References
Adam, K. C. S., Robison, M. K., & Vogel, E. K. (2018). Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.Journal of Cognitive Neuroscience , 30 (9), 1229–1240. https://doi.org/10.1162/jocn_a_01233
Akyürek, E. G., & Schubö, A. (2011). The allocation of attention in displays with simultaneously presented singletons. Biological Psychology , 87 (2), 218–225. https://doi.org/10.1016/j.biopsycho.2011.02.022
Altschuler, T. S., Molholm, S., Russo, N. N., Snyder, A. C., Brandwein, A. B., Blanco, D., & Foxe, J. J. (2012). Early electrophysiological indices of illusory contour processing within the lateral occipital complex are virtually impervious to manipulations of illusion strength. NeuroImage, 59(4), 4074–4085. https://doi.org/10.1016/j.neuroimage.2011.10.051
Bacigalupo, F., & Luck, S. J. (2019). Lateralized suppression of alpha-band EEG activity as a mechanism of target processing. The Journal of Neuroscience , 39 (5), 900–917. https://doi.org/10.1523/JNEUROSCI.0183-18.2018
Barras, C., & Kerzel, D. (2017). Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. Psychophysiology , 54 (12), 1826–1838. https://doi.org/10.1111/psyp.12962
Bocincova, A., & Johnson, J. S. (2019). The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory. Cortex , 111 , 196–209. https://doi.org/10.1016/j.cortex.2018.10.013
Boudewyn, M. A., & Carter, C. S. (2018). Electrophysiological correlates of adaptive control and attentional engagement in patients with first episode schizophrenia and healthy young adults.Psychophysiology , 55 (3). https://doi.org/10.1111/psyp.12820
Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4. https://doi.org/10.1167/11.5.4
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision , 10 (4), 433–436. https://doi.org/10.1163/156856897x00357
Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2011). A neural theory of visual attention and short-term memory (NTVA).Neuropsychologia , 49 (6), 1446–1457. https://doi.org/10.1016/j.neuropsychologia.2010.12.006
Chen, S., Kocsis, A., Liesefeld, H. R., Müller, H. J., & Conci, M. (2021a). Object-based grouping benefits without integrated feature representations in visual working memory. Attention, Perception, & Psychophysics, 83 (3), 1357-1374. https://doi.org/10.3758/s13414-020-02153-5
Chen, S., Glasauer, S., Müller, H. J., & Conci, M. (2018a). Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation. Journal of Experimental Psychology. Human Perception and Performance , 44 (9), 1399–1413. https://doi.org/10.1037/xhp0000540
Chen, S., Töllner, T., Müller, H. J., & Conci, M. (2018b). Object maintenance beyond their visible parts in working memory. Journal of Neurophysiology , 119 (1), 347–355. https://doi.org/10.1152/jn.00469.2017
Chen, S., Weidner, R., Zeng, H., Fink, G. R., Müller, H. J., & Conci, M. (2020). Tracking the completion of parts into whole objects: Retinotopic activation in response to illusory figures in the lateral occipital complex. NeuroImage , 207 , 116426. https://doi.org/10.1016/j.neuroimage.2019.116426
Chen, S., Weidner, R., Zeng, H., Fink, G. R., Müller, H. J., & Conci, M. (2021b). Feedback from lateral occipital cortex to V1/V2 triggers object completion: Evidence from functional magnetic resonance imaging and dynamic causal modeling. Human Brain Mapping, 42 (17), 5581-5594. https://doi.org/10.1002/hbm.25637
Conci, M., Gramann, K., Müller, H. J., & Elliott, M. A. (2006). Electrophysiological correlates of similarity-based interference during detection of visual forms. Journal of Cognitive Neuroscience ,18 (6), 880–888. https://doi.org/10.1162/jocn.2006.18.6.880
Conci, M., Müller, H. J., & Elliott, M. A. (2007). The contrasting impact of global and local object attributes on Kanizsa figure detection. Perception & Psychophysics, 69(8), 1278–1294. https://doi.org/10.3758/BF03192945
Conci, M., Töllner, T., Leszczynski, M., & Müller, H. J. (2011). The time-course of global and local attentional guidance in Kanizsa-figure detection.Neuropsychologia, 49(9), 2456–2464. https://doi.org/10.1016/j.neuropsychologia.2011.04.023
Corriveau, I., Fortier-Gauthier, U., Pomerleau, V. J., McDonald, J., Dell’acqua, R., & Jolicoeur, P. (2012). Electrophysiological evidence of multitasking impairment of attentional deployment reflects target-specific processing, not distractor inhibition. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 86(2), 152–159. https://doi.org/10.1016/j.ijpsycho.2012.06.005
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. The Behavioral and Brain Sciences , 24 (1), 87–114; discussion 114–185. https://doi.org/10.1017/s0140525x01003922
Delvenne, J.-F., & Bruyer, R. (2006). A configural effect in visual short-term memory for features from different parts of an object. Quarterly Journal of Experimental Psychology , 59(9), 1567–1580. https://doi.org/10.1080/17470210500256763
Diaz, G. K., Vogel, E. K., & Awh, E. (2021). Perceptual Grouping Reveals Distinct Roles for Sustained Slow Wave Activity and Alpha Oscillations in Working Memory.Journal of Cognitive Neuroscience, 33(7), 1354–1364. https://direct.mit.edu/jocn/article-abstract/33/7/1354/98593
Ecker, U. K. H., Maybery, M., & Zimmer, H. D. (2013). Binding of intrinsic and extrinsic features in working memory. Journal of Experimental Psychology. General,142(1), 218–234. https://doi.org/10.1037/a0028732
Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity.Electroencephalography and Clinical Neurophysiology,99(3), 225–234. https://doi.org/10.1016/0013-4694(96)95711-9
Emrich, S. M., Ruppel, J. D. N., & Ferber, S. (2008). The role of elaboration in the persistence of awareness for degraded objects. Consciousness and Cognition,17(1), 319–329. https://doi.org/10.1016/j.concog.2006.12.001
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory, 4 , 145–199.
Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc , 28 (1), 1–11. https://doi.org/10.3758/BF03203630
Erickson, M. A., Albrecht, M. A., Robinson, B., Luck, S. J., & Gold, J. M. (2017). Impaired suppression of delay-period alpha and beta is associated with impaired working memory in schizophrenia. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 2(3), 272–279. https://doi.org/10.1016/j.bpsc.2016.09.003
Esposito, A., Chiarella, S. G., Raffone, A., Nikolaev, A. R., & van Leeuwen, C. (2023). Perceptual bias contextualized in visually ambiguous stimuli. Cognition , 230 , 105284. https://doi.org/10.1016/j.cognition.2022.105284
Ewerdwalbesloh, J. A., Palva, S., Rösler, F., & Khader, P. H. (2016). Neural correlates of maintaining generated images in visual working memory. Human Brain Mapping, 37(12), 4349–4362. https://doi.org/10.1002/hbm.23313
Fortier-Gauthier, U., Moffat, N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012). Contralateral cortical organisation of information in visual short-term memory: evidence from lateralized brain activity during retrieval.Neuropsychologia, 50(8), 1748–1758. https://doi.org/10.1016/j.neuropsychologia.2012.03.032
Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2016). The topography of alpha-band activity tracks the content of spatial working memory.Journal of Neurophysiology, 115(1), 168–177. https://doi.org/10.1152/jn.00860.2015
Fougnie, D., Cormiea, S. M., & Alvarez, G. A. (2013). Object-based benefits without object-based representations. Journal of Experimental Psychology. General,142(3), 621–626. https://doi.org/10.1037/a0030300
Fukuda, K., Kang, M.-S., & Woodman, G. F. (2016). Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations.Journal of Neurophysiology, 116(4), 1715–1727. https://doi.org/10.1152/jn.00991.2015
Fukuda, K., Mance, I., & Vogel, E. K. (2015). α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory. The Journal of Neuroscience, 35(41), 14009–14016. https://doi.org/10.1523/JNEUROSCI.5003-14.2015
Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience, 29(27), 8726–8733. https://doi.org/10.1523/JNEUROSCI.2145-09.2009
Gao, Z., Gao, Q., Tang, N., Shui, R., & Shen, M. (2016). Organization principles in visual working memory: Evidence from sequential stimulus display. Cognition,146, 277–288. https://doi.org/10.1016/j.cognition.2015.10.005
Gao, Z., Xu, X., Chen, Z., Yin, J., Shen, M., & Shui, R. (2011). Contralateral delay activity tracks object identity information in visual short term memory.Brain Research, 1406, 30–42. https://doi.org/10.1016/j.brainres.2011.06.049
Gokce, A., Geyer, T., Finke, K., Müller, H. J., & Töllner, T. (2014). What pops out in positional priming of pop-out: insights from event-related EEG lateralizations.Frontiers in Psychology, 5, 688. https://doi.org/10.3389/fpsyg.2014.00688
Grimault, S., Robitaille, N., Grova, C., Lina, J.-M., Dubarry, A.-S., & Jolicoeur, P. (2009). Oscillatory activity in parietal and dorsolateral prefrontal cortex during retention in visual short-term memory: additive effects of spatial attention and memory load. Human Brain Mapping,30(10), 3378–3392. https://doi.org/10.1002/hbm.20759
Herrmann, C. S., & Bosch, V. (2001). Gestalt perception modulates early visual processing.Neuroreport, 12(5), 901–904. https://doi.org/10.1097/00001756-200104170-00007
Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.Journal of Experimental Psychology. Human Perception and Performance, 39(6), 1713–1730. https://doi.org/10.1037/a0032251
Jeffreys, H. (1961).Theory of probability, Clarendon. Oxford.
Kasai, T., Takeya, R., & Tanaka, S. (2015). Emergence of visual objects involves multiple stages of spatial selection. Attention, Perception & Psychophysics,77(2), 441–449. https://doi.org/10.3758/s13414-014-0799-8
Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572
Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research , 43 (2), 149–164. https://doi.org/10.1016/s0042-6989(02)00402-9
Lee, T. S., & Nguyen, M. (2001). Dynamics of subjective contour formation in the early visual cortex. Proceedings of the National Academy of Sciences of the United States of America , 98 (4), 1907–1911. https://doi.org/10.1073/pnas.031579998
Lozano-Soldevilla, D., ter Huurne, N., Cools, R., & Jensen, O. (2014). GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance. Current Biology ,24 (24), 2878–2887. https://doi.org/10.1016/j.cub.2014.10.017
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100–108. https://doi.org/10.1016/j.neubiorev.2016.01.003
Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632–1639. https://doi.org/10.1016/j.neuropsychologia.2010.11.031
Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low.Psychological Science, 23(6), 554–559. https://doi.org/10.1177/0956797611431988
Marini, F., & Marzi, C. A. (2016). Gestalt Perceptual Organization of Visual Stimuli Captures Attention Automatically: Electrophysiological Evidence. Frontiers in Human Neuroscience, 10, 446. https://doi.org/10.3389/fnhum.2016.00446
Martinez, A., Ramanathan, D. S., Foxe, J. J., Javitt, D. C., & Hillyard, S. A. (2007). The role of spatial attention in the selection of real and illusory objects.The Journal of Neuroscience, 27(30), 7963–7973. https://doi.org/10.1523/JNEUROSCI.0031-07.2007
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347–356. https://doi.org/10.1038/nn.3655
Mazaheri, A., & Jensen, O. (2008). Asymmetric amplitude modulations of brain oscillations generate slow evoked responses. The Journal of Neuroscience,28(31), 7781–7787. https://doi.org/10.1523/JNEUROSCI.1631-08.2008
Medendorp, W. P., Kramer, G. F. I., Jensen, O., Oostenveld, R., Schoffelen, J.-M., & Fries, P. (2007). Oscillatory activity in human parietal and occipital cortex shows hemispheric lateralization and memory effects in a delayed double-step saccade task. Cerebral Cortex, 17(10), 2364–2374. https://doi.org/10.1093/cercor/bhl145
Michotte, A., Thines, G., & Crabbe, G. (1991). Amodal completion of perceptual structures. In G. Thines, A. Costall, & G. Butterworth (Eds.), Michotte’s experimental phenomenology of perception (pp. 140–167). Hillsdale, NJ: Erlbaum. (Original work published 1964)
Morey, C. C. (2019). Perceptual grouping boosts visual working memory capacity and reduces effort during retention. British Journal of Psychology , 110 (2), 306–327. https://doi.org/10.1111/bjop.12355
Morey, C. C., Cong, Y., Zheng, Y., Price, M., & Morey, R. D. (2015). The color-sharing bonus: Roles of perceptual organization and attentive processes in visual working memory. Archives of Scientific Psychology, 3(1), 18-29. https://doi.org/10.1037/arc0000014
Murphy, J., Devue, C., Corballis, P. M., & Grimshaw, G. M. (2020). Proactive Control of Emotional Distraction: Evidence From EEG Alpha Suppression. Frontiers in Human Neuroscience , 14 , 318. https://doi.org/10.3389/fnhum.2020.00318
Murray, M. M., Foxe, D. M., Javitt, D. C., & Foxe, J. J. (2004). Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. The Journal of Neuroscience, 24(31), 6898–6903. https://doi.org/10.1523/JNEUROSCI.1996-04.2004
Murray, M. M., Wylie, G. R., Higgins, B. A., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. The Journal of Neuroscience,22(12), 5055–5073. https://doi.org/10.1523/JNEUROSCI.22-12-05055.2002
Nie, Q.-Y., Maurer, M, Müller, H. J., & Conci, M. (2016). Inhibition drives configural superiority of illusory Gestalt: Combined behavioral and drift-diffusion model evidence, Cognition, 150 , 150-162. http://dx.doi.org/10.1016/j.cognition.2016.02.007
Nie, Q.-Y., Müller, H. J., & Conci, M. (2017). Hierarchical organization in visual working memory: From global ensemble to individual object structure. Cognition,159, 85–96. https://doi.org/10.1016/j.cognition.2016.11.009
Nikolaev, A. R., Gepshtein, S., Kubovy, M., & van Leeuwen, C. (2008). Dissociation of early evoked cortical activity in perceptual grouping.Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale , 186 (1), 107–122. https://doi.org/10.1007/s00221-007-1214-7
Nikolaev, A. R., Gepshtein, S., & van Leeuwen, C. (2016). Intermittent regime of brain activity at the early, bias-guided stage of perceptual learning. Journal of Vision , 16 (14), 11. https://doi.org/10.1167/16.14.11
Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct Mechanisms for Distractor Suppression and Target Facilitation.The Journal of Neuroscience, 36(6), 1797–1807. https://doi.org/10.1523/JNEUROSCI.2133-15.2016
Oberauer, K., & Hein, L. (2012). Attention to Information in Working Memory. Current Directions in Psychological Science, 21(3), 164–169. https://doi.org/10.1177/0963721412444727
Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Perception & Psychophysics,64(7), 1055–1067. https://doi.org/10.3758/BF03194756
Peterson, D. J., & Berryhill, M. E. (2013). The Gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin & Review,20(6), 1282–1289. https://doi.org/10.3758/s13423-013-0460-x
Peterson, D. J., Gözenman, F., Arciniega, H., & Berryhill, M. E. (2015). Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.Attention, Perception & Psychophysics , 77 (7), 2270–2283. https://doi.org/10.3758/s13414-015-0929-y
Pinto, Y., Sligte, I. G., Shapiro, K. L., & Lamme, V. A. F. (2013). Fragile visual short-term memory is an object-based and location-specific store. Psychonomic Bulletin & Review ,20 (4), 732–739. https://doi.org/10.3758/s13423-013-0393-4
Printzlau, F. A. B., Myers, N. E., Manohar, S. G., & Stokes, M. G. (2022). Neural Reinstatement Tracks Spread of Attention between Object Features in Working Memory.Journal of Cognitive Neuroscience, 34(9), 1681–1701. https://doi.org/10.1162/jocn_a_01879
Proverbio, A. M., & Zani, A. (2002). Electrophysiological indexes of illusory contours perception in humans. Neuropsychologia, 40(5), 479–491. https://doi.org/10.1016/s0028-3932(01)00135-x
Pun, C., Emrich, S. M., Wilson, K. E., Stergiopoulos, E., & Ferber, S. (2012). In and out of consciousness: sustained electrophysiological activity reflects individual differences in perceptual awareness. Psychonomic Bulletin & Review, 19(3), 429–435. https://doi.org/10.3758/s13423-012-0220-3
Rauschenberger, R., & Yantis, S. (2001). Attentional capture by globally defined objects.Perception & Psychophysics, 63(7), 1250–1261. https://doi.org/10.3758/BF03194538
Senkowski, D., Röttger, S., Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective figures capture visual spatial attention: evidence from electrophysiological and behavioral data. Neuropsychologia,43(6), 872–886. https://doi.org/10.1016/j.neuropsychologia.2004.09.010
Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207–214. https://doi.org/10.1111/j.1467-9280.2009.02276.x
Souza, A. S., & Oberauer, K. (2017). The contributions of visual and central attention to visual working memory. Attention, Perception & Psychophysics,79(7), 1897–1916. https://doi.org/10.3758/s13414-017-1357-y
Stanley, D. A., & Rubin, N. (2003). fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron,37(2), 323–331. https://doi.org/10.1016/S0896-6273(02)01148-0
Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). α-Band Electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.The Journal of Neuroscience , 26 (37), 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006
Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944. https://doi.org/10.1002/hbm.22677
Töllner, T., Müller, H. J., & Zehetleitner, M. (2012). Top-down dimensional weight set determines the capture of visual attention: evidence from the PCN component.Cerebral Cortex, 22(7), 1554–1563. https://doi.org/10.1093/cercor/bhr231
Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cognitive Psychology , 71 , 1–26.https://doi.org/10.1016/j.cogpsych.2014.01.003
van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 900–905. https://doi.org/10.1073/pnas.0908821107
van Ede, F. (2018). Mnemonic and attentional roles for states of attenuated alpha oscillations in perceptual working memory: a review. The European Journal of Neuroscience, 48(7), 2509–2515. https://doi.org/10.1111/ejn.13759
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. https://doi.org/10.1038/nature02447
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 92–114. https://doi.org/10.1037//0096-1523.27.1.92
Walther, D. B., & Koch, C. (2007). Attention in hierarchical models of object recognition. Progress in Brain Research , 165 , 57–78. https://doi.org/10.1016/S0079-6123(06)65005-X
Wang, S., Megla, E. E., & Woodman, G. F. (2021). Stimulus-induced alpha suppression tracks the difficulty of attentional selection, not visual working memory storage. Journal of Cognitive Neuroscience ,33 (3), 536–562. https://doi.org/10.1162/jocn_a_01637
Wang, S., Rajsic, J., & Woodman, G. F. (2019). The contralateral delay activity tracks the sequential loading of objects into visual working memory, unlike lteralized alpha oscillations. Journal of Cognitive Neuroscience , 31 (11), 1689–1698. https://doi.org/10.1162/jocn_a_01446
Wascher, E., & Beste, C. (2010). Tuning perceptual competition. Journal of Neurophysiology, 103(2), 1057–1065. https://doi.org/10.1152/jn.00376.2009
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology. General ,131 (1), 48–64. https://doi.org/10.1037/0096-3445.131.1.48
Wiegand, I., Finke, K., Töllner, T., Starman, K., Müller, H. J., & Conci, M. (2015). Age-related decline in global form suppression. Biological Psychology, 112, 116–124. https://doi.org/10.1016/j.biopsycho.2015.10.006
Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review , 10 (1), 80–87. https://doi.org/10.3758/BF03196470
Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review,15(1), 223–229. https://doi.org/10.3758/PBR.15.1.223
Woodman, G. F., Wang, S., Sutterer, D. W., Reinhart, R. M. G., & Fukuda, K. (2022). Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychonomic Bulletin & Review, 29 (3), 681–698. https://doi.org/10.3758/s13423-021-02034-4
Xu, Y. (2002). Encoding color and shape from different parts of an object in visual short-term memory.Perception & Psychophysics, 64(8), 1260–1280. https://doi.org/10.3758/BF03194770