References
[1] Ghosh S. Cisplatin: The first metal based anticancer drug.
Bioorg Chem. (2019) 88 , 102925.
[2] Rani N., Bharti S., Tomar A., Dinda A.K., Arya D.S. & Bhatia J.
Inhibition of PARP activation by enalapril is crucial for its
renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free
Radic Res. (2016) 50 , 1226-36.
[3] Kuhlmann M.K., Burkhardt G. & Kohler H. Insights into potential
cellular mechanisms of cisplatin nephrotoxicity and their clinical
application. Nephrol Dial Transplant. (1997) 12 , 2478-80.
[4] Manohar S. & Leung N. Cisplatin nephrotoxicity: a review of the
literature. J Nephrol. (2018) 31 , 15-25.
[5] Kawai Y., Nakao T., Kunimura N., Kohda Y. & Gemba M.
Relationship of intracellular calcium and oxygen radicals to
Cisplatin-related renal cell injury. J Pharmacol Sci. (2006)100 , 65-72.
[6] Uran C. Through the heart and beyond: a review on ranolazine.
Monaldi Archives for Chest Disease. (2021).
[7] Aldakkak M., Camara A.K., Heisner J.S., Yang M. & Stowe D.F.
Ranolazine reduces Ca2+ overload and oxidative stress and improves
mitochondrial integrity to protect against ischemia reperfusion injury
in isolated hearts. Pharmacol Res. (2011) 64 , 381-92.
[8] Özdemir M. Ranolazin’in antianginal etki mekanizması. Turk
Kardiyol Dern Ars. (2016) 44 , 8-12.
[9] Song Y., Shryock J.C., Wagner S., Maier L.S. & Belardinelli L.
Blocking late sodium current reduces hydrogen peroxide-induced
arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp
Ther. (2006) 318 , 214-22.
[10] Zhang X.Q., Yamada S. & Barry W.H. Ranolazine inhibits an
oxidative stress-induced increase in myocyte sodium and calcium loading
during simulated-demand ischemia. J Cardiovasc Pharmacol. (2008)51 , 443-9.
[11] Duffy E.A., Fitzgerald W., Boyle K. & Rohatgi R.
Nephrotoxicity: Evidence in Patients Receiving Cisplatin Therapy. Clin J
Oncol Nurs. (2018) 22 , 175-83.
[12] Colak C. & Parlakpinar H. Animals in research: reporting In
vivo experiments: ARRIVE guidelines-review. (2012).
[13] Tasdemir C., Tasdemir S., Vardi N., Ates B., Parlakpinar H.,
Kati B., et al. Protective effect of infliximab on
ischemia/reperfusion-induced damage in rat kidney. Ren Fail. (2012)34 , 1144-9.
[14] Hiller A., Greif R.L. & Beckman W.W. Determination of protein
in urine by the biuret method. J Biol Chem. (1948) 176 , 1421-9.
[15] Uchiyama M. & Mihara M. Determination of malonaldehyde
precursor in tissues by thiobarbituric acid test. Analytical
biochemistry. (1978) 86 , 271-8.
[16] Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys.
(1959) 82 , 70-7.
[17] Sun Y., Oberley L.W. & Li Y. A simple method for clinical
assay of superoxide dismutase. Clin Chem. (1988) 34 , 497-500.
[18] Cigremis Y., Akgoz M., Ozen H., Karaman M., Kart A., Gecer M.,
et al. Resveratrol ameliorates cisplatin-induced oxidative injury in New
Zealand rabbits. Can J Physiol Pharmacol. (2015) 93 , 727-35.
[19] Yaşar Ş., Arslan A., Colak C. & Yoloğlu S. A developed
interactive web application for statistical analysis: statistical
analysis software. Middle Black Sea Journal of Health Science. (2020)6 , 227-39.
[20] Davenport A. The brain and the kidney–organ cross talk and
interactions. Blood Purif. (2008) 26 , 526-36.
[21] Aldossary S.A. Review on pharmacology of cisplatin: clinical
use, toxicity and mechanism of resistance of cisplatin. Biomedical and
Pharmacology Journal. (2019) 12 , 7-15.
[22] De Jongh F., Van Veen R., Veltman S., de Wit R., Van der Burg
M., Van den Bent M., et al. Weekly high-dose cisplatin is a feasible
treatment option: analysis on prognostic factors for toxicity in 400
patients. British journal of cancer. (2003) 88 , 1199-206.
[23] Hosoda A., Matsumoto Y., Toriyama Y., Tsuji T., Yoshida Y.,
Masamichi S., et al. Telmisartan Exacerbates Cisplatin-Induced
Nephrotoxicity in a Mouse Model. Biol Pharm Bull. (2020) 43 ,
1331-7.
[24] Ma C., Chen T., Ti Y., Yang Y., Qi Y., Zhang C., et al.
Ranolazine alleviates contrast-associated acute kidney injury through
modulation of calcium independent oxidative stress and apoptosis. Life
Sci. (2021) 267 , 118920.
[25] Park C.R., Kim H.Y., Song M.G., Lee Y.S., Youn H., Chung J.K.,
et al. Efficacy and Safety of Human Serum Albumin-Cisplatin Complex in
U87MG Xenograft Mouse Models. Int J Mol Sci. (2020) 21 .
[26] Burns C.V., Edwin S.B., Szpunar S. & Forman J.
Cisplatin-induced nephrotoxicity in an outpatient setting.
Pharmacotherapy. (2021) 41 , 184-90.
[27] Nakazawa Y., Kageyama A., Kitamura M., Mitsumori N. & Kawakubo
T. Prediction of Severe Cisplatin-Induced Neutropenia Using Serum
Albumin Concentration: A Retrospective Study. (2020).
[28] Abdel-Gayoum A.A. & Ahmida M.H.S. Changes in the serum, liver,
and renal cortical lipids and electrolytesin rabbits with
cisplatin-induced nephrotoxicity. Turkish journal of medical sciences.
(2017) 47 , 1019-27.
[29] Goren M.P. Cisplatin nephrotoxicity affects magnesium and
calcium metabolism. Med Pediatr Oncol. (2003) 41 , 186-9.
[30] Oronsky B., Caroen S., Oronsky A., Dobalian V.E., Oronsky N.,
Lybeck M., et al. Electrolyte disorders with platinum-based
chemotherapy: mechanisms, manifestations and management. Cancer
Chemother Pharmacol. (2017) 80 , 895-907.
[31] Minzi O.M.S., Lyimo T.E., Furia F.F., Marealle A.I., Kilonzi
M., Bwire G.M., et al. Electrolytes supplementation can decrease the
risk of nephrotoxicity in patients with solid tumors undergoing
chemotherapy with cisplatin. BMC Pharmacol Toxicol. (2020) 21 ,
69.
[32] Parlakpinar H., Ozhan O., Ermis N., Vardi N., Cigremis Y.,
Tanriverdi L.H., et al. Acute and Subacute Effects of Low Versus High
Doses of Standardized Panax ginseng Extract on the Heart: An
Experimental Study. Cardiovasc Toxicol. (2019) 19 , 306-20.
[33] Chirino Y.I. & Pedraza-Chaverri J. Role of oxidative and
nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol
Pathol. (2009) 61 , 223-42.
[34] Marrocco I., Altieri F. & Peluso I. Measurement and Clinical
Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell
Longev. (2017) 2017 , 6501046.
[35] Zhou H., Kato A., Miyaji T., Yasuda H., Fujigaki Y., Yamamoto
T., et al. Urinary marker for oxidative stress in kidneys in
cisplatin-induced acute renal failure in rats. Nephrol Dial Transplant.
(2006) 21 , 616-23.
[36] Yu X., Meng X., Xu M., Zhang X., Zhang Y., Ding G., et al.
Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-kappaB
and improving mitochondrial function. EBioMedicine. (2018) 36 ,
266-80.
[37] An J.H., Li C.Y., Chen C.Y., Wu J.B. & Shen H. Raloxifene
Protects Cisplatin-Induced Renal Injury in Mice via Inhibiting Oxidative
Stress. Onco Targets Ther. (2021) 14 , 4879-90.
[38] Chen X., Wei W., Li Y., Huang J. & Ci X. Hesperetin relieves
cisplatin-induced acute kidney injury by mitigating oxidative stress,
inflammation and apoptosis. Chem Biol Interact. (2019) 308 ,
269-78.
[39] Elkholy S.E. The Possible Antidiabetic Effects of Ranolazine
Versus Gliclazide In HFD/STZ-Induced Type 2 Diabetes In Male Albino
Rats. Medicine Updates. (2020) 1 , 9-28.
[40] Matsumura H., Hara A., Hashizume H., Maruyama K. & Abiko Y.
Protective effects of ranolazine, a novel anti-ischemic drug, on the
hydrogen peroxide-induced derangements in isolated, perfused rat heart:
comparison with dichloroacetate. Jpn J Pharmacol. (1998) 77 ,
31-9.
[41] Karakoc H.T., Altintas R., Parlakpinar H., Polat A., Samdanci
E., Sagir M., et al. Protective Effects of Molsidomine Against
Cisplatin-Induced Nephrotoxicity. Adv Clin Exp Med. (2015) 24 ,
585-93.
[42] Ehsan N., Ijaz M.U., Ashraf A., Sarwar S., Samad A., Afzal G.,
et al. Mitigation of cisplatin induced nephrotoxicity by casticin in
male albino rats. Braz J Biol. (2021) 83 , e243438.
[43] ullah Baig M.N., Alvi S.B., Alvala M., Sama V., Padmavathi Y.,
Ramadevi P., et al. Ranolazine as a Protective Agent Against Lung
Cancer: A Translational Approach. Asian Journal of Pharmaceutical and
Health Sciences. (2020) 10 .
[44] Su H., Wan C., Song A., Qiu Y., Xiong W. & Zhang C. Oxidative
Stress and Renal Fibrosis: Mechanisms and Therapies. Adv Exp Med Biol.
(2019) 1165 , 585-604.
[45] Parlakpinar H., Sahna E., Ozer M.K., Ozugurlu F., Vardi N. &
Acet A. Physiological and pharmacological concentrations of melatonin
protect against cisplatin-induced acute renal injury. J Pineal Res.
(2002) 33 , 161-6.