References
- Saxena, RK., Saran, S., Isar, J., Kaushik, R. (2017). Production and
applications of succinic acid. Developments in Biotechnology and
Bioengineering. Production, Isolation and Purification of Industrial
products.Http://dx.doi.org/10.1016/B978-0-444-63662-1.00027-0.
- Kim, DY., Yim, SC., Lee, PC., Lee, WG., Lee, SY., Chang, HN. (2004).
Batch and continuous fermentation of succinic acid from wood
hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme
and Microbial Technology 35, 648-653.https://doi.org/10.1016/j/enzmictec.2004.08.018.
- Gao, C., Yang, X., Wang, H., Rivero, CP., Li, C., Cui, Z., Qi, Q.,
Lin, CSK. (2016). Robust succinic acid production from crude glycerol
using engineered Yarrowia lipolytica . Biotechnology for
Biofuels 9, 179. DOI:10.1186/s13068-016-0597-8.
- Guarnieri, MT., Chou, YC., Salvachua, D., Mohagheghi, A., John, PCS.,
Peterson, DJ., Bomble, YJ., Beckham, GT. (2017). Metabolic engineering
of Actinobacillus succinogenes provides insights into succinic
acid biosynthesis. Applied and
Environmental Microbiology 83, 1-14.https://doi.org/10.1128/AEM.00996-17.
- Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., Yukawa, H.
(2008). An efficient succinic acid production process in a
metabolically engineered Corynebacterium glutamicum strain.
Applied Microbiology and
Biotechnology 81, 459-464. Doi:10.1007/s00253-008-1668-y.
- Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertes, AA., Yukawa,
H. (2004). Metabolic analysis of Corynebacterium glutamicumduring lactate and succinate production under oxygen deprivation
condition. Journal of Molecular Microbiology and Biotechnology 7,
182-196. DOI:10.1159/000079827.
- Huhn, S., Jolkver, E., Kramer, R., Marin, K. (2011). Identification of
the membrane protein SucE and its role in succinate transport inCorynebacterium glutamicum . Applied Microbiology and
Biotechnology 89, 327-335. Doi:10.1007/s00253-010-2855-1.
- Zhu, N., Xia, H., Yang, J., Zhao, X., Chen, T. (2014). Improved
succinate production in Corynebacterium glutamicum by
engineering glyoxylate pathway and succinate export system.
Biotechnology Letters 36, 553-560.https://doi.org/10.1007/s10529-013-1376-2.
- Hu, J., Tan, Y., Li, Y., Hu, X., Xu, D., Wang, X. (2013). Construction
and application of an efficient multiple-gene-deletion system inCorynebacterium glutamicum . Plasmid 70, 303-313.
DOI:10.1016/j.plasmid.2013.07.001.
- Xu, H., Zhou, Z., Wang, C., Chen, Z., Cai, H. (2016). Enhanced
succinic acid production in Corynebacterium glutamicum with
increasing the available NADH supply and glucose consumption rate by
decreasing H+-ATPase activity. Biotechnology Letters 38, 1181-1186.
Doi:10.1007/s10529-016-2093-4.
- Wang, Q., Zhang, J., Makishah, NHA., Sun, X., Wen, Z., Jiang, Y.,
Yang, S. (2021). Advances and perspectives for genome editing tools ofCorynebacterium glutamicum . Frontiers in Microbiology.
doi:10.3389/fmicb.2021.654058.
- Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T.,
Zhao, H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for
one step multigene disruption in Saccharomyces cerevisiae . ACS
Synthetic Biolology 4, 585-94.https://doi.org/10.1021/sb500255k.
- Peng, F., Wang, X., Sun, Y., Dong, G., Yang, Y., Liu, X., Bai, Z.
(2017). Efficient gene editing in Corynebacterium glutamicumusing the CRISPR/Cas9 system. Microbial Cell Factories 16, 201.
Doi:10.1168/s12934-017-0814-6.
- Lacey, SF., Fraietta, JA. (2020). First trial of CRISPR-edited T cells
in lung cancer. Trends in Molecular Medicine 26, 713-715.https://doi.org/10.1016/j.molmed.2020.06.001.
- Jiang, Y., Qian, F., Yang, J., Liu, Y., Dong, F., Xu, C., Sun, B.,
Chen, B., Xu, X., Li, Y., Wang, R., Yang, S. (2017). CRISPR-Cpf1
assisted genome editing of Corynebacterium glutamicum . Nature
communications 8, 15179. DOI:10.1038/ncomms15179.
- Zhu, JY., Pan, XY. (2010). Woody biomass pretreatment for cellulosic
ethanol production: Technology and energy consumption evaluation.
Bioresource Technology. 101, 4992-5002.https://doi:10.1016/j.biortech.2009.11.007.
- Kamm, B., Gruber, PR., Kamm, M. (2008). Biorefineries-industrial
processes and products. Wiley-VCH Verlag GmbH & Co. KGaA.
Doi:10.1002/9783527619849.
- Isikgor, FH., Becer, CR. (2015). Lignocellulosic biomass: a
sustainable platform for the production of bio-based chemicals and
polymers. Polymer Chemistry Journal 6, 4497.https://doi.org/10.1039/C5PY00263J.
- Takkellapati, S., Li, T., Gonzlez, MA. (2018). An overview of
biorefinery derived platform chemicals from a cellulose and
hemicellulase biorefinery. Clean Technology and Environmental Policy
20, 1615-1630.
- Park, SJ., Lee, WY., Le, WH. (1987). Wood anatomy and classification.
Hyangmun, Seoul. (Text in Korean). p. 94-119.
- Lee, DS., Wi, SG., Lee, SJ., Lee, YG., Kim, YS., Bae, HJ. (2014).
Rapid saccharification for production of cellulosic biofuels.
Bioresource Technology 158, 239-247.http://dx.doi.org/10.1016/j.biortech.2014.02.039.
- Lee, DS., Lee, YG., Song, Y., Cho, EJ., Bae, HJ. (2020). Hydrolysis
patterns of xylem tissues of hardwood pretreated with acetic acid and
hydrogen peroxide. Frontiers in Energy Research 8.
doi:10.3389/fenrg.2020.00034.
- Wi, SG., Chung, BY., Lee, YG., Yang, DJ., Bae, HJ. (2011). Enhanced
enzymatic hydrolysis of rapeseed straw by popping pretreatment for
bioethanol production. Bioresource Technology 102, 5788-5793.
Doi:10.1016/j.biortech.2011.02.031.
- Wi, SG., Choi, IS., Kim, KH., Kim, HM., Bae, HJ. (2013). Bioethanol
production from rice straw by popping pretreatment. Biotechnology for
Biofuels 6, 166.http://www.biotechnologyforbiofuels.com/content/6/1/166.
- Hu, J., Arante, V., Pribowo, A., Gourlay, K., Saddler, JN. (2014).
Substrate factors that influence the synergistic interaction of AA9
and cellulase during the enzymatic hydrolysis of biomass. Energy and
Environmental Science Journal 7, 2308-2315. Doi:10.1039/c4ee00891j.
- Wang, GS., Pan, XJ., Zhu, JY., Gleisner, R., Rockwood, D. (2009).
Sulfite pretreatment to overcome recalcitrance of lignocellulose
(SPORL) for robust enzymatic saccharification of hardwoods.
Biotechnology Progress 25, 1086-1093. Doi:10.1021/bp.206.
- Zhu, JY., Pan, XJ., Wang, GS., Gleisner, R. (2009). Sulfite
pretreatment (SPORL) for robust enzymatic saccharification of spruce
and red pine. Bioresource Technology 100, 2411-2418.
Doi:10.1016/j.biortech.2008.10.057.
- Lee, DS., Lee, YG., Cho, EJ., Song, Y., Bae, HJ. (2021). Hydrolysis
pattern analysis of xylem tissues of woody plants pretreated with
hydrogen peroxide and acetic acid: rapid saccharification of softwood
for economical bioconversion. Biotechnology for Biofuels 14, 37.https://doi.org/10.1186/s13068-021-01889-y.
- Wang, C., Zhang, HL., Cai, H., Zhou, ZH., Chen, YL., Ouyang, PK.
(2013). Succinic acid production from corn cobs hydrolysates by
genetically engineered Corynebacterium glutamicum .
Applied Biochemistry and
Biotechnology 172, 340-350. DOI:10.1007/s12010-013-0539-x.
- Kumar, V., Yadav, SK., Kumar, J., Ahluwalia, V. (2020). A critical
review on current strategies and trends employed for removal of
inhibitors and toxic materials generated during biomass pretreatment.
Bioresource Technology 299, 122633.http://doi.org/10.1016/j.biortech.2019.122633.
- Looke, M., Kristjuhan, K., kristjuhan, A. (2011). Extraction of
genomic DNA from yeasts for PCR-based applications. BioTechniques 50,
325-328. DOI 10.2144/000113672.
- Ruan, Y., Zhu, L., Li, Q. (2015). Improving the electro-transformation
efficiency of Corynebacterium glutamicum by weakening its cell
wall and increasing the cytoplasmic membrane fluidity. Biotechnology
Letters 37, 2445-2452. Doi:10.1007/s10529-015-1934-x.
- Wi, SG., Cho, EJ., Lee, DS., Lee, SJ., Lee, YJ., Bae, HJ. (2015).
Lignocellulose conversion for biofuel: a new pretreatment greatly
improves downstream biocatalytic hydrolysis of various lignocellulosic
materials. Biotechnology for Biofuels. 8, 228.http://www.biotechnologyforbiofuels.com/content/6/1/166.
- Zetsche, B., Gootenberg, JS., Abudayyeh, OO., Slaymaker, IM.,
Makarova, KS., Essletzbichler, P., Volz, SE., Joung, J., Oos,t JVD.,
Regev, A., Koonin, EV., Zhang, F. (2015). Cpf1 is a single RNA-guided
endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.http://dx.doi.org/10.1016/j.cell.2015.09.038.
- Baumann, MJ., Borch, K., Westh, P. (2011). Xylan oligosaccharides and
cellobiohydrolase I (TrCel7A) interaction and effect on activity.
Biotechnology for Biofuels 4, 45.
http://www.biotechnologyforbiofuels.com/centent/4/1/45.
- Kahar, P. (2013). Synergistic effects of pretreatment process on
enzymatic digestion of rice straw for efficient ethanol fermentation.
Environmental and Biotechnology New Approaches and prospective
applications.http://dx.doi.org/10.5772/54949.
- Kumar, R., Wyman, CE. (2009). Access of cellulase to cellulose and
lignin for poplar solids produced by leading pretreatment
technologies. Biotechnology Progress 25, 807-819.
DOI:10.1002/btpr.153.
- Moser, C., Henriksson, G., Lindstrom, ME. (2019). Structural aspects
on the manufacturing of cellulose nanofibers from wood pulp fibers.
BioResources 149, 2269-2276. DOI:10.15376/biores.14.1.2269-2276.
- Murphy, L., Bohlin, C., Baumann, MJ., Olsen, SN., Sorensen, TH.,
Anderson, L., Borch, K., Westh, P. (2013). Production inhibition of
five Hypocrea jecorina cellulases. Enzyme and Microbial
Technology 52,163-169.http://dx.doi.org/10.1016/j.enzmictec.2013.01.002.
- Vermaas, JV., Petridis, L., Xianghong, Q., Schulz, R., Lindner, B.,
Smith, JC. (2015). Mechanism of lignin inhibition of enzymatic biomass
deconstruction. Biotechnology for Biofuels 8, 217.
Doi:10.1186/s13068-015-0379-8.
- Kumar, D., Murthy, GS. (2013). Stochastic molecular model of enzymatic
hydrolysis of cellulose for ethanol production. Biotechnology for
Biofuels 6, 63.
- Zhang, N., Li, S., Xiong, L., Hong, Y., Chen, Y. (2015).
Cellulose-hemicellulose interaction in wood secondary cell-wall.
Modelling and Simulation in Materials Science and Engineering 23,
085010. DOI 10.1088/0965-0393/23/085010.
- Rahmini, R., Yoon, SG., Yeon, IJ., Sung, YJ., Shin, SJ. (2019). Kraft
pulping using red pine (Pinus densiflora ) root biomass. Journal
of Korea TAPPI 51, 91-96.http://dx.doi.org/10.7584/JKTAPPI.2019.10.51.5.91.
- Maki-Arvela, P., Salmi, T., Holmbom, B., Willfor, S., Murzin, DY.
(2011). Synthesis of sugars by hydrolysis of hemicellulose- A review
Chemistry Review 111, 5638-5666.https://doi.org/10.1021/cr2000042.
- Varnai, A., Huikko, L., Pere, J., Siika-aho, M., Viikari, L. (2011).
Synergistic action of xylanase and mannanase improves the total
hydrolysis of softwood. Bioresource Technology 102, 9096-9104.
Doi:10.1016/j.biortech.2011.06.059.
- Herpoel-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Molle, D.,
Lignon, S., Mathis, H., Sigoillot, JC., Monot, F., Asther, M. (2008).
Comparative secretome analysis of two Trichoderma reesei RUT-30 and
CL847 hypersecretory strains. Biotechnology for Biofuels 1,18.
DOI:10.1186/1754-6834-1-18.
- Song, Y., Cho, EJ., Park, CS., Oh, CH., Park, BJ., Ba,e HJ. (2019). A
strategy for sequential fermentation by Saccharomyces
cerevisiae and Pichia stipites in bioethanol production from
hardwoods. Renewable Energy 139, 1281-1289.
- Briki, A., Kabore, K., Olmos, E., Bosselaar, S., Blanchard, F., Fick,
M., Guedon, E., Fournier, F., Delaunay, S. (2020).Corynebacterium glutamicum , a natural overproducer of succinic
acid? Engineering and Life Science 20, 205-215.
Doi:10.1002/elsc.201900141.
- Zhou, Z., Wang, C., Kai, Y., Zhang, K., Xu, H., Cai, H. (2014).
Increasing available NADH supply during succinic acid production byCorynebacterium glutamicum . Biotechnology Progress 31, 12-19.
- Litsanove, B., Brocker, M., Bott, M. (2012). Toward homosuccinate
fermentation: Metabolic engineering of Corynebacterium
glutamicum for anaerobic production of succinate form glucose and
formate. Applied and Environmental Microbiology 79, 3325-3337.http://doi.org/10.1186/s13068-018-1094-z.
- Chung, SC., Park, JS., Yun, J., Park, JH. (2017). Improvement of
succinate production by release of end-product inhibition inCorynebacterium glutamicum . Metabolic Engineering 40, 157-164.
Doi:10.1016/j.ymben.2017.02.004.
- Olajuyin, AM., Yang, M., Thygesen, A., Tian, J., Mu, T., Xing, J.
(2019). Effective production of succinic acid from coconut water
(Cocos nucifera ) by metabolically engineered Escherichia
coli with overexpression of Bacillus subtilis pyruvate
carboxylase. Biotechnology Reports 24, e00378.https://doi.org/10.1016/j.btre.2019.e00378.
- Zhang, X., Jantama, K., Moore, JC., Jarboe, L., Shanmugam, KT.,
Ingram, LO. (2009). Metabolic evolution of energy-conserving pathways
for succinate production in Escherichia coli . PNAS 106,
20180-20185. doi/10.1073/pnas.0905396106.
- Hodge, DB., Andersson, C., Berglund, KA., Rova, U. (2009).
Detoxification requirements for bioconversion of softwood dilute acid
hydrolyzates to succinic acid. Enzyme and Microbial Technology 44,
309-316.https://doi.org/10.1016/j.enzmictec.2008.11.007.
- Salvachua, D., Mohagheghi, A., Smith, H., Bradfield, MFA., Nicol, W.,
Black, BA., Biddy, MJ., Dowe, N., Beckham, GT. (2016). Succinic acid
production on xylose-enriched biorefinery streams byActinobacillus succinogenes in batch fermentation.
Biotechnology for Biofuels 9, 28. Doi:10.1186/s13068-016-0425-1.
- Zheng, P., Dong, JJ., Sun, ZH., Ni, Y., Fang, L. (2009). Fermentative
production of succinic acid from straw hydrolysate byActinobacillus succinogenes . Bioresource Technology 100,
2425-2429. Doi:10.1016/j.biortech.2008.11.043.
- Lee, JS., Lin, CJ., Lee, WC., Teng, HY., Chuang, MH. (2022).
Production of succinic acid through the fermentation ofActinobacillus succinogenes on the hydrolysate of Napier grass.
Biotechnology for Biofuels and Bioproducts 15, 9.
http://doi.org/10.1186/s13068-022-02106-0.