References
[1] Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. (2019) 88 , 102925.
[2] Rani N., Bharti S., Tomar A., Dinda A.K., Arya D.S. & Bhatia J. Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res. (2016) 50 , 1226-36.
[3] Kuhlmann M.K., Burkhardt G. & Kohler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant. (1997) 12 , 2478-80.
[4] Manohar S. & Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. (2018) 31 , 15-25.
[5] Kawai Y., Nakao T., Kunimura N., Kohda Y. & Gemba M. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci. (2006)100 , 65-72.
[6] Uran C. Through the heart and beyond: a review on ranolazine. Monaldi Archives for Chest Disease. (2021).
[7] Aldakkak M., Camara A.K., Heisner J.S., Yang M. & Stowe D.F. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res. (2011) 64 , 381-92.
[8] Özdemir M. Ranolazin’in antianginal etki mekanizması. Turk Kardiyol Dern Ars. (2016) 44 , 8-12.
[9] Song Y., Shryock J.C., Wagner S., Maier L.S. & Belardinelli L. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther. (2006) 318 , 214-22.
[10] Zhang X.Q., Yamada S. & Barry W.H. Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia. J Cardiovasc Pharmacol. (2008)51 , 443-9.
[11] Duffy E.A., Fitzgerald W., Boyle K. & Rohatgi R. Nephrotoxicity: Evidence in Patients Receiving Cisplatin Therapy. Clin J Oncol Nurs. (2018) 22 , 175-83.
[12] Colak C. & Parlakpinar H. Animals in research: reporting In vivo experiments: ARRIVE guidelines-review. (2012).
[13] Tasdemir C., Tasdemir S., Vardi N., Ates B., Parlakpinar H., Kati B., et al. Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney. Ren Fail. (2012)34 , 1144-9.
[14] Hiller A., Greif R.L. & Beckman W.W. Determination of protein in urine by the biuret method. J Biol Chem. (1948) 176 , 1421-9.
[15] Uchiyama M. & Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry. (1978) 86 , 271-8.
[16] Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys. (1959) 82 , 70-7.
[17] Sun Y., Oberley L.W. & Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. (1988) 34 , 497-500.
[18] Cigremis Y., Akgoz M., Ozen H., Karaman M., Kart A., Gecer M., et al. Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits. Can J Physiol Pharmacol. (2015) 93 , 727-35.
[19] Yaşar Ş., Arslan A., Colak C. & Yoloğlu S. A developed interactive web application for statistical analysis: statistical analysis software. Middle Black Sea Journal of Health Science. (2020)6 , 227-39.
[20] Davenport A. The brain and the kidney–organ cross talk and interactions. Blood Purif. (2008) 26 , 526-36.
[21] Aldossary S.A. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomedical and Pharmacology Journal. (2019) 12 , 7-15.
[22] De Jongh F., Van Veen R., Veltman S., de Wit R., Van der Burg M., Van den Bent M., et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. British journal of cancer. (2003) 88 , 1199-206.
[23] Hosoda A., Matsumoto Y., Toriyama Y., Tsuji T., Yoshida Y., Masamichi S., et al. Telmisartan Exacerbates Cisplatin-Induced Nephrotoxicity in a Mouse Model. Biol Pharm Bull. (2020) 43 , 1331-7.
[24] Ma C., Chen T., Ti Y., Yang Y., Qi Y., Zhang C., et al. Ranolazine alleviates contrast-associated acute kidney injury through modulation of calcium independent oxidative stress and apoptosis. Life Sci. (2021) 267 , 118920.
[25] Park C.R., Kim H.Y., Song M.G., Lee Y.S., Youn H., Chung J.K., et al. Efficacy and Safety of Human Serum Albumin-Cisplatin Complex in U87MG Xenograft Mouse Models. Int J Mol Sci. (2020) 21 .
[26] Burns C.V., Edwin S.B., Szpunar S. & Forman J. Cisplatin-induced nephrotoxicity in an outpatient setting. Pharmacotherapy. (2021) 41 , 184-90.
[27] Nakazawa Y., Kageyama A., Kitamura M., Mitsumori N. & Kawakubo T. Prediction of Severe Cisplatin-Induced Neutropenia Using Serum Albumin Concentration: A Retrospective Study. (2020).
[28] Abdel-Gayoum A.A. & Ahmida M.H.S. Changes in the serum, liver, and renal cortical lipids and electrolytesin rabbits with cisplatin-induced nephrotoxicity. Turkish journal of medical sciences. (2017) 47 , 1019-27.
[29] Goren M.P. Cisplatin nephrotoxicity affects magnesium and calcium metabolism. Med Pediatr Oncol. (2003) 41 , 186-9.
[30] Oronsky B., Caroen S., Oronsky A., Dobalian V.E., Oronsky N., Lybeck M., et al. Electrolyte disorders with platinum-based chemotherapy: mechanisms, manifestations and management. Cancer Chemother Pharmacol. (2017) 80 , 895-907.
[31] Minzi O.M.S., Lyimo T.E., Furia F.F., Marealle A.I., Kilonzi M., Bwire G.M., et al. Electrolytes supplementation can decrease the risk of nephrotoxicity in patients with solid tumors undergoing chemotherapy with cisplatin. BMC Pharmacol Toxicol. (2020) 21 , 69.
[32] Parlakpinar H., Ozhan O., Ermis N., Vardi N., Cigremis Y., Tanriverdi L.H., et al. Acute and Subacute Effects of Low Versus High Doses of Standardized Panax ginseng Extract on the Heart: An Experimental Study. Cardiovasc Toxicol. (2019) 19 , 306-20.
[33] Chirino Y.I. & Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. (2009) 61 , 223-42.
[34] Marrocco I., Altieri F. & Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev. (2017) 2017 , 6501046.
[35] Zhou H., Kato A., Miyaji T., Yasuda H., Fujigaki Y., Yamamoto T., et al. Urinary marker for oxidative stress in kidneys in cisplatin-induced acute renal failure in rats. Nephrol Dial Transplant. (2006) 21 , 616-23.
[36] Yu X., Meng X., Xu M., Zhang X., Zhang Y., Ding G., et al. Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-kappaB and improving mitochondrial function. EBioMedicine. (2018) 36 , 266-80.
[37] An J.H., Li C.Y., Chen C.Y., Wu J.B. & Shen H. Raloxifene Protects Cisplatin-Induced Renal Injury in Mice via Inhibiting Oxidative Stress. Onco Targets Ther. (2021) 14 , 4879-90.
[38] Chen X., Wei W., Li Y., Huang J. & Ci X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem Biol Interact. (2019) 308 , 269-78.
[39] Elkholy S.E. The Possible Antidiabetic Effects of Ranolazine Versus Gliclazide In HFD/STZ-Induced Type 2 Diabetes In Male Albino Rats. Medicine Updates. (2020) 1 , 9-28.
[40] Matsumura H., Hara A., Hashizume H., Maruyama K. & Abiko Y. Protective effects of ranolazine, a novel anti-ischemic drug, on the hydrogen peroxide-induced derangements in isolated, perfused rat heart: comparison with dichloroacetate. Jpn J Pharmacol. (1998) 77 , 31-9.
[41] Karakoc H.T., Altintas R., Parlakpinar H., Polat A., Samdanci E., Sagir M., et al. Protective Effects of Molsidomine Against Cisplatin-Induced Nephrotoxicity. Adv Clin Exp Med. (2015) 24 , 585-93.
[42] Ehsan N., Ijaz M.U., Ashraf A., Sarwar S., Samad A., Afzal G., et al. Mitigation of cisplatin induced nephrotoxicity by casticin in male albino rats. Braz J Biol. (2021) 83 , e243438.
[43] ullah Baig M.N., Alvi S.B., Alvala M., Sama V., Padmavathi Y., Ramadevi P., et al. Ranolazine as a Protective Agent Against Lung Cancer: A Translational Approach. Asian Journal of Pharmaceutical and Health Sciences. (2020) 10 .
[44] Su H., Wan C., Song A., Qiu Y., Xiong W. & Zhang C. Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. Adv Exp Med Biol. (2019) 1165 , 585-604.
[45] Parlakpinar H., Sahna E., Ozer M.K., Ozugurlu F., Vardi N. & Acet A. Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. J Pineal Res. (2002) 33 , 161-6.