biological Applications. Annu Rev Cell Dev Biol , 34 , 163-188. https://doi.org/10.1146/annurev-cellbio-100617-062527
Podracky, C. J., An, C., DeSousa, A., Dorr, B. M., Walsh, D. M., & Liu, D. R. (2021). Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nature Chemical Biology , 17 (3), 317-325. https://doi.org/10.1038/s41589-020-00706-1
Raeeszadeh-Sarmazdeh, M., & Boder, E. T. (2022). Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. In M. W. Traxlmayr (Ed.), Yeast Surface Display (pp. 3-25). Springer US. https://doi.org/10.1007/978-1-0716-2285-8_1
Ramesh, B., Abnouf, S., Mali, S., Moree, W. J., Patil, U., Bark, S. J., & Varadarajan, N. (2019). Engineered ChymotrypsiN for Mass Spectrometry-Based Detection of Protein Glycosylation. ACS Chemical Biology , 14 (12), 2616-2628. https://doi.org/10.1021/acschembio.9b00506
Rashidian, M., Dozier, J. K., & Distefano, M. D. (2013). Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem ,24 (8), 1277-1294. https://doi.org/10.1021/bc400102w
Reddington, S. C., & Howarth, M. (2015). Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher.Current Opinion in Chemical Biology , 29 , 94-99. https://doi.org/https://doi.org/10.1016/j.cbpa.2015.10.002
Sanchez, M. I., & Ting, A. Y. (2020). Directed evolution improves the catalytic efficiency of TEV protease. Nature Methods ,17 (2), 167-174. https://doi.org/10.1038/s41592-019-0665-7
Schilling, O., & Overall, C. M. (2007). Proteomic discovery of protease substrates. Current Opinion in Chemical Biology , 11 (1), 36-45. https://doi.org/https://doi.org/10.1016/j.cbpa.2006.11.037
Schräder, C. U., Lee, L., Rey, M., Sarpe, V., Man, P., Sharma, S., Zabrouskov, V., Larsen, B., & Schriemer, D. C. (2017). Neprosin, a Selective Prolyl Endoprotease for Bottom-up Proteomics and Histone Mapping. Mol Cell Proteomics , 16 (6), 1162-1171. https://doi.org/10.1074/mcp.M116.066803
Sellamuthu, S., Shin, B. H., Han, H. E., Park, S. M., Oh, H. J., Rho, S. H., Lee, Y. J., & Park, W. J. (2011). An engineered viral protease exhibiting substrate specificity for a polyglutamine stretch prevents polyglutamine-induced neuronal cell death. PLoS One , 6 (7), e22554. https://doi.org/10.1371/journal.pone.0022554
Shankar, R., Upadhyay, P. K., & Kumar, M. (2021). Protease Enzymes: Highlights on Potential of Proteases as Therapeutics Agents.International Journal of Peptide Research and Therapeutics ,27 (2), 1281-1296. https://doi.org/10.1007/s10989-021-10167-2
Taft, J. M., Georgeon, S., Allen, C., Reckel, S., DeSautelle, J., Hantschel, O., Georgiou, G., & Iverson, B. L. (2019). Rapid Screen for Tyrosine Kinase Inhibitor Resistance Mutations and Substrate Specificity. ACS Chem Biol , 14 (9), 1888-1895. https://doi.org/10.1021/acschembio.9b00283
Tran, D. T., Cavett, V. J., Dang, V. Q., Torres, H. L., & Paegel, B. M. (2016). Evolution of a mass spectrometry-grade protease with PTM-directed specificity. Proc Natl Acad Sci U S A ,113 (51), 14686-14691. https://doi.org/10.1073/pnas.1609925113
Varadarajan, N., Cantor, J. R., Georgiou, G., & Iverson, B. L. (2009). Construction and flow cytometric screening of targeted enzyme libraries.Nat Protoc , 4 (6), 893-901. https://doi.org/10.1038/nprot.2009.60
Varadarajan, N., Gam, J., Olsen, M. J., Georgiou, G., & Iverson, B. L. (2005). Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc Natl Acad Sci U S A , 102 (19), 6855-6860. https://doi.org/10.1073/pnas.0500063102
Waldman, A. C., Rao, B. M., & Keung, A. J. (2021). Mapping the residue specificities of epigenome enzymes by yeast surface display. Cell Chem Biol , 28 (12), 1772-1779.e1774. https://doi.org/10.1016/j.chembiol.2021.05.022
Wang, W., Wildes, C. P., Pattarabanjird, T., Sanchez, M. I., Glober, G. F., Matthews, G. A., Tye, K. M., & Ting, A. Y. (2017). A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol , 35 (9), 864-871. https://doi.org/10.1038/nbt.3909
Waugh, D. S. (2011). An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif , 80 (2), 283-293. https://doi.org/10.1016/j.pep.2011.08.005
Yi, L., Gebhard, M. C., Li, Q., Taft, J. M., Georgiou, G., & Iverson, B. L. (2013). Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A , 110 (18), 7229-7234. https://doi.org/10.1073/pnas.1215994110
Zhao, L., Hua, T., Crowley, C., Ru, H., Ni, X., Shaw, N., Jiao, L., Ding, W., Qu, L., Hung, L.-W., Huang, W., Liu, L., Ye, K., Ouyang, S., Cheng, G., & Liu, Z.-J. (2014). Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Research , 24 (3), 344-358. https://doi.org/10.1038/cr.2014.4