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Key Points 20 

1. Geochronological constraints from the Tso Morari dome place the onset of exhumation from 21 

ultrahigh-pressure conditions at 46.91 ± 0.07 Ma 22 

2. Close correspondence to other ultrahigh-pressure ages imply a similar time-frame for the 23 

onset of UHP exhumation across the NW Himalaya 24 

3. The onset of UHP exhumation at 47-46 Ma coincides with significant geodynamic changes to 25 

local and wider plate network 26 

Abstract 27 

The burial and exhumation of continental crust to and from ultrahigh-pressure (UHP) is an important 28 

orogenic process, which is often interpreted with respect to the onset and/or driving forces of 29 

continent-continent collision. Here, we investigate the timing and significance of UHP metamorphism 30 

and exhumation of the Tso Morari complex, North-West Himalaya. We present new 31 

petrochronological analyses of mafic eclogites and their host-rock gneisses, combining U-Pb zircon, 32 

rutile and xenotime geochronology (high-precision CA-ID-TIMS and high-spatial resolution LA-ICP-33 

MS), garnet element maps, and petrographic observations. Zircon from mafic eclogite have a CA-ID-34 



TIMS age of 46.91 ± 0.07 Ma, plus an LA-ICPMS age of 47.5 ± 0.8 Ma, with REE profiles indicative 35 

of growth at eclogite facies conditions. Those ages overlap with zircon rim ages (48.89 ± 1.1 Ma, LA-36 

ICP-MS) and xenotime ages (48.1 ± 1.7 Ma; LA-ICP-MS) from the hosting Puga gneiss, which grew 37 

during breakdown of UHP garnet rims. We argue that peak zircon growth at 47-46 Ma corresponds to 38 

the onset of exhumation from UHP conditions. Subsequent exhumation through the rutile closure 39 

temperature, is constrained by new dates of 40.4 ± 1.7 Ma and 36.3 ± 3.8 (LA-ICP-MS). Overlapping 40 

ages from Kaghan imply a coeveal time-frame for the onset of UHP exhumation across the NW 41 

Himalaya, triggered by the arrival of buoyant Indian continental lithosphere into the Eurasian 42 

subduction zone. Our regional synthesis suggests that UHP exhumation at 46-47 Ma provides a time-43 

stamp for major geodynamic shifts within the Himalayan orogen and the wider plate network, 44 

resulting from the India-Asia collision.  45 

  46 
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1. Introduction 49 

The exhumation of continental crust from ultra-high pressure (hereafter referred to as “UHP 50 

exhumation”) is an important yet poorly constrained orogenic process (Guillot et al., 2009, Hacker 51 

and Gerya, 2013, Warren, 2013). Many studies relate UHP exhumation to other orogenic processes 52 

such as a reduction in the slab-pull force during the subduction of continental crust, slab break-off, 53 

and/or onset of various modes of orogenic extension/collapse (e.g., Brun and Faccenna, 2008, Yamato 54 

et al., 2008, Guillot et al., 2009, Hacker et al., 2010, Little et al., 2011, Burov et al., 2014, Chen et al., 55 

2022). As such, UHP exhumation in the rock record is often interpreted to signify an important shift 56 

in the tectonic and geodynamic regime of an orogen (e.g., O’Brien et al. 2001; Yamato et al., 2008, 57 

Guillot et al., 2009, Hacker et al., 2010, Soret et al., 2021, Chen et al., 2022), for example, a shift from 58 

accretionary orogenesis to collisional orogenesis (c.f., Cawood et al., 2009). In an accretionary 59 

orogen, convergence is driven, and to some extent, accommodated by subduction of a trailing oceanic 60 

slab attached to the lower plate of the orogen. In contrast, in a collisional orogen, convergence is 61 

accommodated by crustal shortening and thickening, and may be driven by ongoing subduction 62 

elsewhere (e.g., Capitanio et al., 2015, Parsons et al., 2021, Bose et al., 2023). The transition between 63 

these regimes is likely to involve a change in slab-pull forces relating continental subduction and/or 64 

slab break-off, followed by UHP exhumation. Despite its importance as a marker of geodynamic 65 

change during orogenesis, the geodynamic processes responsible for UHP exhumation remain poorly 66 

constrained, and this prevents further understanding of its significance (Hacker and Gerya, 2013, 67 

Warren, 2013, O'Brien, 2019). 68 



In order to understand the processes responsible for UHP exhumation, we must combine petrology-69 

based pressure-temperature (P-T) pathways with geochronological constraints to determine the timing 70 

and rates of UHP exhumation through P-T space and with respect to the orogeny. However, attempts 71 

to constrain the timing and rates of UHP exhumation are always complicated by the uncertainty with 72 

which accessory phase ages are related to P-T paths (e.g. Kohn et al., 2017, O'Brien, 2019). This 73 

problem is clearly demonstrated in the UHP Tso Morari Complex of the NW Himalaya (Steck et al., 74 

1998; Epard and Steck, 2008; Guillot et al., 2008). 75 

The Tso Morari Complex is one of two UHP terranes in the NW Himalaya, the other being the 76 

Kaghan Valley Complex, located ~450 km to the  west of Tso Morari (Steck et al., 1998; O’Brien et 77 

al., 2001; Parrish et al., 2006; Epard and Steck, 2008; Guillot et al., 2008; Buchs and Epard, 2019). 78 

Over the last three decades, geochronological studies of Tso Morari have yielded a range of estimates 79 

for the timing of UHP metamorphism and exhumation, spanning a period of 11 Ma (Leech, Singh and 80 

Jain, 2007; Donaldson et al., 2013; St-Onge et al., 2013). In contrast, estimates from the Kaghan UHP 81 

eclogites are tightly constrained to ~46 Ma (Kaneko et al., 2003; Parrish et al., 2006; Zhang et al 82 

2022). From these constraints, a diverse but poorly constrained set of models have been proposed for 83 

the exhumation of Tso Morari and Kaghan Valley complexes (Schwartz et al., 2007; Kylander-Clark 84 

et al., 2008; Möller et al., 2015; Boutelier and Cruden, 2018). 85 

The spread of ages for UHP metamorphism and exhumation in Tso Morari, could, to some extent, 86 

reflect differences in analytical techniques and their inaccuracies (e.g., Puetz and Spencer, 2023). 87 

However, a more likely cause is the difficulty and uncertainty associated with linking 88 

geochronological data with independently constrained metamorphic petrology (Foster and Parrish, 89 

2006; Kohn et al., 2017, O'Brien, 2019). This problem is compounded further in the Tso Morari 90 

complex because UHP rocks exist as metre-scale eclogite facies mafic pods hosted within amphibolite 91 

facies felsic gneiss. Accessory phases suitable for geochronology are rare in eclogite pods, so some 92 

studies have attempted to relate the P-T evolution of eclogite pods with geochronological constraints 93 

from the amphibolite facies gneiss (St-Onge et al., 2013). However, this approach carries additional 94 

uncertainties surrounding the structural and metamorphic relationships between the eclogite pods and 95 

the amphibolite facies gneiss in which they are hosted (O’Brien, 2018).  96 

To overcome these problems, estimates of the timing of UHP exhumation are better resolved using a 97 

combination of modern petrochronology techniques (Kohn et al., 2017), and where mineral size and 98 

zonation allows, high precision techniques (Parrish et al., 2006). The former can utilise a range of 99 

approaches, including: 1) the combination of geochronology, trace element geochemistry and 100 

metamorphic petrology, to quantitatively relate precise ages to specific stages on a metamorphic P-T 101 

path (e.g. Rubatto, 2002; Rubatto and Hermann, 2003); and 2) identifying and selecting a range of 102 

accessory phases associated with different metamorphic assemblages, which collectively span a wide 103 



range of closure temperatures (Regis et al., 2016; Lotout et al., 2018; Tual et al., 2022). Such 104 

techniques provide the best opportunity to accurately and precisely constrain the timing of UHP 105 

exhumation. 106 

In this study, we employ a range of petrochronological techniques to precisely constrain the timing of 107 

UHP metamorphism and exhumation of the Tso Morari Complex. We use detailed petrographic 108 

analyses, including major and trace element x-ray maps of garnet, to identify and relate prograde, 109 

peak, and retrograde metamorphic assemblages in mafic eclogite samples and amphibolite facies 110 

felsic gneiss samples (the Puga gneiss). This allows us to select a variety of accessory phases from 111 

different metamorphic assemblages for U-Pb geochronology, to constrain the timing of 112 

metamorphism at different points of the P-T path. Using Laser Ablation Inductively Coupled Plasma 113 

Mass Spectrometry (LA-ICP-MS), we analyse zircon and rutile from an eclogite pod sample, and 114 

zircon, rutile, and xenotime from a felsic gneiss sample to constrain the timing of prograde, peak, and 115 

retrograde metamorphism. In addition, we analysed zircon from the eclogite using Chemical Abrasion 116 

Isotope Dilution Thermal Ion Mass Spectrometry (CA-ID-TIMS) to more precisely constrain the 117 

timing of zircon crystallization. Our results suggest that exhumation of the NW Himalaya from UHP 118 

conditions occurred synchronously across the Tso Morari complex and Kaghan Valley complex at 119 

~47-46 Ma. We consider these results within the wider context of the Himalayan orogeny and discuss 120 

their implications for the physical processes and driving forces of UHP exhumation. Specifically, we 121 

interpret both the Kaghan and Tso Morari peak ages of ~47-46 Ma to correspond to the onset of UHP 122 

exhumation of Indian continental crust from the subducting Indian plate. 123 

 124 

1.1 The Himalayan orogeny and the India-Asia collision: Definitions 125 

In order to interpret our data with respect to the Himalayan orogeny and India-Asia collision, it is 126 

necessary to outline some definitions used hereafter. Tectonic models for the Himalayan orogeny and 127 

the India-Asia collision can be split into “Single Collision” and “Double Collision” models (e.g., Hu 128 

et al., 2016; Kapp and DeCelles, 2019, Parsons et al., 2020). Single Collision models propose a single 129 

continental collision between India and Eurasia, beginning at ~60 Ma and continuing to the present 130 

day (e.g., Gansser, 1966; Le Fort, 1975; Hu et al., 2016, Ingalls et al., 2016). Such models are not 131 

considered tenable as they require extreme volumes of continental subduction and cannot explain the 132 

significant kinematic and geodynamic changes which occur within the orogen and the surrounding 133 

plate network between 50-40 Ma (e.g., van Hinsbergen et al., 2019, Parsons et al., 2020, Parsons et 134 

al., 2021). As such, the results of this study are interpreted in the context of the competing “double 135 

collision” models, for which two alternative hypotheses exist, which differ with respect to the nature 136 

of the first collision. In these models, “first collision” began at ~60 Ma (e.g., Hu et al., 2015; An et al., 137 

2021) but corresponds, to either (1) collision of the Indian continent with an equatorial Neotethys 138 



intra-oceanic arc (e.g., Patriat & Achache, 1984; Stampfli and Borel, 2004; Bouilhol et al., 2013; 139 

Replumaz et al 2014; Burg and Bouilhol, 2019); or (2) collision between an India-derived 140 

microcontinent and the Eurasian active margin (e.g., Sinha Roy, 1976; van Hinsbergen et al., 2019; 141 

Zhou and Su, 2019).  142 

“Second collision” occurred between the Indian continent and the Eurasian active margin sometime 143 

between 50 Ma to 25 Ma (e.g., Patriat & Achache, 1984; Replumaz et al 2014; Burg and Bouilhol, 144 

2019, Searle, 2019, van Hinsbergen et al., 2019, Parsons et al., 2021). In the context of these double 145 

collision models, the Himalayan orogeny corresponds to collisional deformation of Indian continental 146 

rock which initiated during first collision and continued through second collision. In contrast, the 147 

“India-Asia collision” sensu-stricto corresponds to the second collision event only (e.g., Parsons et al., 148 

2020). Debate continues to surround the relative validity of the two “double collision” hypotheses and 149 

further considerations can be found in recent reviews (e.g., Kapp and DeCelles, 2019, Searle, 2019, 150 

van Hinsbergen et al., 2019, Parsons et al., 2020); our study is presented in the context of both double 151 

collision models (e.g., Burg & Bouihol 2019 versus van Hinsbergen et al. 2019) as it is beyond the 152 

scope of the new data presented in this paper to address their relative validity.  153 

 154 

1.2 Geology of the Tso Morari Complex 155 

The Tso Morari dome is situated on the north-western margin of the Indian plate (Figure 1), and is 156 

separated from the Ladakh batholith of the Asian plate located to the north by the Indus suture zone 157 

(Fuchs and Linner, 1996). The Tso Morari dome comprises a set of stacked nappes, folded into a 158 

northwest-southeast trending periclinal antiform. (Steck et al., 1998; Buchs and Epard, 2019). The 159 

structurally lowermost nappe is the Tso Morari Complex (also known as the Tso Morari Gneiss, 160 

Epard & Steck, 2008), which crops out in the centre of the dome. The Tso Morari Complex contains 161 

Ordovician granite and disrupted mafic dykes and sills intruded into Cambrian sediments of the 162 

Indian continent. Granitic rocks are variably deformed, resulting in an array of undeformed 163 

metagranites, augen gneiss and garnet-mica-schists within the Tso Morari Complex. The range of 164 

deformation states preserves different parts of the P-T-t history of the Tso Morari Complex. The early 165 

subduction-related history is rarely preserved except as thin corona textures in low strain metagranite 166 

(Bidgood et al, 2022), whereas the high strain gneisses are often overprinted by later, amphibolite 167 

facies metamorphism and exhumation-related deformation. These end-member states are 168 

distinguished locally as the Polokongka La granite and the Puga Gneiss, which share the same granitic 169 

protolith, and differ only in their state of strain and metamorphic evolution (Girard and Bussy, 1999).  170 

Mafic rocks within the Tso Morari complex locally preserve eclogite-facies mineral assemblages 171 

formed at conditions of > 26 kbar, 500-645°C (e.g. de Sigoyer and Guillot, 1997; Guillot et al., 1997; 172 

St-Onge et al., 2013; Bidgood et al., 2020). Evidence of high-pressure metamorphism is rarely 173 
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metamorphic reactions/conditions, although this was hindered by the large uncertainties on these 193 

dates.  194 

Four clusters of zircon growth were recorded in the Puga Gneiss by Leech et al (2007) by U-Pb LA-195 

ICP-MS dating of the metamorphic rims found around igneous zircon grains (n = 19), and are 196 

interpreted to represent ultrahigh-pressure metamorphism at 53.3 ± 0.7 Ma, followed by further zircon 197 

growth in eclogite facies conditions and an amphibolite facies overprint at 45.2 ± 0.7 Ma. St-Onge et 198 

al. (2013) recorded monazite and allanite U-Pb SHRIMP ages of 45.3 ± 1.1 Ma and 43.3 ± 1.1 Ma 199 

respectively, interpreted to represent post-eclogite facies peak temperature metamorphism of 7–8.4 200 

kbar at 705–755 °C, based on pseudosection modelling of the observed garnet breakdown reaction. 201 

Cooling through phengite, biotite and muscovite Ar-Ar closure temperatures is recorded at 48 ± 2 Ma, 202 

31.1 ± 0.3 and 29.3 ± 0.3 Ma (De Sigoyer et al., 2000) respectively, with further cooling recorded by 203 

apatite and zircon fission track data at ~23.5 – 7.5 Ma (Schlup et al., 2003). Dates from within the 204 

Puga Gneiss are dominated by post-peak, amphibolite facies ages recording Barrovian metamorphism, 205 

cooling and uplift. 206 

The mafic eclogites better preserve the early high-pressure metamorphic history in their major and 207 

accessory mineral assemblages. St-Onge et al (2013) analysed zircon in situ with SHRIMP U-Pb 208 

geochronology, yielding an age of 58.0 ± 2.2 Ma (n = 2) for zircon included in the core of a garnet, 209 

and 50.8 ± 1 Ma (n = 4) for zircon included/adjacent to matrix barroisite, phengite and garnet. The 210 

older age is interpreted to record zircon crystallisation during prograde garnet growth to high pressure, 211 

and the younger age is interpreted to represent peak metamorphism in the eclogite facies. Donaldson 212 

et al. (2013) used split-stream LA-ICP-MS to measure the U-(Th)-Pb and REE abundances of in situ 213 

zircon from two mafic eclogites, located ~10 km apart. Lower intercept dates of each sample overlap 214 

at 45.3 ± 1.6 Ma and 44.2 ± 1.2 Ma; however, the authors interpret the spread in common-lead 215 

corrected ages (ca. 53 to 37 Ma), with a peak at 47 – 43 Ma and consistent REE signatures (absence 216 

of Eu anomaly and flat HREE), as reflecting protracted zircon crystallisation in the eclogite facies.  217 

The age of UHP metamorphism in the Kaghan Valley Complex has been estimated using U-Pb 218 

SHRIMP and U-Pb ID-TIMS analyses of zircon from eclogite-facies mafic rocks, yielding ages of 219 

46.2 ± 0.7 Ma (Kaneko et al., 2003) and  46.4 ± 0.1 Ma (Parrish et al., 2006), respectively. These 220 

zircons were found included in UHP garnet rims with coesite inclusions. Eclogite facies ages of 221 

zircon and allanite from Kaghan were also estimated using U-Pb and Th-Pb ID-TIMS analyses at 45.5 222 

± 6.6 Ma and 46.5 ± 1.0 Ma, respectively (Parrish et al., 2006). An additional age of eclogite facies 223 

zircon was estimated using U-Pb SIMS at 46 ± 2 Ma in Naran, 30 km south-west of Kaghan (Zhang et 224 

al., 2022). A compilation of geochronology of high pressure metamorphism in the north west 225 

Himalaya can be found in Supporting Information 1.  226 



Given the differences in analytical techniques used to date the Tso Morari complex and the difficulty 227 

in relating these dates to metamorphic stages, it remains unclear to what degree the spread of ages 228 

from Tso Morari can be assigned to geological heterogeneity or to analytical uncertainty and artifacts. 229 

For example, the absence of petrographic context in some studies makes it difficult to interpret the age 230 

clusters with respect to specific metamorphic conditions (see O’Brien, 2006 for further discussion). 231 

Additionally, given the types of analyses used in Tso Morari, it is not possible to tell if zircon growth 232 

in the mafic eclogites was prolonged, or if the data represent mixed ages; this is hampered the 233 

presence of common lead in the present data. The outcome of these two hypotheses has significant 234 

implications for the process of continental subduction and UHP exhumation, particularly in light of 235 

the narrow age spread for UHP metamorphism from Kaghan only 450 km away. It is not clear 236 

whether the differences between Tso Morari and Kaghan reflect analytical biases or inaccuracies, or a 237 

complex process of continental subduction and exhumation such as diachronous and/or prolonged 238 

burial and exhumation. 239 

2. Petrography 240 

2.1. Analytical methods 241 

Petrographic study of 29 mafic eclogites and 28 Puga Gneiss samples from the Tso Morari Complex 242 

was undertaken, with one fresh eclogite (a03-16), one retrogressed eclogite (a03-12) and one gneiss 243 

sample (05-02) selected for further analysis. Major element compositions of minerals that exhibit 244 

solid solutions were measured using a Cameca SX-5 field emission electron microprobe at the 245 

University of Oxford, with a 15 keV acceleration potential, 20 nA beam current, 30 second count time 246 

per major element (30 second background) and 60 second count time on Ti (60 second background). 247 

A range of natural and synthetic oxide standards were used including albite (Na, Al, Si), Orthoclase 248 

(K), MgO (Mg), wollastonite (Ca), andradite (Fe), Mn metal (Mn) and synthetic TiO2 (Ti) and 249 

analyses were verified against secondary mineral standards. Mineral spot analyses and line profiles 250 

were taken across garnet to determine the extent of intracrystalline compositional variation (see 251 

Supporting Information 2). 252 

Quantitative major element X-ray maps were collected from polished thin sections using the 253 

CAMECA SX-5 field emission electron microprobe at the University of Oxford at a working distance 254 

of 10 mm, a 15 keV acceleration potential, 170 nA current, 0.06 s dwell time and a 3 µm step size for 255 

the elements P, Ca, Mn, Mg and Fe. A dwell time of 0.032 s and a 200 nA beam current were used for 256 

the elements Al, Si, Ti, Y and Yb. A range of natural and synthetic oxide standards were used 257 

including Durango apatite (P), andradite (Ca, Fe), Mn metal (Mn), MgO (Mg), albite (Al, Si), TiO2 258 

(Ti), Y metal (Y), Yb metal (Yb). 259 



2.2. Petrography and petrology: Observations 260 

2.2.1. Puga Gneiss (sample 05-02): petrography 261 

Puga Gneiss sample 05-02 was collected from the north shore of Kiagar Tso (33.1214°N, 78.2958°E), 262 

the middle of the Tso Morari Complex. Sample 05-02 is a strongly-foliated, garnet-bearing gneiss 263 

comprising albite, quartz, muscovite, biotite and garnet, with accessory zircon, apatite, rutile, and 264 

xenotime.   265 

 266 

Sample 05-02 is dominated by a schistosity (S2) defined by bands of white mica, albite and quartz 267 

(Figure 2a) which wrap around larger garnet porphyroclasts. Quartz occurs in polycrystalline ribbons 268 

or lenses separated by narrow bands of white mica, indicative of a high-strain fabric (Figure 2a-d). 269 

The quartz ribbons are cut by discontinuous shear bands forming an S-C′ fabric. Quartz grains are > 270 

200 µm and equant with amoeboid shapes along grain boundaries associated with dynamic 271 

recrystallization in the grain boundary migration (GBM) regime (Stipp et al., 2002). Albite bands and 272 

lenses are largely composed of fine-grained aggregates. Among these, larger feldspar grains show 273 

subgrains of similar size to the dominant population, suggesting that dynamic recrystallization 274 

occurred in the subgrain rotation (SGR) regime for feldspar (Passchier & Trouw, 2005). Zircon and 275 

rutile occur in the matrix.  276 

 277 

Garnet porphyroblasts of varying size and abundantly fractured, are scattered through the rock. They 278 

are partly replaced by biotite, white mica and chlorite. The studied section contains one large (6 x 5 279 

mm) ovoid garnet porphyroblast (Figure 3) that contains significant detail (see below). Fine-grained 280 

inclusion trails of quartz and rutile within garnet define a primary foliation (S1), which is oblique to 281 

the matrix fabric (S2) and folded at the core-rim boundary (Figure 3a). Kyanite is observed within the 282 

garnet core, adjacent to a staurolite grain, surrounded by white mica. The garnet has a corroded grain 283 

shape in which embayments contain biotite, white mica and xenotime. 284 
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and calcium EPMA element maps. g. Garnet zoning profiles from core (left) to rim (right).h. Ternary 297 

diagram of transect across garnets. Approximate location of garnet transect shown by white dashed 298 

line on insert f.  299 

 300 

2.2.2. Puga Gneiss (sample 05-02): garnet composition  301 

Major and trace element maps of the large garnet exhibit concentric zonation, comprising three 302 

distinct zones (Figure 3). The garnet core (zone P1) has an approximately constant composition of 303 

Alm79Grs12.5Pyr5.5Spss4-2.3 and a faceted garnet shape, outlined by a manganese- and yttrium-rich 304 

annulus. Inclusions of quartz, rutile and white mica are found throughout zone 1, whereas inclusions 305 

of kyanite are restricted to the inner portion of zone P1. Zone P2 surrounds the zone 1 core and is 306 

defined by a calcium trough (10% Grs) and manganese-high with a faceted outline. Zone P3 defines a 307 

magnesium- and calcium-high, manganese-low rim, which shows an increase in pyrope (to 16%) and 308 

grossular (to 13%) with a decrease in almandine (to 69%). Zones P2 and P3 contain quartz, white 309 

mica, and rutile inclusions, but to a lesser extent than in zone 1. Kyanite is absent from zones P2 and 310 

P3. In zones P1 and P2, magnesium-enriched haloes are developed along the internal fracture 311 

network, surrounding many larger inclusions of white mica and quartz, and connecting with the outer 312 

zone of the garnet.  313 

 314 

2.2.3. Mafic eclogite (sample a03-16): petrography 315 

Sample a03-16 is a mafic eclogite taken from the same locality as Puga Gneiss sample 05-02 316 

(33.1214°N, 78.2958°E), adjacent to sample CM71710-4 of Donaldson et al. (2013), and displays 317 

similar features to mafic eclogites described from other localities in the Tso Morari Complex (e.g. 318 

Jonnalagadda et al., 2017; O’Brien & Sachan, 2000; Palin et al., 2014; St-Onge et al., 2013; Wilke et 319 

al., 2015). Sample a03-16 has a medium- to coarse-grained granoblastic texture with a major mineral 320 

assemblage of garnet, omphacite, phengite, quartz, and talc, with minor amounts of clinozoisite, 321 

amphibole, carbonate, rutile and zircon.  322 

 323 

Garnet and omphacite (Figure 4a) are in textural equilibrium, forming straight-edge contacts, with 324 

coarse grained homogeneous phengite and talc. In some places, symplectites after omphacite are 325 

observed, comprised of amphibole, plagioclase and occasional diopside. Dolomite is also present in 326 

the matrix as large poikiloblasts containing inclusions of phengite, omphacite and rutile.  327 

 328 

Compositionally zoned amphiboles exist in the matrix and as inclusions in garnet (Figure 4b). 329 

Amphibole inclusions are zoned blue-green and generally darker in colour than that in the matrix, 330 

whereas matrix amphiboles are blue-green to pale green and coarse-grained. Thin mantles of pale 331 

green amphibole surround garnet and fine-grained intergrowths of biotite and plagioclase surround 332 
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2.2.5. Retrogressed mafic eclogite (sample a03-12): petrography 365 

Sample a03-12, along with the adjacent sample a03-09, is a retrogressed mafic eclogite from ‘The 366 

Bridge’ locality (33.0677°N, 78.2758°E), ~8 km south of sample a03-16. This is the same locality 367 

sampled and analysed by Leech et al. (2007) (their sample T18). The samples are composed of garnet, 368 

amphibole, plagioclase, biotite, chlorite, ilmenite, rutile and zircon. Relict garnet is preserved within 369 

pseudomorphs that preserve subhedral garnet shapes, but are largely replaced by plagioclase, 370 

hornblende, biotite and chlorite aggregates (Figure 4 d and e). Matrix omphacite has been 371 

pseudomorphed by fine-grained amphibole and plagioclase intergrowths (Figure 4f). Zoned, blue-372 

green matrix amphibole retains the habit and textural association of the post-peak, pre-feldspar-373 

stability sodic-calcic amphiboles (cf. Palin et al., 2014). Chlorite and biotite form aggregates which 374 

overprint the surrounding metamorphic patterns. Rutile grains occur in garnet and matrix amphibole, 375 

and are rimmed or replaced by ilmenite in retrogressed areas. Zircon is distributed in small grains in 376 

the matrix. 377 

 378 

2.3.Petrography and petrology: Interpretation and metamorphic correlation 379 

2.3.1. Puga Gneiss (sample 05-02) 380 

The Puga Gneiss (sample 05-02) displays evidence of two metamorphic assemblages. The first is 381 

defined by the garnet compositional zoning from P1 to P3, and the inclusion suite of quartz, kyanite, 382 

rutile and zircon. Quartz and rutile inclusions define a crenulated primary foliation (S1), and kyanite 383 

is found exclusively within garnet. The garnet compositional zoning is consistent with prograde 384 

growth culminating in eclogite-facies conditions. The magnesium distribution in the garnet interior 385 

implies that some fracturing occurred at near-peak conditions. 386 

 387 

The second assemblage is defined by the rock matrix grains outside the garnet porphyroblasts, which 388 

form a segregated quartz-feldspar-mica mineral banding modified by an S-C′ fabric. Accessory 389 

minerals in this matrix assemblage include rutile and zircon. Dynamic recrystallization of quartz in 390 

the GBM regime implies a deformation temperature in excess of 530°C (Stipp et al., 2002), and 391 

evidence for subgrain rotation in albite is consistent with about 600°C (Passchier & Trouw, 2005). No 392 

lower-temperature dynamic recrystallization microstructures are observed, and minor chlorite, 393 

generally associated with garnet, is undeformed. Rutile is stable in the rock matrix, commonly 394 

enclosed in white mica. Based on these observations, we interpret the matrix assemblage to reflect 395 

metamorphism and deformation on the retrograde path, at amphibolite-facies conditions. 396 

 397 

A distinct mineral association surrounds the large garnet, where xenotime grains are hosted in 398 

micaceous aggregates that form in embayments where the Mg-rich rim zone (P3) of the garnet is 399 



missing, due to partial resorption of garnet. We infer that the xenotime is formed from yttrium 400 

liberated by garnet breakdown after peak eclogite-facies conditions were achieved. 401 

 402 

2.3.2. Mafic eclogite (sample a03-16) 403 

Sample a03-16 contains three identifiable metamorphic assemblages. Garnet and omphacite (Figure 404 

4a) in textural equilibrium with coarse grained homogeneous phengite and talc define a peak pressure 405 

eclogite-facies mineral assemblage (e.g., M2 of St-Onge et al., 2013). Accessory phases within this 406 

peak assemblage include zircon, present as clusters of grains included within matrix quartz and 407 

omphacite, and rutile, present as inclusions, commonly clustered, within garnet, omphacite, quartz, 408 

phengite, and talc (Figure 4c). Initial growth of these zircon and rutile grains may have begun prior to 409 

eclogite facies metamorphism. Within garnet, the increase in pyrope component from core to rim, 410 

displayed by zones E1 to E3, corresponds to garnet growth during prograde to peak eclogite 411 

conditions. We interpret zones E1 to E3 as a prograde to peak assemblage, where zone E3 correlates 412 

with the omphacite, phengite and talc peak assemblage described above.  413 

 414 

The second metamorphic assemblage is defined by the early breakdown products of the peak 415 

assemblage phases. The dominant example is the zoned blue-green matrix amphibole, which may 416 

represent the product of talc dehydration as well as the influx of external fluids under eclogite-facies 417 

conditions (cf. Palin et al., 2014).  418 

 419 

The third assemblage includes feldspar-bearing symplectites after omphacite, and secondary fine-420 

grained white mica aggregates forming in the irregular rims of coarse-grained phengite. These 421 

represent an amphibolite-facies overprint. 422 

 423 

2.3.3. Retrogressed mafic eclogite (sample a03-12) 424 

Sample a03-12 is dominated by a post-peak metamorphic assemblage, whereas the peak assemblage 425 

displayed by sample a03-16, is identifiable in a03-12 as relict garnet grains and pseudomorphs after 426 

garnet and omphacite. Blue-green amphiboles are interpreted as an early post-peak phase, which grew 427 

within the eclogite facies field prior to the appearance of stable sodic feldspar during decompression 428 

(e.g., Palin et al., 2014). The rest of the post-peak assemblage is typical of an amphibolite facies 429 

retrograde assemblage characterised by fine-grained amphibole and plagioclase intergrowths. 430 

Aggregates of chlorite and biotite characterise a lower amphibolite facies overprint. Rutile is found 431 

within prograde relict garnets as well as the matrix and has no indication of internal zonation. We 432 

therefore interpret rutile as a relict grains from a prograde or peak assemblage, rather than a new 433 

phase that nucleated during latest-stage lower amphibolite facies metamorphism. Zircon is present 434 



throughout this sample, predominantly as inclusions in peak omphacite and quartz, suggesting that it 435 

crystallised prior to omphacite breakdown in the eclogite facies.  436 

 437 

2.3.4. Correlation of metamorphic assemblages (M1, M2, M3) in the Puga Gneiss and mafic 438 

eclogites 439 

Comparison and correlation of the petrography and petrology of samples 05-02, a03-16, and a03-12, 440 

allows for the definition of three distinct metamorphic assemblages that reflect distinct portions of the 441 

same P-T path of the Tso Morari complex, experienced and recorded by both lithologies. Crucially, 442 

these assemblages provide a robust means for linking accessory phase geochronology to metamorphic 443 

evolution of the Tso Morari complex. These metamorphic assemblages and their constituent accessory 444 

phases are summarised as follows: 445 

 446 

2.3.4.1. M1: Prograde-to-peak eclogite facies assemblage 447 

Zones P1 and P2 of garnet within the Puga gneiss sample 05-02 and zone E1 and E2 of garnet in the 448 

mafic eclogite a03-16 define the M1 prograde-to-peak, eclogite facies assemblage. This includes 449 

inclusions of kyanite, quartz, white mica, zircon and rutile, within garnet in 05-02. 450 

 451 

2.3.4.2. M2: Peak eclogite facies assemblage 452 

High-Mg rims of garnet, plus omphacite, phengite, quartz and talc in mafic eclogite sample a03-16 453 

define the M2 peak eclogite facies assemblage. M2 also includes the high-Mg garnet rims in Puga 454 

gneiss sample 05-02. Elsewhere in Tso Morari, similar garnet rim compositions in mafic eclogites 455 

contain inclusions of coesite or polycrystalline inclusions after coesite (Sachan et al., 2004). 456 

Remnants of this assemblage are also preserved by relict garnet in the retrogressed mafic eclogite 457 

sample a03-12. 458 

 459 

2.3.4.3. M3a/M3b/M3c: Post-peak assemblage 460 

The M3 post-peak assemblage reflects continuing metamorphism from eclogite to lower amphibolite 461 

facies conditions, and is subdivided to reflect this. In the mafic eclogite samples (a03-16, a03-12), 462 

M3a is recorded by growth of coarse-grained blue-green amphiboles in the eclogite facies, which 463 

elsewhere in the Tso Morari Complex, has been linked to the breakdown of talc and the influx of fluid 464 

at 23 and 19 kbar respectively (Palin et al., 2014). Post-peak assemblage M3b corresponds to upper 465 

amphibolite facies retrograde metamorphism. In the mafic eclogite samples (a03-16, a03-12) M3b is 466 

defined by symplectites of fine-grained amphibole and plagioclase intergrowths after omphacite. The 467 

lower-temperature association of chlorite with biotite, largely as a replacement of garnet cores in a03-468 

12, can be assigned to M3c.  469 

 470 



In Puga gneiss sample 05-02, initial garnet breakdown and the associated nucleation of xenotime, 471 

occurred at eclogite to upper amphibolite facies, and therefore correlates with either the M3a or M3b 472 

post-peak assemblages observed in the mafic eclogites. M3b is defined by the matrix assemblage of 473 

quartz + albite + muscovite, which also contains zircon and rutile, and displays quartz microstructures 474 

indicating post-peak deformation temperatures of >530 °C. M3c corresponds to lower amphibolite 475 

facies retrograde metamorphism and is represented by overprinting aggregates of chlorite and biotite 476 

after garnet. 477 

 478 

3. U-Pb Geochronology 479 

3.1.Analytical methods 480 

Zircon grains from the heavy, non-magnetic fraction of sample a03-12 were imaged via 481 

cathodoluminescence (CL) using an FEI Quanta 650 environmental scanning electron microscope (E-482 

SEM) at the University of Oxford, using a 10 kV electron beam, 16mm working distance and a beam 483 

current of 0.49nA. Zircon grains from sample 05-02 were also mounted on sticky tape in order to 484 

analyse the <10 µm thick rims. Rutile grains chosen for analysis were picked from the non-magnetic 485 

fraction and were imaged via backscatter electron imaging (using the same E-SEM) to determine the 486 

homogeneity of the grains chosen for analysis. None of the rutile grains showed any evidence of 487 

zoning. Xenotime was measured in a polished thin section in order to preserve the petrographic 488 

relationships observed. 489 

 490 

All geochronology and mineral separation were conducted at the Geochronology and Tracers Facility, 491 

British Geological Survey, Nottingham, UK. Laser ablation inductively-coupled plasma mass 492 

spectrometry (LA-ICP-MS) was conducted using a Nu Instruments AttoM sector-field single-493 

collector ICP-MS, coupled to an Elemental Scientific Lasers 193nm UC Excimer laser ablation 494 

system fitted with a TV2 cell. The method follows that described in Roberts et al. (2016), with 495 

uncertainty propagation following recommendations of Horstwood et al. (2016), and age calculation 496 

and plotting using IsoplotR (Vermeesch, 2018). Common lead corrected ages, where quoted, use a 497 
207Pb-based method (Chew et al., 2014) and assume a Stacey and Kramers (1975) initial lead 498 

composition, and concordance of the final age. All uncertainties are quoted and plotted at 2σ. Trace 499 

elements were measured using the same instrumentation as for U-Th-Pb, with the Attom measuring in 500 

linkscan mode (see Supporting Information 3 for full analytical protocol), with normalisation to GJ-1 501 

zircon (Piazolo et al., 2017). 502 

Zircon in one sample (a03-12) was further analysed by Chemical Abrasion Isotope Dilution Thermal 503 

Ionisation Mass Spectrometry (CA-ID-TIMS), following analytical and data reduction methods 504 



described by Tapster et al. (2016), and utilising the ET535 EARTHTIME mixed tracer (Condon et al., 505 

2015). 506 

 507 

3.2.Puga Gneiss (sample 05-02) 508 

3.2.1. Zircon 509 

Zircon grains in the Puga gneiss sample 05-02 show oscillatory zoning and a euhedral shape, 510 

indicative of igneous zircon, with a Th/U of 0.05 – 0.26. Thin, bright rims (< 20 μm) are present 511 

surrounding the dark cores. From the epoxy mounted zircon, 33 LA-ICP-MS analyses of zircon cores 512 

were obtained from 21 grains.  Five ages ranging from 1020 Ma to 2481 Ma (207Pb/206Pb age), 513 

indicate a population of xenocrystic zircon inherited during emplacement of the Puga gneiss igneous 514 

protolith. Nine analyses had ages that were discordant by >10 %, and were discarded from age 515 

calculation. Of the remaining 19 concordant analyses, 17 spots provide a concordia age of 482.0 ± 516 

3.33 Ma with a mean square of weighted deviates (MSWD) value of 1.5 (Figure 6a). Using spot 517 

analysis of tape-mounted zircon, whereby the outer rim can be targeted more confidently, 64 grains 518 

yielded a spread of ages from ca. 48 Ma to 569 Ma (Figure 6b). A broad plateau of ages overlaps the 519 

mounted zircon at ca. 480 Ma, consistent with our weighted mean concordia age. The youngest three 520 

analyses provide a weighted mean, using common lead corrected 206Pb/238U ages, of 48.89 ± 1.12 Ma 521 

(MSWD = 1.3; Figure 6b).   522 



 523 
Fig. 6. A. U-Pb Wetherill plot showing U-Pb zircon core ages of Puga Gneiss sample 05-02. B. Rank-524 

plot of all 206Pb/238U zircon ages. An older age plateau represents the zircon cores at ~480 Ma. The 525 

youngest ages represent thin rims, and converge on a Himalayan age with a weighted average 526 

206Pb/238U age of the three youngest zircon ages. C. Tera-Wasserburg plot of xenotime U-Pb analyses. 527 

D. Tera-Wasserburg plot of rutile U-Pb analyses. Box heights and uncertainty ellipses are 2σ 528 

uncertainties. 529 

 530 

3.2.2. Xenotime 531 

Rare 30-100 µm xenotime grains were observed in micaceous aggregates at corroded margins of 532 

garnet in sample 05-02, as described above. The grains show homogenous brightness in BSE 533 

indicating the absence of internal zonation. Nine spots were analysed across 9 grains, and yield a 534 

mixing line between radiogenic and common lead components. Using a free regression, the lower 535 

intercept age is calculated at 48.05 ± 1.72 Ma (MSWD = 3; Figure 6c).  536 

 537 

3.2.3. Rutile 538 

Rutile grains in sample 05-02 measure 50-100 µm in size and show homogenous brightness in BSE, 539 

indicating the absence of internal zonation. Fourteen spots were analysed across 14 rutile grains, and 540 



yield a mixing line between radiogenic and common lead components. Using a free regression yields 541 

a lower intercept age of 40.41 ± 1.69 Ma (MSWD = 2; Figure 6d). 542 

 543 

3.3.Retrogressed mafic eclogite (sample a03-12) 544 

3.3.1. Zircon 545 

Zircon grains are rarely found in mafic eclogites of the Tso Morari Complex. In thin section, zircons 546 

are often found as inclusions within eclogite-facies phases such as quartz and omphacite. Separated 547 

zircon grains from sample a03-12 are translucent and colourless with rounded and euhedral grain 548 

shapes and a grain size of < 70 μm (Figure 7f). They have zoning patterns dominated by broad 549 

oscillatory or sector zoning, that in some grains, truncates a darker core region; the latter were not 550 

analysed.  551 

 552 

Thirteen laser spot analyses were performed on the cores of 13 zircon grains separated from sample 553 

a03-12 for U-Pb, with 3 analyses rejected due to Pb counts below detection. The U concentrations  are 554 

variable (13.5-1528 ppm), as is the degree of the discordance (207Pb/206Pb = 0.0479 – 0.1413). Of the 555 

remaining 10 analyses, the lower intercept of 9 spots is calculated using a free regression at 47.54 ± 556 

0.81 Ma (MSWD = 0.63; Figure 7a). These zircon analyses have low Th/U ratios (<0.01). The result 557 

implies that the data conform to a single population. The omitted analyses has a much higher Th/U 558 

ratio (0.25), suggesting an igneous core region was clipped during the ablation. 559 

 560 

Trace elements were measured on 20 zircon grains, including adjacent spots on the same 13 grains 561 

analysed for U-Pb; 3 analyses were omitted due to inclusions. Ti-in-zircon temperatures are calculated 562 

using Si and Ti activities of 1.0, and the equation of Ferry and Watson (2007). The temperatures range 563 

from 603 to 724 °C, forming a normal distribution around a peak at ca. 630 °C (Figure 7c). The REE 564 

data are plotted as chondrite-normalised values (Figure 7d). The REE patterns of zircon cores are 565 

broadly consistent across multiple grains, with no Eu anomaly, flat HREE patterns and depleted 566 

LREEs.  567 

 568 

Several zircon grains were extracted from the resin mounts and prepared as single grain aliquots for 569 

CA-ID-TIMS. The resulting data are six reproducible fractions yielding a weighted mean (Th-570 

corrected) 206Pb/238U age of 46.912 ± 0.036/0.046/0.068 Ma with an MSWD of 0.2 (Figure 7b).  571 



 572 
Figure 7. Mafic eclogite sample a03-12 a. Tera-Wasserburg plot of LA-ICP-MS U-Pb data for zircon, 573 

with lower intercept 206Pb/238U age and 1 sigma (%) error ellipses on data points. b. Weighted mean 574 
206Pb/238U (Th corrected) age of 6 zircon grains using CA-ID-TIMS. C. Sample a03-12 zircon REE 575 

data. D. Tera-Wasserburg plot of LA-ICP-MS U-Pb data for rutile, with lower intercept 206Pb/238U age 576 

and 1 sigma (%) error ellipses on data points. e. Cathodoluminescence images of zircon separates 577 

from sample a03-12. 578 

 579 

3.3.2. Rutile 580 

Rutile grains in sample a03-12 show homogenous brightness in BSE with no indication of internal 581 

zonation. The majority of analyses had Pb counts below detection, the remaining data comprise six 582 

spots analysed across 6 grains. The analyses are distributed between the radiogenic and common lead 583 



components, and using a free regression, yield a lower intercept age of 36.26 ± 3.83 (MSWD = 1.4; 584 

Figure 7e). 585 

 586 

3.4. Summary and Interpretations 587 

3.4.1. Puga Gneiss (sample 05-02) 588 

Zircon core ages of 482.0 ± 3.3 Ma in the Puga Gneiss are interpreted to represent the igneous 589 

crystallisation age and are comparable with U-Pb zircon ages of 479 ± 1 Ma in both the Polokongka 590 

La granite and the Puga Gneiss (Girard and Bussy, 1999). A monazite age of 473 ± 9 Ma in the 591 

Polokongka La granite, interpreted to have formed during crystallisation of the granite (Bidgood et al., 592 

2022), also overlaps with the age of zircon crystallisation. Rim analyses of Ordovician zircon from the 593 

Puga Gneiss yielded an age of 48.89 ± 1.12 Ma (LA-ICP-MS), which overlap with high precision CA-594 

ID-TIMS zircon age from mafic eclogite a03-12 (hosted within the gneiss), suggesting that zircon 595 

rims in the Puga gneiss also grew at eclogite-facies conditions. 596 

 597 

Xenotime is found exclusively in Puga Gneiss sample 05-02, in mica aggregates adjacent to the 598 

corroded outer rim of a large garnet porphyroblast (Figures 2 and 3). Breakdown of parts of the Mg-599 

enriched garnet rims, formed under peak eclogite-facies conditions (M2), liberated Y, which is 600 

concentrated in garnet zones P2 and P3 (Figure 3a), for xenotime growth. We therefore interpret the 601 

U-Pb xenotime age in sample 05-02 (48.1 ± 1.7  Ma) as the age of initial garnet breakdown during 602 

decompression. The xenotime age overlaps with the eclogite facies zircon rim age within the same 603 

sample 05-02 (48.89 ± 1.12 Ma), as well as the precise eclogite-facies zircon CA-ID-TIMS age of 604 

mafic eclogite sample a03-12 (46.91 ± 0.07 Ma), located within the same structural unit. This allows 605 

us to assign the xenotime crystallization and garnet breakdown in the Puga Gneiss sample to the M3a 606 

metamorphic assemblage, reflecting the earliest phase of decompression at eclogite facies conditions. 607 

 608 

Rutile is present as inclusions within prograde (M1) to peak pressure (M2) garnets and the matrix of 609 

the Puga Gneiss. Given that the peak temperature of the Tso Morari Complex (705-755°C, St-Onge et 610 

al., 2013) is greater than the closure temperature of rutile, the U-Pb age of rutile can therefore be 611 

attributed to cooling of the Puga Gneiss through the rutile closure temperature at 40.4 ± 1.1 Ma, after 612 

peak temperature conditions. 613 

 614 

3.4.2. Retrogressed mafic eclogite (sample a03-12) 615 

LA-ICP-MS analyses of zircon from mafic eclogite sample a03-12 are entirely <50 Ma, and provide a 616 

weighted mean age of 47.5 ± 1.7 Ma. Although a limited dataset (9 analyses), our result implies a 617 

single population of metamorphic zircon, rather than preserving a protracted history of zircon growth. 618 

Flat HREE profiles and the lack of an Eu anomaly in the core and mantle of zircon grains are 619 



indicative of crystallisation in garnet-present, plagioclase-absent conditions, consistent with 620 

crystallisation in the eclogite facies (Schaltegger et al., 1999; Rubatto, 2002; Rubatto and Hermann, 621 

2003). The measured zircon date is therefore interpreted to correspond to growth within the eclogite-622 

facies. 623 

 624 

The zircon CA-ID-TIMS dates from mafic eclogite sample a03-12 are tightly clustered yielding a 625 

weighted mean 206Pb/238U (Th corrected) date of 46.91 ± 0.036/0.046/0.068 Ma n=6, MSWD=1.2 626 

(uncertainties stated at analytical only/ analytical + tracer calibration for comparison with previous 627 

ID-TIMS U-Pb dates not using Earthtime Tracers/ Total uncertainty including 238U decay 628 

constant)/Ma, which we interpret as the age of zircon growth at eclogite facies conditions (M1-3a).  629 

We note that this interpretation is heavily weighted to only the two analyses of most U-rich zircon, 630 

excluding these analyses yields a weighted mean of 46.71 ± 0.33/0.38/0.38 Ma  (MSWD = 1.04; n=4) 631 

and is therefore within uncertainty of the favoured interpretation. Regardless of interpretation, the 632 

uncertainty associated with the CA-ID-TIMS data are 1 to 2 orders of magnitude greater than LA-633 

ICPMS U-Pb data and provide the most precise estimate of the timing of metamorphic zircon growth 634 

from Tso Morari thus far. Additionally even with the improved precision the analyses and the lack of 635 

dispersion indicated by their MSWDs suggests no measurable crystal to crystal variation at around the 636 

~1 Myr resolution. 637 

 638 

Rutile is the peak titanium-bearing phase in mafic rocks during eclogite-facies metamorphism and is 639 

present as inclusions in garnet (M1), as well as in the matrix (M2-3b). Peak temperature in the Tso 640 

Morari Complex is estimated at 600-755°C (De Sigoyer  et al., 2000; St-Onge et al., 2013), above the 641 

predicted closure temperature of rutile at ~630-400 °C (Cherniak, 2000; Li et al., 2013; Mezger et al., 642 

1989; Vry & Baker, 2006) which is dependent on cooling rate and grain size (Zack and Koojiman, 643 

2017; Oriolo et al., 2018). The U-Pb age of rutile can therefore be attributed to cooling through this 644 

closure temperature range. 645 

4. Metamorphism, deformation and geochronology of the Tso Morari 646 

Complex 647 

Previous studies indicate that subduction, exhumation and emplacement of the Tso Morari dome took 648 

place between c. 60 Ma and c. 7.5 Ma (Figure 6), with exhumation to lower crustal conditions by 45.3 649 

± 1.1 Ma at a rate of ~ 12 mm.a-1 (St-Onge et al., 2013). The texture and composition of the mafic 650 

eclogites and Puga gneiss samples in this study collectively provide a record of initial exhumation 651 

from UHP eclogite-facies conditions, followed by exhumation through crustal conditions. Integrating 652 

this information with our new high-precision geochronology from a range of accessory phases which 653 

crystallized at different stages of metamorphism allows us to constrain the timing of mineral growth 654 

and fabric development with respect to the burial and exhumation of the Tso Morari.  655 



 656 

Evidence of prograde metamorphism to peak pressures (M1-2) is preserved within garnets from mafic 657 

eclogite and the Puga Gneiss. Complex deformation fabrics and inclusion suites within a prograde 658 

garnet in the Puga Gneiss (Figure 3a,b) indicates that deformation and transformation of the original 659 

granite was already underway prior to garnet growth (M1) in the interior of the complex. This early 660 

fabric is rarely preserved in the Tso Morari Complex, where the earliest stage of deformation has been 661 

previously identified as the dominant top-to-the-east exhumation fabric within the Puga Gneiss and is 662 

attributed to initial M3a exhumation from eclogite-facies conditions (Epard and Steck, 2008).  663 

 664 

Our  eclogite-facies zircon dates of 46.91 ± 0.07 Ma (CA-ID-TIMS) and 47.5 ± 0.8 Ma (LA-ICPMS) 665 

from a mafic eclogite overlaps with our zircon rim and xenotime dates in the Puga Gneiss. We 666 

interpret this overlap as a record of the earliest phase of decompression at eclogite facies conditions, 667 

as recorded by the partial breakdown of yttrium-bearing garnet rims.  668 

 669 

The formation of quartz microstructures during high-temperature (> 550°C) dynamic recrystallisation 670 

indicate that deformation took place during exhumation to crustal conditions (M3b). There is no 671 

significant overprinting of quartz deformation fabrics in the Puga Gneiss samples from the core of the 672 

dome suggesting that there was no pervasive deformation below 550°C. Deformation therefore 673 

occurred prior to cooling through the rutile closure temperature of ~630-400 °C (Cherniak, 2000; Li et 674 

al., 2013; Mezger et al., 1989; Vry & Baker, 2006) at 40.4 ± 1.1 Ma and was ductile and pervasive. 675 

Subsequent exhumation relating to doming and emplacement (M3c) was not pervasive, with foliations 676 

and lineations developing at the margins of the dome, adjacent to the normal sense shear zones (Epard 677 

and Steck, 2008; Bidgood et al., 2020; Dutta and Mukherjee, 2021). The age of this is recorded in the 678 

Ar-Ar muscovite and biotite and apatite fission track dates of < 32.4 Ma (De Sigoyer et al., 2000; 679 

Schlup and Carter, 2003). 680 

 681 

5. Discussion 682 

5.1. Continental subduction and exhumation in the NW Himalaya 683 

Our petrographic correlation of zircon and xenotime ages with the M3a assemblage indicates that 684 

zircon growth at ~ 47-46 Ma took place at subsolidus conditions during the earliest stages of 685 

decompression from UHP conditions. These ages overlap with the zircon age distribution peak of 47-686 

43 Ma recorded by Donaldson et al. (2013). Considering their analytical scatter (i.e. MSWDs of 2.4 687 

and 3.4) the Donaldson et al. dates have reasonable agreement with our 47-46 Ma age, however, those 688 

data were previously interpreted as a record of UHP metamorphism, starting at ~47 Ma. It is therefore 689 



necessary to reassess the Donaldson et al. (2013) data in light of our new data and observations, as 690 

follows. 691 

Subsolidus zircon growth requires a fluid phase to mediate the liberation of zirconium from Zr-692 

bearing phases (ilm, ru, cpx, grt) (Chen et al., 2010; Kohn et al., 2015; Chen and Zhang, 2017; 693 

Skuzovatov et al., 2021). For Tso Morari, Palin et al. (2014) determined that the first pulse of post-694 

peak fluid in the eclogite facies relates to the destabilisation of talc and growth of the coarse-grained 695 

amphiboles at ~23 kbar, followed by fluid infiltration from an external source at ~19 kbar. Coarse-696 

grained, zoned amphiboles are abundant in mafic eclogites from across the Tso Morari Complex 697 

suggesting that post-peak eclogite facies hydration was a common and widespread occurrence, aided 698 

further by exhumation-related deformation. These influxes of fluid during exhumation, prior to a 699 

potentially dry spell at prograde to peak conditions, would have provided conditions favourable for 700 

high concentrations of zircon growth. Consequently, we argue that the breakdown of UHP garnet rims 701 

record by xenotime at 48.1 ± 1.7 Ma indicates that the zircon age peak at 47-43 Ma of Donaldson et 702 

al. (2013) reflects increased zircon growth during the onset of exhumation from UHP conditions, 703 

aided by the exhumation-driven liberation of fluids.   704 

We suggest that the 58 ± 2.2 Ma zircon ages of St-Onge et al (2013) and the older zircon dates (53-48 705 

Ma) from the Donaldson et al. (2013) dataset record zircon growth during prograde to peak 706 

metamorphism. More uncertain, are the nature of younger common-lead corrected dates from the 707 

Donaldson et al. dataset, especially considering that the authors found no relationship between the 708 

dates and the textural setting of the zircon (matrix grains versus inclusions in omphacite and garnet). 709 

Given that we consider our xenotime date as a marker for the onset of UHP exhumation, we suggest 710 

that the Donaldson et al. (2013) data do not reflect prograde to peak conditions after ca. 47 Ma. 711 

Our new CA-ID-TIMS zircon age of 46.91 ± 0.046 Ma more closely and precisely correlates with 712 

ages from zircon (46.4 ± 0.1 Ma – ID-TIMS; 46.2 ± 0.7 –  SHRIMP, 46 ± 2 Ma - SIMS) and allanite 713 

(46.5 ± 1.0 Ma – ID-TIMS) in UHP assemblages from Kaghan, located 450 km to the west (Kaneko 714 

et al., 2003; Parrish et al., 2006; Zhang et al., 2022) (see Figure 8). We do not think this is 715 

coincidental; metamorphic P-T data from both of these units record similar prograde and retrograde P-716 

T paths. In Kaghan, coesite is found in thin metamorphic zircon rims in the felsic gneiss, suggesting 717 

that zircon crystallisation occurred at UHP conditions (Kaneko et al., 2003). In the Tso Morari 718 

Complex, coesite is observed in the outermost rim of the prograde garnets but has not yet been 719 

observed as inclusions in zircon. Based on these similarities, we argue that the overlap in ages 720 

between Tso Morari and Kaghan indicates that UHP exhumation and associated fluid flux at 47-46 721 

Ma was responsible for a ubiquitous pulse of zircon growth across the NW Himalaya. We suggest that 722 

the regional synchroneity between Tso Morari and Kaghan, across a distance of ~450 km, reflects the 723 

scale at which slab dynamics control metamorphism and exhumation with a subduction zone setting.  724 



725

726

727

728

729

730
731

732

733

734

735

736

737

738

739

740

741

742

743

744

Lastly, c 

Kaghan  

exhumat 

Howeve 

prevents 

 
Figure 8 

multiple 

  

5.2. 

By assoc 

episode  

correspo 

followin 

magmat 

plate net 

Within t 

prograde 

(Figure  

internal  

cooling throu

(see Figure 

tion through

er, uncertain

s us from ma

8: Time char

e sources, inc

 UHP exhu
ciating acces

of zircon c

onds to the o

ng sections, w

ic and plate 

twork (Figur

the NW Him

e amphibolit

9a). Across 

thrust stacki

ugh the rutil

8). At face v

h the rutile c

nties in the 

aking any me

rt for Tso M

cluding this s

umation du
ssory phase a

crystallization

onset of exh

we consider 

kinematic e

re 9).  

malaya, the on

te facies, Bar

the rest of th

ing of the Hi

le closure te

value, this im

losure tempe

exact condi

eaningful inte

Morari and K

study.  

uring the H
ages with dis

n recorded 

humation of 

the significa

evolution of 

nset of UHP 

rrovian-style

he Himalaya

imalayan me

mperature to

mplies a long

erature for th

itions of zir

erpretation fo

Kaghan, afte

imalayan o
stinct metam

in the Tso 

Indian cont

ance of this e

the Himalay

exhumation

e metamorph

a, similar age

etamorphic co

ook place ~ 

ger period of

he Tso Mora

rcon growth

for the cause 

er (Palin et a

orogeny 
morphic assem

Morari com

inental crust

event with re

yan orogeny

n at 47-46 M

ism from 47

es record acc

ore (HMC) d

3.7 Ma later

f time betwee

ari Complex

h and rutile 

of this differ

al., 2012), c

mblages, our

mplex and K

t from UHP 

espect to the

y and the Ind

a overlaps w

 Ma to 39 M

cretion and c

during 41-17

r in Tso Mo

en zircon gro

x, relative to 

closure tem

rence.  

omprising d

r data sugges

Kaghan at 47

conditions. 

e wider meta

dia-Australia

with the onset

Ma (Soret et a

crustal thicke

7 Ma (Ambro

orari than 

owth and 

Kaghan. 

mperature 

 
data from 

st that the 

7-46 Ma, 

In these 

morphic, 

a-Eurasia 

t of local 

al., 2021) 

ening via 

ose et al., 



2015, Carosi et al., 2016, Goscombe et al., 2018, Carosi et al., 2019, Mottram et al., 2019, Waters, 745 

2019) with localized occurrences of high-pressure eclogite to granulite facies metamorphism of Indian 746 

lower crust recorded across the Himalaya from 40 Ma to 25 Ma (Figure 9a) (O’Brien, 2019, Chen et 747 

al., 2022). 748 

In the upper plate of the orogen (Eurasian plate), significant magmatic and metamorphic changes also 749 

occurred during this time (Figure 9a). Between 50 Ma and 40 Ma, the isotopic signatures of magmatic 750 

rocks from the Kohistan-Ladakh batholith record crustal contamination between ~50 Ma and ~40 Ma 751 

(Bouilhol et al., 2013, Jagoutz et al., 2019). Along the Lhasa block, the Gangdese arc records adakite 752 

magmatism from ~48 Ma produced by melting of the Tibetan lower crust (e.g., Searle et al., 2011, 753 

Guan et al., 2012, Ma et al., 2014), and the cessation of subduction-related magmatism by ~40 Ma 754 

(e.g., Zhu et al., 2019). At the same time, the Lhasa block recorded high pressure-low temperature 755 

kyanite-grade partial melting associated with deformation and crustal thickening at 44-32 Ma (Zhang 756 

et al., 2010, Palin et al., 2014), whilst further to the east, the Mogok metamorphic belt and Eastern 757 

Ophiolite Belt in Myanmar record sillimanite-grade metamorphism between 48-22 Ma, which 758 

included a phase of granulite facies metamorphism between 43-32 Ma (Barley et al., 2003, Searle et 759 

al., 2007, Searle et al., 2017, Searle et al., 2020, Lamont et al., 2021).  760 

From a plate-kinematic perspective (Figure 9c), UHP exhumation at 47-46 Ma coincides with a 761 

significant reorganisation of the India-Australia-Eurasia plate network (e.g., Patriat and Achache, 762 

1984, Gibbons et al., 2015, Parsons et al., 2021). Between 45-40 Ma, the Indian plate underwent a 763 

30%–38% reduction in plate speed (Molnar and Stock, 2009), which coincided with the onset of 764 

northward subduction of the Australian plate beneath southeast Asia and the coupling of the Indian 765 

and Australian plates (Figure 9c) (Smyth et al., 2008, Torsvik et al., 2008, Jacob et al., 2014, Gibbons 766 

et al., 2015, Parsons et al., 2021). Combined plate reconstruction and mantle tomographic analyses 767 

demonstrate that this plate network reorganisation occurred in response to collision of the Indian 768 

continent with the Eurasian margin at 50-40 Ma, and that continued convergence after that time was 769 

driven primarily by subduction of Australian oceanic lithosphere beneath southeast Asia to the east 770 

(Capitanio et al., 2015, Gibbons et al., 2015, Parsons et al., 2021, Bose et al., 2023).  771 

The metamorphic and magmatic events recorded by the Himalayan orogeny between 50-40 Ma 772 

(Figure 9a) reflect a warming metamorphic thermal gradient and an increased mechanical coupling of 773 

the upper and lower plates, which are best explained by a reduction in the dip of the subducting Indian 774 

plate (e.g., Soret et al., 2021, Chen et al., 2022). Considering the plate kinematic restoration of the 775 

northern Indian continent margin and Eurasian margin which overlap during that time, we attribute 776 

this reduction in slab dip to the positive buoyancy of the Indian continental lithosphere within the 777 

collision zone, which stalled subduction and increased the component of under thrusting beneath 778 

Eurasia. We propose that UHP exhumation at 47-46 Ma occurred in response to this reduction in the 779 



vertical component of subduction, which allowed more time for thermally-assisted strain weakening 780 

mechanisms to detach slices of crustal material from the subducting slab, before it could be subducted 781 

to the point of no return (see discussion in Parsons et al., 2020). The mode of UHP exhumation is 782 

unclear, although isothermal, triclinic deformation during exhumation of the Tso Morari complex 783 

(Long et al., 2020; Dutta & Mukherjee, 2021) is most compatible with the recirculation and plunger 784 

models of Warren et al. (2008a, 2008b, 2008c). These models invoke the transport of crustal slices of 785 

the lower plate from UHP pressures along the subduction interface and can therefore occur 786 

independently from slab break-off. 787 

In the context of double-collision models for the Himalayan orogeny, prograde to peak metamorphism 788 

of the Tso Morari complex between 60-50 Ma (Leech et al., 2007; St-Onge et al., 2013; Donaldson et 789 

al., 2013), as well as Barrovian metamorphism of the North Himalayan gneiss domes between 56-54 790 

Ma (Smit et al., 2014, Ding et al., 2016), most likely corresponds to initial burial of the NW Himalaya 791 

during the first collision event (Figure 9a) which began at ~60 Ma (see introduction for definitions). 792 

In contrast, we argue that UHP exhumation at 47-46 Ma occurred during the second collision event 793 

(Figure 9a), corresponding to the collision of the Indian continent with Eurasia. Integrating our 794 

constraints for the timing of UHP exhumation with existing metamorphic, magmatic, and plate 795 

kinematic constraints (Figure 9a,c) suggests that the India-Asia collision, as defined by the second 796 

collision event, initiated between ~50-46 Ma.  797 



 798 

Figure 9. UHP exhumation at 47-46 Ma and its temporal relationship with the metamorphic, 799 

magmatic, and plate kinematic evolution of the Himalayan orogeny and India-Asutralia-Eurasia plate 800 

network. (a) Metamorphic and magmatic events in the Himlayan orogeny. (b) Orogenic regime of the 801 

Himalayan orogeny: onset of UHP exhumation marks the transition from an accretionary orogen to a 802 

collisional orogen (c.f., Cawood et al., 2009). (c) Reorganization of the India-Australia-Eurasia plate 803 

network at 47-36 Ma with plate velocity profiles for the Indian and Australian plates (Torsvik et al., 804 

2008, Doubrovine et al., 2012, Müller et al., 2019). Data sources for events in (a) and (c) are cited in 805 

the main text. Significance for orogenesis and plate tectonics. (c) is modified after Parsons et al. 806 



(2021). EOB – Eastern Ophiolite Belt; HMC – Himalayan Metamorphic core; MMB – Mogok 807 

Metamorphic Belt. 808 

 809 

5.3. The significance of UHP exhumation for the geodynamics of orogenesis and 810 

plate tectonics 811 

The occurrence of UHP exhumation at 47-46 Ma reflects a significant geodynamic shift of the 812 

Himalayan orogeny. Prior to this time, convergence between India and Asia and associated prograde 813 

high pressure-low temperature metamorphism of the NW Himalaya was accommodated by 814 

subduction of the Indian plate (Figure 9a). Then, following Second collision occurring by 47-46 Ma 815 

(see above), the buoyancy of the Indian continent switched the dominant mode of India-Asia 816 

convergence from subduction to crustal shortening. This switch in the mode of convergence, marked 817 

by the onset of UHP exhumation at 47-46 Ma, can be viewed as a shift in the geodynamic regime of 818 

the Himalaya (Figure 9b) from, (1) an accretionary orogen, in which convergence was driven and 819 

accommodated by subduction of a trailing Indian plate slab; to (2) a collisional orogen, in which 820 

convergence was accommodated by crustal shortening (e.g., Replumaz et al., 2014; Cawood et al., 821 

2009, Parsons et al., 2021, Chen et al., 2022). Collisional orogenesis since ~47-46 Ma, has been 822 

driven by subduction of Australian oceanic lithosphere beneath SE Asia, which also provided the 823 

driving force for India-Australia plate motion since that time (e.g., Li et al., 2008; Capitanio et al., 824 

2015; Parsons et al., 2021, Bose et al., 2023).  825 

At a broader perspective, whilst the occurrence of UHP exhumation reflects changes in local 826 

subduction dynamics and convergence mechanisms of the Himalayan orogeny (Figure 9b), those 827 

same changes also relate to the broader geodynamics and kinematics of the India-Eurasia-Australia 828 

plate network, as indicated by Figure 9c. The arrival of the buoyant Indian continent into the Eurasian 829 

subduction zone during second collision can be viewed as the trigger for (1) UHP exhumation, (2) the 830 

transition from accretionary orogenesis to collisional orogenesis (Figure 9b), and (3) the 831 

reorganisation of the India-Eurasia-Australia plate network (Figure 9c) (Patriat & Achache, 1984; 832 

Gibbons et al., 2015, Parsons et al., 2021), all starting at 47-46 Ma (Figure 9a). As such, the 833 

occurrence of UHP exhumation during orogenesis represents an important timestamp, marking a 834 

period of geodynamic and plate kinematic change, which can be dynamically linked to other tectonic 835 

events taking place at the same time, elsewhere in the same plate network (Figure 9). 836 

 837 

6. Summary 838 

By associating accessory phase ages with distinct metamorphic assemblages, and combining both 839 

high precision and high spatial resolution techniques, we demonstrate that the phase of peak zircon 840 



crystallization recorded in the Tso Morari complex at 46-47 Ma, corresponds to the onset of 841 

exhumation from UHP conditions. Zircon from a mafic eclogite have a U-Pb CA-ID-TIMS age of 842 

46.91 ± 0.07 Ma (2σ) and an LA-ICPMS age of 47.5 ± 0.8 Ma, with REE profiles indicative of zircon 843 

crystallization at eclogite facies conditions. Those ages overlap with zircon rim ages (48.89 ± 1.1 Ma, 844 

LA-ICP-MS) and xenotime ages (48.1 ± 1.7 Ma; LA-ICP-MS) from the hosting Puga gneiss, which 845 

grew during breakdown of UHP garnet rims, as indicated by garnet element maps. Subsequent 846 

exhumation through the rutile closure temperature to crustal conditions is constrained by new dates of 847 

40.4 ± 1.7 Ma and 36.3 ± 3.8 (2σ LA-ICP-MS). 848 

The overlap between our mafic eclogite zircon ages, our xenotime-UHP garnet break down ages, 849 

indicate that the pulse of zircon growth recorded in the Tso Morari complex at 46-47 Ma (e.g., 850 

Donaldson et al., 2013) took place as a result of onset of exhumation from UHP conditions, rather 851 

than as a result of peak UHP metamorphism. These ages from Tso Morari overlap with U-Pb ID-852 

TIMS, SHRIMP, and SIMS analyses of zircon from eclogite-facies mafic rocks in Kaghan and Naran, 853 

~450-480 km to west of Tso Morari, which yielded ages of 46.4 ± 0.1 Ma, 46.2 ± 0.7 Ma, and 46 ± 2 854 

Ma, respectively (Kaneko et al., 2003; Parrish et al., 2006; Zhang et al., 2022). We interpret this 855 

overlap as an indication that exhumation from UHP conditions occurred synchronously at 46-47 Ma 856 

across the whole of the NW Himalaya. 857 

Integration of our new ages plus previously published ages from the NW Himalaya with existing 858 

metamorphic, magmatic, and plate kinematic constraints demonstrates that UHP exhumation at 47-46 859 

Ma was triggered by the arrival of buoyant Indian continental lithosphere into the Eurasian subduction 860 

zone between 50-46 Ma. At a broader perspective, whilst the occurrence of UHP exhumation reflects 861 

changes in local subduction dynamics and convergence mechanisms of the Himalayan orogeny 862 

(Figure 9a-b), those same changes also relate to the broader geodynamics and kinematics of the India-863 

Eurasia-Australia plate network (Figure 9c). Continent-continent collision of India and Asia at 50-46 864 

Ma not only provided the trigger for UHP exhumation, but was also responsible for, (1) significant 865 

changes in the metamorphic and magmatic evolution of the Himalayan orogen (Figure 9a); (2) the 866 

transition of the Himalaya from an accretionary orogen to a collisional orogen (Figure 9b); and (3) a 867 

significant reorganisation of the wider India-Eurasia-Australia plate network (Figure 9c).  868 

Our synthesis shows how the onset of UHP exhumation at 47-46 Ma temporally marks several 869 

changes in the geodynamic regime of the Himalayan orogen and the wider tectonic plate network, 870 

which stem from the onset of continent-continent collision. More generally, our study suggests that 871 

the occurrence of UHP exhumation during orogenesis can be viewed as an important timestamp 872 

marking a period of geodynamic and plate kinematic change and may be linked to other tectonic 873 

events taking place at the same time, elsewhere in the same orogen or further afield in the same plate 874 

network. 875 
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