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Abstract

Properties of the vapor-liquid interface of 16 binary mixtures were studied using molecular dynamics

simulations and density gradient theory in combination with the PCP-SAFT equation of state. All binary

combinations of the heavy-boiling components (cyclohexane, toluene, acetone, and carbon tetrachloride)

with the light-boiling components (methane, carbon dioxide, hydrogen chloride, and nitrogen) were investi-

gated at 0.7 times the critical temperature of the heavy-boiling component in the whole composition range.

Data on the surface tension, the enrichment, the relative adsorption, and the interfacial thickness, as well as

for the vapor-liquid equilibrium and Henry’s law constant are reported. The binary interaction parameters

were fitted to experimental data in a consistent way for all systems and both methods. Overall, the results

from both methods agree well for all investigated properties. The interfacial properties of the different

studied systems differ strongly. We show that these differences are directly related to the underlying phase

equilibrium behavior.
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1. Introduction

Properties of vapor-liquid interfaces play an important role in many processes, such as mass transfer in

distillation and absorption, wetting and adsorption, and bubble and droplet nucleation. Experimental studies

of interfacial properties are generally limited to the surface tension, for which data on pure components are

quite abundant, but data on mixtures are comparatively scarce.

Following the ideas of Gibbs, in phenomenological studies, the interface is generally treated as a two-

dimensional object, whereas from an atomistic perspective, it is a three-dimensional region in which the

properties change continuously from those in one bulk phase to those in the other. As the width of region

is small, – it is typically of the order of a few nanometers – the gradients of the properties are very steep.

Moreover, important fluctuations occur at fluid interfaces. Therefore, there are presently no experimental

methods that can provide reliable information on the profiles of the properties in the interfacial region of

molecular fluids.

However, detailed information on the interfacial region can be obtained from molecular simulations, den-

sity functional theory (DFT), and density gradient theory (DGT). The first requires a force field describing

the interactions between the atomistic particles, the latter two require an equation of state (EOS) describ-

ing the free energy of the system. Many authors have studied the interfaces of fluid mixtures using these

methods, cf. Ref. [1] for an overview.

Comprehensive studies of interfacial properties of mixtures of model fluids are available [2–15], in which

the influence of various molecular parameters on the mixture’s interfacial properties was elucidated. In

most cases, mixtures of Lennard-Jones fluids were studied. In contrast, systematic studies on interfacial

properties of mixtures of real substances are still scarce, which is why we have carried out such a study by

modeling and simulation, to be able to provide both information on macroscopic and nanoscopic properties.

Both molecular dynamics (MD) simulations and DGT were used. DGT was preferred over DFT, as it is
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simpler and known to give good results for fluid systems. As the EOS, we have chosen PCP-SAFT, as it is

a highly developed EOS based on molecular theory and good PCP-SAFT models for all pure components

in our study were available in the literature.

Sixteen binary systems were studied: These are all possible binary combinations of the heavy-boiling

components (cyclohexane, toluene, acetone, and carbon tetrachloride) with the light-boiling components

(methane, carbon dioxide, hydrogen chloride, and nitrogen). The temperature T was always T = 0.7×Tc,1,

where Tc,1 is the critical temperature of the heavy-boiling component (1), so that the light-boiling component

(2) is always supercritical at the studied temperature.

Data on the surface tension, the enrichment, the relative adsorption, and the interfacial thickness were

taken for all systems in a consistent manner, and complemented by data on the vapor-liquid equilibrium

(VLE) and the Henry’s law constant of the light-boiling component. The enrichment [1] is a measure for

the presence and height of a local maximum in a component density profile in the interfacial region. At

vapor-liquid interfaces, it is usually only observed for light-boiling components. There is a current discussion

on the effects of the enrichment on the mass transfer through the interface [8, 9, 14, 16–21]. The enrichment

of a component at the interface is related to its relative adsorption, but the two properties describe different

aspects and are not redundant [1, 22–24]. The systems studied in the present work were chosen since in

mixtures of supercritical components with liquid solvents, strong enrichment is expected, based on experience

with model systems [1, 14, 25]. Furthermore, all components in the study are widely used, and they cover

a wide range of molecular properties, such as the polarity. The results from this work provide new insights

into interfacial properties of real mixtures in different ways: On the one side, the influence of a variation

of the molecular properties can be studied (albeit not with mono-parametric variations as in the model

systems) and the results can be compared to those from studies of model systems [14, 25], and, on the other

side, information on the relation of the phase behavior of the studied systems with both macroscopic and
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nanoscopic interfacial properties is gained.

2. Methods

2.1. Studied Binary Systems

All calculations were carried out at isothermal conditions at reduced temperatures of 0.7, i.e., T = 0.7×

Tc,1, where Tc,1 is the critical temperature of the heavy-boiling component 1 (with exception of the Henry’s

law constants, which were studied as a function of temperature, cf. Section 2.5). The corresponding absolute

temperatures are listed in Table 1. The temperature T = 0.7 × Tc,1 is higher than the pure component

critical point of all studied light-boiling components, i.e., the light-boiling component 2 is supercritical in

all considered systems.

The temperature 0.7× Tc,1 was chosen because it is used often in conceptual studies of “typical” vapor-

liquid equilibria, i.e., Refs. [14, 26, 27], it is above the triple point for most substances, and, at the same

time, far enough from the critical point for an accurate description by EOS.

The heavy-boiling components were chosen to cover a wide range of chemical behavior with respect to

molar mass (light/heavy, e.g., acetone vs. CCl4), polarity (apolar/polar, e.g., cyclohexane vs. acetone),

and aromaticity (non-aromatic vs. aromatic, e.g., cyclohexane vs. toluene). Similar considerations hold

for the selection of the light-boiling components, so that the 16 possible combinations of light-boiling and

heavy-boiling components are representative of many industrially relevant mixtures, such as those occuring

in absorption processes. Some of the mixtures studied in the present work have also been discussed in the

literature in the context of natural gas purification by membranes (toluene+CO2/CH4) [28, 29], plasma

etching in integrated circuit manufacturing (CCl4+N2) [30, 31], and cation exchange processes for the

separation of metals (acetone+HCl) [32, 33].
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Table 1: Critical temperatures (taken from the cited references) of the heavy-boiling components used in this work and the
values of 0.7 × Tc,1, at which the interfacial properties of the respective mixtures were studied.

System Tc,1 / K 0.7× Tc,1 / K Ref.
cyclohexane + X 554 387.8 [34]
toluene + X 593 415.1 [35]
acetone + X 507.6 355.32 [36]
CCl4 + X 556.4 389.48 [37]

2.2. Equation of State + Density Gradient Theory

2.2.1. PCP-SAFT

In this work, the PCP-SAFT equation of state was used, which refers to the Perturbed-Chain Statistical

Associating Fluid Theory of Gross and Sadowski [38] with extensions for associating components [39] as

well as quadrupole-quadrupole [40], dipole-dipole [41], and dipole-quadrupole [42] interactions. Within

PCP-SAFT, the Helmholtz energy is modeled as

A = Aid +Ahc +Adisp +Aassoc +ADD +AQQ +ADQ, (1)

where the indices id, hc, disp, assoc, DD, QQ, and DQ denote contributions from the ideal gas, hard

chain, dispersion, association, dipole-dipole interactions, quadrupole-quadrupole interactions, and dipole-

quadrupole interactions, respectively.

For all pure components, at least three model parameters are required: the segment number m, segment

diameter σ, and segment dispersion energy ε. For associating components, the effective association volume

κAiBi and association energy ϵAiBi
i are needed additionally, as well as the association scheme [43, 44]. For

polar components, the dipole moment µ or quadrupole moment Q are additionally required. The pure

component parameters used in this work were taken from the literature [38, 40, 41, 45–47] and are listed in

Table 2.

The model used for CO2 includes the quadrupolar term QQ, that for acetone the dipolar term DD. The
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Table 2: PCP-SAFT and DGT pure component parameters used in this work.

Component m σ ε Ref. κ Ref.

- - Å kBK - 10−20Jm5 mol−2 -
Cyclohexane 2.5303 3.8499 278.11 [38] 34.07 [48]

Toluene 2.8149 3.7169 285.69 [38] 31.89 [49]
Acetone c 2.7447 3.2742 232.99 [41] 11.49 [50]

CCl4 2.3252 3.8055 292.13 [47] 26.59 this work
CH4 1 3.7039 150.03 [38] 1.973 [49]
CO2

a 1.5131 3.1869 163.33 [40] 2.420 [51]
HCl b 1.5888 2.9567 206.91 [45] 2.013 [45]
N2 1.2365 3.2975 89.492 [46] 1.167 this work

a CO2 was modeled with a quadrupole; Q = 4.4 DÅ.
b HCl was modeled with one H-bond donor and one H-bond acceptor association site; κAiBi = 5.7172 × 10−4 and ϵ

AiBi
i = 1039.8 kBK.

c Acetone was modeled with a dipole; µ = 2.88 D.

model for HCl included an H-bond donor and an H-bond acceptor site.

Binary dispersive-repulsive interactions in the mixtures were modeled by the modified Lorentz-Berthelot

[52, 53] combination rules

σij =
σii + σjj

2
, (2)

εij = ξij
√
εiiεjj , (3)

where ξij is the binary interaction parameter in the mixture of components i and j. In this work, all ξij

parameter values were fitted to experimental data of the Henry’s law constant (cf. Section 2.5). The ξij

parameter was treated as temperature-independent, i.e, a single constant value of ξij was used for each

binary system i+ j. The values for ξij obtained from the fit are listed in Table 5.

The PCP-SAFT equation of state was used for the calculation of phase equilibria (pxy phase diagrams

and Henry’s law constants) and it served as a starting point for the calculations in the interfacial region via

density gradient theory.
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2.2.2. Density Gradient Theory

Density gradient theory (DGT) is a framework that is widely used for modeling fluid interfaces. In

DGT, the Helmholtz energy of the heterogeneous interface is described by a Taylor expansion around the

homogeneous state, which is truncated after the second order term. For the calculation, the Helmholtz

energy of the homogeneous bulk phase and the so-called influence parameter κ has to be known. In the case

of a binary system with a planar interface, the equation describing the Helmholtz energy reduces to

a(ρ) = a0(ρ) +

2∑
i=1

2∑
j=1

1

2
κij∇ρi · ∇ρj . (4)

Here, a0(ρ) is the Helmholtz energy density in the homogeneous bulk phase, ∇ is the gradient operator

applied to the component densities ρi and ρj , and κij is the component-specific influence parameter. For a

more detailed discussion on the DGT framework, the reader is referred to Refs. [54–56].

The influence parameter was treated as density- and temperature-independent here. The cross-interaction

influence parameters (κij when i ̸= j) were calculated from the pure component influence parameters (κii,

κjj) by the geometric mean combination rule (without introducing an additional binary interaction param-

eter) from

κij =
√
κiiκjj . (5)

The pure component influence parameters were in most cases taken from literature [45, 48–51], where they

were fitted to experimental surface tension data of the pure components. The κij values are reported together

with the PCP-SAFT pure component parameters in Table 2. Only for the components N2 and CCl4, the

influence parameter was fitted to literature surface tension data retrieved from the DIPPR database [57] in

this work (cf. Supporting Information).

In this work, the DGT was used in combination with the PCP-SAFT equation of state (c.f. Section 2.2.1)
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to calculate the (continuous) concentration profiles ρ (z) as a function of the spacial coordinate z in the

interfacial region. The relationship between the spacial coordinate and density is given by [58]

∫ z

z0

dz =

∫ ρref(z)

ρ0
ref

√√√√∆Ω−1(ρ)

2∑
i=1

2∑
j=1

κij

2

dρi
dρref

dρj
dρref

dρref , (6)

where ρ is the vector of component densities, ρi and ρj are the component densities of the components i

and j, ρref is the component density of a reference component, for which in the present work always the

heavy-boiling component was chosen, and ∆Ω(ρ) is the grand potential per volume, defined as

∆Ω(ρ) = a0(ρ)−
2∑

i=1

ρiµ
bulk
i + ps . (7)

Here, a0(ρ) is the homogeneous Helmholtz energy at the local density vector, µbulk
i is the saturated bulk

phase chemical potential of component i, and ps is the saturation pressure. For the integration, an arbitrary

starting point ρ0ref = ρref(z
0) must be chosen.

From the density profiles, the surface tension, the relative adsorption, the enrichment, and the interfacial

thickness were calculated as follows:

The surface tension γ at the binary VLE interface was calculated from [58]

γ =

∫ ρ′
ref

ρ′′
ref

√√√√2∆Ω(ρ)

2∑
i=1

2∑
j=1

κij
dρi
dρref

dρj
dρref

dρref , (8)

where the phase indices ′ and ′′ refer to the bulk liquid and bulk vapor phase, respectively.

The relative Gibbs adsorption [59] at the interface was calculated from

Γ
(j)
i = − (ρ′i − ρ′′i )

∫ ∞

−∞

[
ρj(z)− ρ′j
ρ′j − ρ′′j

− ρi(z)− ρ′i
ρ′i − ρ′′i

]
dz, (9)

8



with the saturated component densities ρ′i and ρ′′i of the components i = 1, 2 in the bulk liquid and vapor

phases, respectively. In Eq. (9), Γ
(j)
i is the relative adsorption of component i with respect to component

j. For the binary systems studied in this work, only the relative adsorption of the light-boiling component

Γ
(1)
2 was considered.

In a previous work of our group [22], the so-called enrichment Ei was introduced. The enrichment of a

component i is defined as the ratio of the highest local density of this component to the larger of its two

bulk phase component densities

Ei =
max(ρi(z))

max(ρ′
i
, ρ′′

i
)
, (10)

where the phase indices ′ and ′′ denote the liquid and vapor phase, respectively.

The enrichment and the relative adsorption, while linked, contain distinctly different information [1,

22, 45]. The enrichment can by definition only assume values Ei ≥ 1; for the limiting case of Ei = 1, no

enrichment is present, i.e., the component density profile in the interface does not exhibit a local maximum.

In binary systems, an enrichment exceeding 1 is only found for the light-boiling component (here: component

2); thus, only the quantity E2 is relevant for this work. High values of E2 up to 10 have been reported for

some mixtures in the literature, see Refs. [15, 21, 60–64].

The thickness of the planar interface was calculated using the 90-10% definition according to Lekner and

Henderson [65]. The effective interfacial thickness L90
10 is hereby taken as the distance between two points, at

which the total local density ρtot(z) = ρ1(z)+ρ2(z) has changed 10% and 90% respectively of the difference
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between the two bulk densities:

L90
10 =

∣∣z(ρtot90 )− z(ρtot10 )
∣∣ , (11)

ρtot10 = ρ′′tot + 0.1(ρ′tot − ρ′′tot) ,

ρtot90 = ρ′′tot + 0.9(ρ′tot − ρ′′tot) .

The arbitrary z-axis zero point of the interfacial profiles from both MD and DGT was defined so that

z(ρ∗tot) = 0, where ρ∗tot = ρ′′tot + 0.5(ρ′tot − ρ′′tot).

2.3. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were used in this work for computing Henry’s law constants,

vapor-liquid equilibria, and interfacial properties. The MD simulations were carried out with the codes ms2

[66, 67] (for determining the Henry’s law constants) and ls1 mardyn [68] (for determining the interfacial

properties and vapor-liquid equilibria).

All components were modeled as rigid multi-center Lennard-Jones (LJ) models with point charges, point

dipoles, and point quadrupoles. An overview of the models is given in Table 3. They were taken from

the MolMod database [69]. The force fields used in this work are united-atom force fields, i.e., hydrogen

atoms are fused with the neighboring heavier atoms (except for HCl). For CH4, the simple LJ potential

[70] was used. For CO2 the model of Merker et al. was used [71]. For nitrogen, a 2CLJQ model [70] was

used. The cyclohexane model [72] consists solely of LJ interaction sites. The HCl and CCl4 models [73, 74]

consist of LJ sites and point charges (two and five, respectively). The toluene [73] and acetone [75] models

consist of LJ sites as well as point dipoles (one each) and point quadrupoles (five and one, respectively).

The force field models used in this work have been parameterized with respect to pure component VLE

data (saturated liquid density and vapor pressure). They have been shown to yield excellent predictions for
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different thermophysical properties (see, e.g., [46, 76–83]). The surface tension was not considered during

the model development. For similar force fields, the surface tension is known to be about 20% above

corresponding experimental data [22, 45, 82, 84–88]. In the following, the simulations techniques are briefly

described; for more details, the reader is referred to Refs. [14, 89, 90].

Table 3: Pure component force field models used in this work (taken from the literature).

Comp. Type Ref.
Cyclohexane 6 LJ sites [72]
Toluene 7 LJ sites with 1 dipole and 5 quadrupoles [73]
Acetone 4 LJ sites with 1 dipole and 1 quadrupole [75]
CCl4 5 LJ sites with 5 point charges [74]
CH4 1 LJ site [70]
CO2 3 LJ sites with 1 quadrupole [71]
HCl 1 LJ site with 2 point charges [73]
N2 2 LJ sites with 1 quadrupole [70]

Henry’s law constants H21 of the light-boiling component 2 in the solvent 1 were determined in the NpT

ensemble with 864 solvent particles. In the simulations, the residual chemical potential µ∞
2 of the solute

was sampled using Widom’s test particle method. Henry’s law constants were then determined from

H2,1 = ρ′T exp(µ∞
2 /T ) , (12)

where ρ′ indicates the saturated liquid density of the solvent and T is the temperature. The equilibration

of the pure component solvent was carried out for 60,000 time steps and the production was carried out for

500,000 time steps. The time step was 1.2 fs. The statistical uncertainty of the Henry’s law constant was

estimated to be three times the standard deviation of 50 block averages with the size of 10,000 time steps.

The pressure of the NpT simulation was chosen to be 5% above the pure component vapor pressure of the

solvent. The cut-off radius was 17.5 Å.

Analogously to the EOS, the binary dispersive-repulsive interactions in the MD simulations were modeled

using the modified Lorentz-Berthelot [52, 53] combination rules (cf. Eq. (2)-(3)). Therein, a temperature-
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independent fit parameter ξij was used for each binary system i + j. In this work, all ξij values were

fitted to experimental data of the Henry’s law constant (cf. Section 2.5). For each binary system, a single

experimental data point was used. Iteratively, the binary interaction parameter ξij was varied such that the

Henry’s law constant MD result was in good agreement with the experimental data point.

The simulations for the coexisting liquid and vapor phase were carried out in the NV T ensemble with

16,000 particles. The simulation scenarios were arranged with a liquid phase slab in the middle and a vapor

phase on each side. Periodic boundary conditions were used in all directions. The equilibration was carried

out for 106 time steps and the production was 2.5× 106 time steps. The time step was 1.5 fs. A slab-based

long-range correction [91, 92] was used.

The initial densities and compositions of the bulk phases were taken from the PCP-SAFT predictions.

Both density and pressure profiles were sampled in 1,200 bins in z-direction (normal to the interface). In the

production phase, the density and pressure profiles were sampled in block averages of 500,000 time steps.

From each block averaged profile, various phase equilibrium properties were computed: the vapor pressure

ps, the saturated liquid and vapor density ρ′ and ρ′′, and the composition of the liquid and vapor phase x

and y. For this post-processing, the area close to the interface was excluded.

Moreover, from the pressure and density profiles, the vapor-liquid interfacial properties were computed,

i.e., the surface tension, the relative adsorption, the enrichment, and the interfacial thickness. For the latter

three, Eqs. (9)-(11) were used analogously to the DGT results evaluation.

The interfacial tension was obtained from the MD results by the mechanical route

γ =
1

2

∫ ∞

−∞
(pN − pT) dz, (13)

where pN and pT are the normal and transverse components of the pressure tensor [93].

The statistical uncertainties of the interfacial properties (γ, Γ
(1)
2 , E2, and L90

10) as well as the bulk phase
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properties (ps, ρ′, ρ′′, x, and y) were estimated as three times the standard deviation of the sampled block

average values.

2.4. Empirical Enrichment Model

In a previous work of our group [1], we have developed an empirical model for estimating the enrichment

E2 in binary systems. The model was trained to MD enrichment data of 90 different binary mixtures of

Lennard-Jones fluids. In the present work, the predictions of this empirical enrichment model are compared

to the predictions from PCP-SAFT + DGT and MD simulations for the 16 considered mixtures of real

components.

As input, the model needs only information on bulk phase VLE properties, namely on the partition

coefficient

K5%
2 =

y2

x2 = 0.05 molmol−1 , (14)

evaluated at a liquid phase concentration of x2 = 0.05 molmol−1, and on (primarily the sign of) the

component density difference of the light-boiling component between the liquid and vapor phase

∆ρ2 =
ρ′2 − ρ′′2
ρc,1

. (15)

The quantities K5%
2 and ∆ρ2 were obtained directly from the VLE computed by PCP-SAFT (cf. Sec-

tion 2.2.1). From this, the model prediction E2 = f(x2,K
5%
2 ,∆ρ2) was evaluated for all compositions and all

mixtures studied. Hence, the empirical enrichment model was used as an alternative to DGT for estimating

E2.
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2.5. Determination of the Binary Interaction Parameter ξij from Data on Henry’s Law Constants

The binary interaction parameters of PCP-SAFT as well as the binary interaction parameters of the

force fields were fitted to experimental data on the Henry’s law constant H21 of the light-boiling component

2 in the heavy-boiling solvent 1. Since the value of the Henry’s law constant characterizes the interaction

between solute particles solely with solvent particles, it is an excellent quantity for parameterizing the binary

interaction parameter ξij of models based on molecular thermodynamics.

The values of H21 (T ) were determined from solubility data from the literature, which are reported in

various different ways. An overview of these definitions is given for example by Battino [94, 95]. Table 4

lists the available experimental data on gas solubility for all 16 studied binary systems. These data points

were converted to Henry’s law constants, which includes the extrapolation to infinite dilution, using the

procedure detailed in the Supporting Information.

In Figure 1 of the results section, the H21 data are plotted together with the results from the adjusted

force fields and PCP-SAFT models. Some obvious outliers, namely eleven experimental data points in the

system toluene+CH4 and three experimental data points in the system acetone+N2, were excluded from

the fitting procedure and are marked in the figure as such.

For the EOS, the optimal value of the binary interaction parameter ξEOS
ij was determined by a least-

squares minimization of the relative errors between the predicted Henry’s law constant and all available

experimental H21 (T ) data (cf. Table 4) for each of the 16 binary systems.

For the force fields, the binary interaction parameter ξMD
ij was adjusted to a single data point of the

Henry’s law constant in each system. At the pertaining temperature, at least five MD simulations with

different values of ξij were carried out for H21. The optimal value of ξMD
ij was then interpolated from these

sampling points. For the assessment of that procedure and the quality of the obtained ξMD
ij value, the

Henry’s law constant was predicted in a wide temperature range using MD simulations (cf. Figure 1). The
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Table 4: Experimental data on the solubility in all 16 studied binary mixtures. The data points are listed by the type of
solubility coefficient reported in the original literature and include the number of data points as well as the temperature range
covered. p-x is data from isothermal VLEs at low pressures; p/c data are ratios of the solute’s partial pressure to its molarity
in the liquid phase; loading is data reported as the mass ratio of solute to solvent in the liquid phase

Comp. 1 Comp. 2 T / K Type Ref. # of Points
Cyclohexane CH4 291 - 310 Bunsen [96] 3

283 - 303 Ostwald [97] 5
303 - 423 p-x [98, 99] 4

CO2 284 - 313 Ostwald [100] 3
283 - 392 Henry [101, 102] 7
283 - 311 p-x [103–106] 11

298 Bunsen [107] 1
293 p/c [108] 1

HCl 283 - 313 p-x [109–112] 8
N2 298 Bunsen [113] 1

300 - 443 Henry [114] 10
298 Ostwald [115, 116] 2

283 - 308 p-x [100, 103, 104, 117] 1
Toluene CH4 213 - 293 Bunsen [118] 5

284 - 333 Ostwald [119, 120] 8
278 - 423 p-x [121–123] 8

CO2 198 - 298 Bunsen [124, 125] 8
275 - 328 Henry [126–129] 10
288 - 298 Ostwald [130] 3

293 p/c [108] 1
228 - 313 p-x [106, 119, 131, 132] 8

HCl 195 - 298 p-x [109, 133–135] 15
N2 303 - 363 Henry [136] 2

293 - 298 Ostwald [130] 2
283 - 313 p-x [119] 3

Acetone CH4 278 - 310 Bunsen [96, 137] 8
197 - 313 Ostwald [138] 7
263 - 293 p-x [139] 3

CO2 293 - 298 Bunsen [125, 140] 2
293 - 395 Henry [141–143] 10
195 - 293 Kuenen [144–146] 13
273 - 298 Ostwald [130, 147, 148] 4

293 p/c [108] 1
293 - 303 p-x [149] 2

HCl 273 - 301 loading [150] 2
N2 223 - 363 Henry [116, 117, 136, 151] 10

195 - 314 Ostwald [130, 138, 152, 153] 15
CCl4 CH4 253 - 333 Ostwald [138, 154] 8

298 p-x [96] 1
CO2 288 - 298 Ostwald [130] 3

298 Bunsen [107] 1
293 p/c [108] 1

HCl 293 - 298 Henry [155] 4
233 - 343 p-x [109, 112, 133, 156, 157] 14

N2 253 - 333 Ostwald [154, 158] 10
298 p-x [159] 1
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results were compared with all available experimental data and the EOS results (see discussion below).

The fitted parameters ξEOS
ij and ξMD

ij are listed in Table 5 of the results section.

3. Results and Discussion

In the following, the results from the MD simulations and DGT in combination with the PCP-SAFT

EOS are presented and compared for all studied systems. First, the results for the Henry’s law constants

are presented, then the p-x-y diagrams at T = 0.7×Tc,1. After this, the results for the interfacial properties

are presented. Furthermore, the numerical values of the results presented here are provided in a machine-

readable format in the Supporting Information.

3.1. Henry’s Law Constants

For an accurate representation of the mixture behavior, the binary interaction parameters ξij were fitted

to experimental data of the Henry’s law constant H21 at different temperatures, cf. Section 2.5. The numeric

values obtained from the parameter fitting are listed in Table 5 – for both the EOS and MD. As expected,

the numerical values are not identical, as the binary interaction parameters from MD and EOS are not

directly related to another, ξMD
ij ̸= ξEOS

ij .

Figure 1 shows the results of the fit. Both the Henry’s law constants from MD and the EOS are compared

to experimental data from the literature. The results for all 16 binary systems are arranged in a 4x4 grid

with systems with the same light-boiling component 2 arranged in rows and systems with the same heavy-

boiling component 1 arranged in columns (the same layout will be used for the pxy phase diagrams and the

interfacial properties). The temperatures studied in the simulations cover approximately the entire range

from the triple point of the solvent to the critical point of the solvent. Furthermore, a gray dashed line

marks the temperature T = 0.7×Tc,1 (cf. Table 1), at which the interfacial properties were studied (results

presented below).
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Table 5: Binary interaction parameters for the equation of state (ξEOS
ij ) and molecular simulations (ξMD

ij ).

Comp. 1 Comp. 2 Fitted ξEOS
ij Fitted ξMD

ij

Cyclohexane CH4 0.956 0.992
CO2 0.923 0.967
HCl 0.882 1.1018
N2 0.842 1.0027

Toluene CH4 0.943 1.0133
CO2 0.983 0.924
HCl 1.003 0.981
N2 0.854 0.985

Acetone CH4 0.995 1.0064
CO2 0.966 1.030
HCl 1.258 1.355
N2 0.958 0.960

CCl4 CH4 0.964 1.0010
CO2 0.962 0.9861
HCl 0.898 1.0952
N2 0.853 0.996

Overall, the results from both MD and EOS are in good agreement with the experimental data. In some

cases, there are substantial deviations between experimental data sets published by different authors; such

obvious outliers were not included in the parameter fit. The temperature dependency of the Henry’s law

constant is generally described well using a temperature-independent parameter ξij in both model concepts.

Experimental data are often only available in a narrow temperature range, but in all cases, the temperature

dependence of the data is correctly represented. Both predictive methods – PCP-SAFT + DGT and MD

simulations – agree well in their extrapolations outside of the experimentally investigated regions. Only

in some systems (cyclohexane+CH4, cyclohexane+CO2, cyclohexane+HCl, toluene+CO2, toluene+HCl)

significant deviations between the MD and the EOS results are found – at high temperatures and far outside

the region for which data were available and used for the parameter fit.

In the system acetone+HCl, experimental data are particularly scarce: Only two data points are available.

A probable reason for the scarcity of experimental data in the acetone+HCl system is the possibility of the

chemical condensation reaction of acetone to mesityl oxide and phorone in presence of acid catalysts [160].
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Figure 1: Henry’s law constant in 16 binary systems as a function of the temperature. Data from molecular simulations (red
circles) and PCP-SAFT (blue lines). Experimental data from the literature are marked with x where they have been used for
the fitting procedure and with + where they have been excluded. Gray dashed lines mark the temperature T = 0.7 × Tc,1.

Hence, it is unclear whether the experimental data are really for the solvent acetone or for mixtures of

acetone and its reaction products – which were not considered in the model. Chemical reactions could also

explain the unusually high corrections that had to be applied to the Lorentz-Berthelot combining rule to

represent the two data points (values of ξij > 1.25, cf. Table 5). Regardless, the results from the system

acetone+HCl serve as an example for the (interfacial) properties of a binary system with two strongly

interacting components, i.e., with strong attractive cross-interactions.

There is a noticeable similarity in the trends of the H21 curves for systems with the same light-boiling

component. For example, all X+CH4 systems exhibit a fairly symmetrical, near-parabolic trend of H21 (T )

with a maximum that is near 0.7×Tc,1. The systems of X+CO2 and X+HCl have asymmetric H21 (T ) curves
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with the maximum of H21 being at much higher temperatures. The X+N2 systems show a monotonously

decreasing H21 (T ) curve, which is nearly linear in the entire temperature range. Hence, the nature of the

light-boiling component dominates the gas solubility, which is in line with the results reported in Ref. [161].

The slope of the H21 (T ) curve is directly related to the enthalpy of absorption ∆habs (cf. Supporting

Information). A positive slope of H21 (T ), and thus ∆habs < 0, corresponds to exothermal absorption,

and vice versa. At T = 0.7 × Tc,1, exothermal absorption is found for all studied X+CO2 and X+HCl

systems. The inverse behavior, endothermal absorption, is found for all studied X+N2 systems. For the

X+CH4 systems, the slope of the H21 (T ) curve is nearly zero, indicating a small enthalpy of absorption at

T = 0.7× Tc,1.

The data allow for testing a hypothesis of Hayduk [162], who stated there might exist a common point

of intersection in solubility data of different gases, measured in the same solvent, at the critical temperature

of the solvent. The present data support this hypothesis, see Supporting Information.

3.2. Vapor-Liquid Equilibria

We have, furthermore, used the adjusted models to predict the complete isothermal vapor-liquid equilibria

at the temperature of T = 0.7× Tc,1 using PCP-SAFT and MD simulations. The results are shown as pxy-

diagrams in Figure 2.

The predictions from PCP-SAFT and MD are in very good agreement in the region of low to moderate

pressures, which is as expected, as both models were fitted to the same type of experimental data The

largest deviations are observed for the systems toluene+CO2 and toluene+HCl and are directly connected

to a mismatch of the H21 (T ) curves predicted by both models for T = 0.7× Tc,1, cf. Figure 1.

As expected, some differences between both methods are obsesrved upon approaching the critical point,

where the EOS generally predicts higher pressures than the MD simulation, as has been widely discussed in

the literature, and is due to the critical scaling behavior of the EOS [163–165].
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Figure 2: Vapor-liquid equilibria (plots of pressure vs. mole fraction of the light-boiling component) in 16 systems for T =
0.7 × Tc,1. Blue lines are PCP-SAFT results and red circles are MD results.

Again, the results for the acetone+HCl system are particular: For one, the temperature T = 0.7 ×

Tc,acetone = 355.32 K is only slightly higher than the critical temperature of HCl, which means that the

phase envelope is only barely detached from the right edge of the diagram in Figure 2 and the binary critical

point is very close to x2 = 1 (PCP-SAFT predictions are xHCl = 0.98 mol/mol at the binary critical point

at 0.7× Tc,1). On the other side of the diagram, at low x2, the bubble and dew point curves are very close

to another, which goes hand in hand with a small partition coefficient.
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3.3. Interfacial Properties

3.3.1. Density Profiles

A representative plot of the density profiles at the interface obtained from the two methods is given in

Figure 3 for the system toluene+CO2 at T = 0.7 × Tc,toluene. The component density profiles for toluene

and CO2, obtained from MD and the EOS, are plotted for the bulk liquid phase concentration xCO2
=

0.05 mol/mol. The vapor phase is on the left and the liquid phase on the right side. For the density profile

of the heavy-boiling component (toluene), a monotonous transition is observed, whereas the light-boiling

(CO2) component density profile exhibits a local maximum in the interfacial region, i.e., E2 > 1.

For both components, the density profiles predicted by MD and DGT agree well. Both methods predict

an enrichment peak in the CO2 density profile but not in the toluene density profile. Furthermore, the

predictions of both methods for the magnitude of this peak almost coincide. The width of the interfacial

region is smaller for DGT than for MD, which is well known and related to the fact that fluctuations are

present in the MD simulations but not in DGT, cf. Section 3.3.5 for more details. Good agreement of

the interfacial density profiles predicted by MD and DGT has been observed in many previous studies

[15, 22, 45, 166–169].

Figure 3: Vapor-liquid equilibrium density profile: Comparison of the DGT results (lines) to the MD results (symbols). △ and
solid line are CO2, ▽ and dashed line are toluene. For better visibility, only every fifth MD data point is plotted. Results for
xCO2 = 0.05 mol/mol and T = 0.7 × Tc,1.
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In Figure 4, multiple density profiles over the entire investigated composition range are plotted for all

16 binary systems (only DGT results shown for clarity). The density of the heavy-boiling component is

always much higher in the liquid phase than in the vapor phase. For the systems X+HCl, acetone+CO2,

and CCl4+CO2, this is also true for the light-boiling component (∆ρ2 >> 0), whereas the inverse trend

(∆ρ2 < 0) is observed for the systems X+N2. For the systems X+CH4, ∆ρ2 is only slightly positive, and

for cyclohexane+CO2 and toluene+CO2, ∆ρ2 is nearly zero, switching sign from positive to negative with

increasing liquid phase concentration x2. There is a significant influence of the liquid phase concentration

on both component density profiles. Moreover, in the systems X+N2, a transition from VLE to LLE is

observed, which has important consequences for the interfacial structure (cf. Figure 4). This has been

analyzed recently by Nitzke et al. [170] for similar systems.

Figure 4: Component density profiles of the heavy-boiling component (dashed lines) and the light-boiling component (solid
lines) in the 16 binary systems. Results from DGT at T = 0.7 × Tc,1. The color indicates the liquid phase concentrations x2.
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3.3.2. Surface Tension

In Figure 5, the results of DGT and MD simulations for the surface tension γ are plotted. The highest

values of the surface tension are found for the pure solvent (component 1). Upon adding the light-boiling

component (component 2), the surface tension decreases monotonically until it becomes zero at the critical

point of the mixture. The functions γ(x2) are nearly linear for most systems up to x2 values that range

from about 0.2-0.4 mol/mol, depending on the system (and on the choice of light-boiling component in

particular). For higher values of x2, the slope decreases until the critical point is reached.

The exception is again the system acetone+HCl: The surface tension results for that system exhibit a

weak maximum. Such maxima are sometimes called positive aneotropic points and are usually associated

with heavy-boiling azeotropes [15, 171–173]. Even though the system acetone+HCl does not have a heavy-

boiling azeotrope at T = 0.7 × Tc,1, it is close to having one (if the mixed interactions were only slightly

more attractive). In line with this phase behavior, a positive aneotrope is predicted both by MD and DGT.

Figure 5 also includes experimental data for the surface tension of the pure solvents that were obtained

from DIPPR correlations via the DIADEM data base [57]. Experimental mixture data on the surface tension

of the studied systems are scarce and none are available at the temperatures investigated here. The values

of the pure component surface tension are quite similar for all four solvents and range from 14.25 mN/m

(cyclohexane) to 15.76 mN/m (acetone).

The DGT results match the experimental data perfectly, which is not astonishing as the influence param-

eter κ was fitted to these data, however, not necessarily at T = 0.7×Tc,1. The MD simulations systematically

overestimate the surface tension throughout the entire composition range. The deviations for the mixture

can be considered a consequence of the overestimation of the surface tension of the pure solvents. The

overestimation is typically about 20%, which is in the range of what was also observed in the literature for

MD simulations of many other systems [84, 174–176]. The reasons for this systematic overestimation are
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Figure 5: Surface tension γ in 16 binary systems plotted as a function of the liquid phase mole fraction of the light-boiling
component x2. The temperature is in all cases T = 0.7×Tc,1. Results from DGT (blue lines) and MD simulations (red circles).
Experimental data from DIPPR correlations are shown as open black diamonds for the pure solvents.

still not well understood.

3.3.3. Relative Adsorption

The results for the relative adsorption of the light-boiling component with respect to the heavy-boiling

component Γ
(1)
2 (cf. Eq. (9)) are shown as a function of the liquid phase mole fraction of the light boiling

component x2 in Figure 6. By definition, the relative adsorption is zero for the pure solvent and at the

critical point. Between these, the relative adsorption Γ
(1)
2 is positive and has a maximum for all studied

systems.

The MD and DGT results agree well, especially for the rising slope of the Γ
(1)
2 curves. On the falling
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Figure 6: Relative adsorption Γ
(1)
2 in 16 binary systems plotted as a function of the liquid phase mole fraction of the light-boiling

component x2. Results from DGT (blue lines) and MD (red circles) for T = 0.7 × Tc,1.

slope, MD simulations tend to predict the decline at lower values of x2 than DGT. These differences may

be related to the differences of the MD and EOS in describing the region near the critical point of the

mixture, cf. Figure 2. However, in most studied cases, the phase equilibria obtained by MD and PCP-SAFT

are in excellent agreement up to the concentration of the Γ
(1)
2 maximum (x

max(Γ)
2 ). In these regions, the

differences in absolute values of Γ
(1)
2 cannot be ascribed to the prediction of the bulk properties and must,

hence, directly relate to the description of the interfacial properties.

The characteristics of the Γ
(1)
2 (x2) curve seem to depend primarily on the light-boiling component. In

systems X+CH4 and X+N2, we find moderately low values of Γ
(1),max
2 , as well as a moderately positive

and strongly positive skew of the Γ
(1)
2 -x2 curves, respectively. In the systems X+CO2 and X+HCl, we find

25



higher values of Γ
(1),max
2 as well as negative skews of the Γ

(1)
2 -x2 curves. This again emphasizes the strong

influence of the light-boiling component.

3.3.4. Enrichment

Figure 7 shows the results for the prediction of the enrichment E2 of the light-boiling component by

DGT and MD simulations. Additionally, the results of the empirical model for the prediction of E2 [1] are

shown. For all studied mixtures, the enrichment is largest for infinite dilution and decreases monotonously

with increasing x2 until it becomes zero at the critical point. This behaviour is as expected based on results

for other systems [22, 45].

Figure 7: Enrichment E2 in 16 binary systems plotted as a function of the liquid phase mole fraction of the light-boiling
component x2. Results from DGT (blue lines), MD simulations (red circles), and the empirical model (dashed lines) [1] at
temperatures of T = 0.7 × Tc,1.
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For several of the studied systems, the MD and DGT results agree essentially within the MD uncertainties;

in the other cases, DGT mostly predicts a slightly larger E2 than MD. The empirical enrichment model

systematically overestimates the enrichment in most cases.

Significant enrichment is found in the systems X+CH4 and X+CO2 (except acetone+CO2), where the

values of E2 range between 1.5 and 2. Interestingly, very small enrichment is predicted for all X+N2 systems

– consistently from all three methods. The main difference between the X+N2 systems and the other 12

systems is that, as a result of the low solubility, the vapor phase density of N2 is significantly larger than

the liquid phase (ρ′′N2
> ρ′N2

) (cf. Figure 1). For model systems [25], it has been shown that when ρ′′2 > ρ′2,

i.e., ∆ρ < 0, in binary systems of component 1 and 2 (2 being supercritical), low enrichment is obtained.

This is confirmed in this work for real substance mixtures and also captured by the empirical enrichment

model. On the other hand, the mixtures with significant enrichment have low absolute values of ∆ρ (the

only exception being CCl4+CO2); in these cases, a relative adsorption must always lead to an enrichment

[25, 177].

The system acetone+HCl is a special case among the 16 considered systems. Both MD and DGT

likewise predict practically no enrichment (i.e., E2 = 1) throughout the entire composition range. This is

also predicted by the empirical enrichment model. It is important to note, that the same system does not

exhibit a negligible relative adsorption – rather, it had the highest Γ
(1)
2 values of all studied systems (cf.

Figure 6). The system acetone+HCl also behaves uniquely in respect to some other interfacial properties,

such as the surface tension, which exhibits a local extremum (aneotrope).

3.3.5. Interfacial Thickness

Figure 8 shows the results of the interfacial thickness. Both MD and DGT results are shown.

For all pure solvents, the interfacial thickness is approximately 1 nm. In the mixtures, the interfacial

thickness increases with increasing x2 and exhibits a pole at the critical point. The agreement of the MD and
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Figure 8: Interfacial thickness L90
10 as defined by [65] in 16 binary systems plotted as a function of the liquid phase mole fraction

of the light-boiling component x2. Results from DGT (blue lines) and MD simulations (red circles) for T = 0.7 × Tc,1.

DGT results is generally good. Yet, the DGT results systematically underestimate the MD results, which is

a consequence of the fact that the MD comprises fluctuations, whereas DGT does not [166, 178, 179]. As a

result of these density fluctuations, which become increasingly relevant as the density difference between the

two phases decreases (i.e., approaching the critical point), the error bars of the MD results near the critical

point strongly increase. Significant deviations between the MD and the DGT results are observed at high

concentrations in the systems toluene+CO2 and acetone+HCl, which is where MD and PCP-SAFT are not

in good agreement (cf. H21 data in Figure 1). The unexpected behavior of the DGT results for the X+N2

systems is a direct consequence of the L90
10 definition and explained in the Supporting Information.
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4. Conclusions

Vapor-liquid interfacial properties of binary systems were studied by MD and DGT. All 16 binary systems

that can be obtained from combining the heavy-boiling components 1 (cyclohexane, toluene, acetone, and

carbon tetrachloride) with the light-boiling components 2 (methane, carbon dioxide, hydrogen chloride, and

nitrogen) were investigated. Results for the surface tension, relative adsorption, enrichment, and interfacial

thickness are reported for T = 0.7×Tc,1. The pure component models were taken from the literature; for each

binary system the interaction parameters of MD and DGT were adjusted to the same set of experimental

gas solubility data. In general, good agreement between the predictions of the two independent methods

was found.

The results for the interfacial properties can be compared in two ways: varying component 1 for given

component 2, or vice versa. It is found that for a given light-boiling component 2, the variation of the

heavy-boiling component 1 usually has only a minor influence – there may be some quantitative differences,

but the qualitative features are the same. This is different, when for a given heavy-boiling component 1, the

light-boiling component 2 is varied. Then, also the qualitative features of the studied interfacial properties

often differ.

Among the studied systems, acetone+HCl plays a special role. Firstly, the experimental data base was

very narrow for this system – and there is reason to believe that the experimental results might be affected

by chemical reactions of acetone. While chemical reactions are not explicitly considered in the models of

the present work, the high values of the binary interaction parameters for acetone+HCl obtained from the

fit to the scarce data indicate unusually strong attraction. This has an important influence on all studied

interfacial properties, which often differ qualitatively from those found for the other systems, in which the

unlike interactions were less favorable.

The results for the surface tension are qualitatively similar for all systems: The surface tensions of the
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pure components 1 are similar and adding component 2 leads to a decrease until the surface tension becomes

zero at the critical point of the mixture. The variation of the results between the different studied systems is

much stronger for the other studied interfacial properties. An exception is the system acetone+HCl, where

a weak aneotrope was found, which is in line with the phase behavior in that system.

An enrichment of the light-boiling component 2 was found in all systems, except for acetone+HCl, with

the highest numbers found for infinite dilution of component 2. The maximum enrichment is in the range

of 1.5–2 for most studied systems; the values for the systems with nitrogen are lower throughout.

The magnitude of the relative adsorption and the enrichment of component 2 are not directly correlated,

hence, these two quantities describe different aspects of the adsorption at the vapor-liquid interface.

The interfacial thickness is generally about 1–2 nm in all studied systems and increases beyond this only

upon approaching the critical point of the mixture. The 10-90 definition for the interfacial thickness by

Lekner and Henderson [65] leads to problems when the molar density of a component is similar in both

phases.

Besides the data on the interfacial properties, also data on the Henry’s law constants of the gas 2 in

the solvent 1 H21 are provided, together with data on the vapor-liquid equilibria in the studied systems at

T = 0.7×Tc,1. It would be interesting to study the influence of the temperature on the interfacial properties

of the different systems in future work. Many of the studied systems show a maximum of H21 (T ). From

the slope of H21 (T ) at 0.7 × Tc,1, the enthalpy of absorption can be calculated and is, depending on the

system, either positive (endothermal absorption) or negative (exothermal absorption) or almost equal to zero.

The enthalpy of absorption at 0.7 × Tc,1 was shown to primarily depend on the choice of the light-boiling

component 2, which correlates to the features of the interfacial properties.

The results from the present study on interfacial properties of binary mixtures of real fluids with different

types of interactions can be compared to results from previous studies on binary Lennard-Jones mixtures.
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One could speculate that for systems with similar phase diagrams the interfacial properties are similar too.

As a rule of thumb, this was found to be true, which indicates that mean field approximations are useful for

a qualitative understanding of interfacial properties.
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[52] H. A. Lorentz, Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Annalen der Physik

248 (1) (1881) 127–136. doi:10.1002/andp.18812480110.

[53] D. Berthelot, Sur le mélange des gaz, Comptes rendus hebdomadaires des séances de l‘Académie des Sciences 126 (1898)
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[77] P. Mausbach, A. Köster, G. Rutkai, M. Thol, J. Vrabec, Comparative study of the Grüneisen parameter for 28 pure
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