References
  1. Abdulnour, R. E., Sham, H. P., Douda, D. N., Colas, R. A., Dalli, J., Bai, Y., Ai, X., Serhan, C. N., & Levy, B. D. (2016). Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation. Mucosal immunology, 9(5), 1278–1287. https://doi.org/10.1038/mi.2015.129
  2. Airaghi, L., Capra, R., Pravettoni, G., Maggiolo, F., Suter, F., Lipton, J. M., & Catania, A. (1999). Elevated concentrations of plasma alpha-melanocyte stimulating hormone are associated with reduced disease progression in HIV-infected patients. The Journal of laboratory and clinical medicine, 133(3), 309–315. https://doi.org/10.1016/s0022-2143(99)90087-2
  3. Ali, M., Kucko, N., Jansen, J. A., Yang, F., & Walboomers, X. F. (2021). The effect of lipoxin A4 on E. coli LPS-induced osteoclastogenesis. Clinical oral investigations, 25(3), 957–969. https://doi.org/10.1007/s00784-020-03385-3
  4. Ali, M., Yang, F., Jansen, J. A., & Walboomers, X. F. (2020). Lipoxin suppresses inflammation via the TLR4/MyD88/NF-κB pathway in periodontal ligament cells. Oral diseases, 26(2), 429–438. https://doi.org/10.1111/odi.13250
  5. Ampomah, P. B., Moraes, L. A., Lukman, H. M., & Lim, L. H. K. (2018). Formyl peptide receptor 2 is regulated by RNA mimics and viruses through an IFN-β-STAT3-dependent pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 32(3), 1468–1478. https://doi.org/10.1096/fj.201700584RR
  6. Archambault, A. S., Zaid, Y., Rakotoarivelo, V., Turcotte, C., Doré, É., Dubuc, I., Martin, C., Flamand, O., Amar, Y., Cheikh, A., Fares, H., El Hassani, A., Tijani, Y., Côté, A., Laviolette, M., Boilard, É., Flamand, L., & Flamand, N. (2021). High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35(6), e21666. https://doi.org/10.1096/fj.202100540R
  7. Ariyoshi, T., Hagihara, M., Tomono, S., Eguchi, S., Minemura, A., Miura, D., Oka, K., Takahashi, M., Yamagishi, Y., & Mikamo, H. (2021). Clostridium butyricum MIYAIRI 588 Modifies Bacterial Composition under Antibiotic-Induced Dysbiosis for the Activation of Interactions via Lipid Metabolism between the Gut Microbiome and the Host. Biomedicines, 9(8), 1065. https://doi.org/10.3390/biomedicines9081065
  8. Arora, S., Lim, W., Bist, P., Perumalsamy, R., Lukman, H. M., Li, F., Welker, L. B., Yan, B., Sethi, G., Tambyah, P. A., Fairhurst, A. M., Alonso, S., & Lim, L. H. (2016). Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell death and differentiation, 23(7), 1243–1256. https://doi.org/10.1038/cdd.2016.19
  9. Baker, S. K., Chen, Z. L., Norris, E. H., & Strickland, S. (2019). Plasminogen mediates communication between the peripheral and central immune systems during systemic immune challenge with lipopolysaccharide. Journal of neuroinflammation, 16(1), 172. https://doi.org/10.1186/s12974-019-1560-y
  10. Bang, S., Donnelly, C. R., Luo, X., Toro-Moreno, M., Tao, X., Wang, Z., Chandra, S., Bortsov, A. V., Derbyshire, E. R., & Ji, R. R. (2021). Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nature communications, 12(1), 1704. https://doi.org/10.1038/s41467-021-21940-8
  11. Bang, S., Xie, Y. K., Zhang, Z. J., Wang, Z., Xu, Z. Z., & Ji, R. R. (2018). GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. The Journal of clinical investigation, 128(8), 3568–3582. https://doi.org/10.1172/JCI99888
  12. Barcellini, W., Colombo, G., La Maestra, L., Clerici, G., Garofalo, L., Brini, A. T., Lipton, J. M., & Catania, A. (2000). Alpha-melanocyte-stimulating hormone peptides inhibit HIV-1 expression in chronically infected promonocytic U1 cells and in acutely infected monocytes. Journal of leukocyte biology, 68(5), 693–699.
  13. Bereshchenko, O., Migliorati, G., Bruscoli, S., & Riccardi, C. (2019). Glucocorticoid-Induced Leucine Zipper: A Novel Anti-inflammatory Molecule. Frontiers in pharmacology, 10, 308. https://doi.org/10.3389/fphar.2019.00308
  14. Barroso, L. C., Magalhaes, G. S., Galvão, I., Reis, A. C., Souza, D. G., Sousa, L. P., Santos, R. A. S., Campagnole-Santos, M. J., Pinho, V., & Teixeira, M. M. (2017). Angiotensin-(1-7) Promotes Resolution of Neutrophilic Inflammation in a Model of Antigen-Induced Arthritis in Mice. Frontiers in immunology, 8, 1596. https://doi.org/10.3389/fimmu.2017.01596
  15. Bhat, T. A., Kalathil, S. G., Bogner, P. N., Lehmann, P. V., Thatcher, T. H., Sime, P. J., & Thanavala, Y. (2021). AT-RvD1 Mitigates Secondhand Smoke-Exacerbated Pulmonary Inflammation and Restores Secondhand Smoke-Suppressed Antibacterial Immunity. Journal of immunology (Baltimore, Md. : 1950), 206(6), 1348–1360. https://doi.org/10.4049/jimmunol.2001228
  16. Bhat, T. A., Kalathil, S. G., Bogner, P. N., Lehmann, P. V., Thatcher, T. H., Sime, P. J., & Thanavala, Y. (2021). AT-RvD1 Mitigates Secondhand Smoke-Exacerbated Pulmonary Inflammation and Restores Secondhand Smoke-Suppressed Antibacterial Immunity. Journal of immunology (Baltimore, Md. : 1950), 206(6), 1348–1360. https://doi.org/10.4049/jimmunol.2001228
  17. Blaho, V. A., Buczynski, M. W., Brown, C. R., & Dennis, E. A. (2009). Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. The Journal of biological chemistry, 284(32), 21599–21612. https://doi.org/10.1074/jbc.M109.003822
  18. Blanchard, H. C., Taha, A. Y., Rapoport, S. I., & Yuan, Z. X. (2015). Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders. Prostaglandins, leukotrienes, and essential fatty acids, 96, 25–30. https://doi.org/10.1016/j.plefa.2015.01.002
  19. Boff, D., Oliveira, V. L. S., Queiroz Junior, C. M., Galvão, I., Batista, N. V., Gouwy, M., Menezes, G. B., Cunha, T. M., Verri Junior, W. A., Proost, P., Teixeira, M. M., & Amaral, F. A. (2020). Lipoxin A4 impairs effective bacterial control and potentiates joint inflammation and damage caused by Staphylococcus aureus infection. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(9), 11498–11510. https://doi.org/10.1096/fj.201802830RR
  20. Börgeson, E., Lönn, J., Bergström, I., Brodin, V. P., Ramström, S., Nayeri, F., Särndahl, E., & Bengtsson, T. (2011). Lipoxin A₄ inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression. Infection and immunity, 79(4), 1489–1497. https://doi.org/10.1128/IAI.00777-10
  21. Bruscoli, S., Riccardi, C., & Ronchetti, S. (2021). GILZ as a Regulator of Cell Fate and Inflammation. Cells, 11(1), 122. https://doi.org/10.3390/cells11010122
  22. Campagnole-Santos, M. J., Diz, D. I., Santos, R. A., Khosla, M. C., Brosnihan, K. B., & Ferrario, C. M. (1989). Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. The American journal of physiology, 257(1 Pt 2), H324–H329. https://doi.org/10.1152/ajpheart.1989.257.1.H324
  23. Canacik, O., Sabirli, R., Altintas, E., Karsli, E., Karis, D., Kaymaz, B., Tukenmez Sabirli, G., Kurt, Ö., & Koseler, A. (2021). Annexin A1 as a potential prognostic biomarker for COVID-19 disease: Case-control study. International journal of clinical practice, 75(10), e14606. https://doi.org/10.1111/ijcp.14606
  24. Cashin, K., Jakobsen, M. R., Sterjovski, J., Roche, M., Ellett, A., Flynn, J. K., Borm, K., Gouillou, M., Churchill, M. J., & Gorry, P. R. (2013). Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection. Retrovirology, 10, 98. https://doi.org/10.1186/1742-4690-10-98
  25. Catania, A., Airaghi, L., Garofalo, L., Cutuli, M., & Lipton, J. M. (1998a). The neuropeptide alpha-MSH in HIV infection and other disorders in humans. Annals of the New York Academy of Sciences, 840, 848–856. https://doi.org/10.1111/j.1749-6632.1998.tb09622.x
  26. Catania, A., Airaghi, L., Manfredi, M. G., Vivirito, M. C., Milazzo, F., Lipton, J. M., & Zanussi, C. (1993). Proopiomelanocortin-derived peptides and cytokines: relations in patients with acquired immunodeficiency syndrome. Clinical immunology and immunopathology, 66(1), 73–79. https://doi.org/10.1006/clin.1993.1010
  27. Catania, A., Cutuli, M., Garofalo, L., Carlin, A., Airaghi, L., Barcellini, W., & Lipton, J. M. (2000). The neuropeptide alpha-MSH in host defense. Annals of the New York Academy of Sciences, 917, 227–231. https://doi.org/10.1111/j.1749-6632.2000.tb05387.x
  28. Catania, A., Garofalo, L., Cutuli, M., Gringeri, A., Santagostino, E., & Lipton, J. M. (1998b). Melanocortin peptides inhibit production of proinflammatory cytokines in blood of HIV-infected patients. Peptides, 19(6), 1099–1104. https://doi.org/10.1016/s0196-9781(98)00055-2
  29. Catania, A., Manfredi, M. G., Airaghi, L., Vivirito, M. C., Capetti, A., Milazzo, F., Lipton, J. M., & Zanussi, C. (1994). Plasma concentration of cytokine antagonists in patients with HIV infection. Neuroimmunomodulation, 1(1), 42–49. https://doi.org/10.1159/000097089
  30. Charnley, M., Moir, A. J., Douglas, C. W., & Haycock, J. W. (2008). Anti-microbial action of melanocortin peptides and identification of a novel X-Pro-D/L-Val sequence in Gram-positive and Gram-negative bacteria. Peptides, 29(6), 1004–1009. https://doi.org/10.1016/j.peptides.2008.02.004
  31. Chen, F., Fan, X. H., Wu, Y. P., Zhu, J. L., Wang, F., Bo, L. L., Li, J. B., Bao, R., & Deng, X. M. (2014). Resolvin D1 improves survival in experimental sepsis through reducing bacterial load and preventing excessive activation of inflammatory response. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 33(3), 457–464. https://doi.org/10.1007/s10096-013-1978-6
  32. Chen, J., Purvis, G. S. D., Collotta, D., Al Zoubi, S., Sugimoto, M. A., Cacace, A., Martin, L., Colas, R. A., Collino, M., Dalli, J., & Thiemermann, C. (2020). RvE1 Attenuates Polymicrobial Sepsis-Induced Cardiac Dysfunction and Enhances Bacterial Clearance. Frontiers in immunology, 11, 2080. https://doi.org/10.3389/fimmu.2020.02080
  33. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208
  34. Chiang, N., Dalli, J., Colas, R. A., & Serhan, C. N. (2015). Identification of resolvin D2 receptor mediating resolution of infections and organ protection. The Journal of experimental medicine, 212(8), 1203–1217. https://doi.org/10.1084/jem.20150225
  35. Chiang, N., Fredman, G., Bäckhed, F., Oh, S. F., Vickery, T., Schmidt, B. A., & Serhan, C. N. (2012). Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature, 484(7395), 524–528. https://doi.org/10.1038/nature11042
  36. Chiang, N., & Serhan, C. N. (2017). Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Molecular aspects of medicine, 58, 114–129. https://doi.org/10.1016/j.mam.2017.03.005
  37. Ciechonska, M., Key, T., & Duncan, R. (2014). Efficient reovirus- and measles virus-mediated pore expansion during syncytium formation is dependent on annexin A1 and intracellular calcium. Journal of virology, 88(11), 6137–6147. https://doi.org/10.1128/JVI.00121-14
  38. Cilloniz, C., Pantin-Jackwood, M. J., Ni, C., Goodman, A. G., Peng, X., Proll, S. C., Carter, V. S., Rosenzweig, E. R., Szretter, K. J., Katz, J. M., Korth, M. J., Swayne, D. E., Tumpey, T. M., & Katze, M. G. (2010). Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. Journal of virology, 84(15), 7613–7624. https://doi.org/10.1128/JVI.00553-10
  39. Codagnone, M., Cianci, E., Lamolinara, A., Mari, V. C., Nespoli, A., Isopi, E., Mattoscio, D., Arita, M., Bragonzi, A., Iezzi, M., Romano, M., & Recchiuti, A. (2018). Resolvin D1 enhances the resolution of lung inflammation caused by long-term Pseudomonas aeruginosa infection. Mucosal immunology, 11(1), 35–49. https://doi.org/10.1038/mi.2017.36
  40. Conner, K. N., Holman, D., Lydic, T., & Hardy, J. W. (2022). Infection with Listeria monocytogenes alters the placental transcriptome and eicosanome. Placenta, 128, 29–35. https://doi.org/10.1016/j.placenta.2022.08.001
  41. Costa, V. V., Sugimoto, M. A., Hubner, J., Bonilha, C. S., Queiroz-Junior, C. M., Gonçalves-Pereira, M. H., Chen, J., Gobbetti, T., Libanio Rodrigues, G. O., Bambirra, J. L., Passos, I. B., Machado Lopes, C. E., Moreira, T. P., Bonjour, K., Melo, R. C. N., Oliveira, M. A. P., Andrade, M. V. M., Sousa, L. P., Souza, D. G., Santiago, H. D. C., … Teixeira, M. M. (2022). Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife, 11, e73853. https://doi.org/10.7554/eLife.73853
  42. Courtin, N., Fotso, A. F., Fautrad, P., Mas, F., Alessi, M. C., & Riteau, B. (2017). Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses. Antiviral research, 143, 252–261. https://doi.org/10.1016/j.antiviral.2017.05.001
  43. Croasdell, A., Lacy, S. H., Thatcher, T. H., Sime, P. J., & Phipps, R. P. (2016). Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae. Journal of immunology (Baltimore, Md. : 1950), 196(6), 2742–2752. https://doi.org/10.4049/jimmunol.1502331
  44. Cui, J., Morgan, D., Cheng, D. H., Foo, S. L., Yap, G. L. R., Ampomah, P. B., Arora, S., Sachaphibulkij, K., Periaswamy, B., Fairhurst, A. M., De Sessions, P. F., & Lim, L. H. K. (2020). RNA-Sequencing-Based Transcriptomic Analysis Reveals a Role for Annexin-A1 in Classical and Influenza A Virus-Induced Autophagy. Cells, 9(6), 1399. https://doi.org/10.3390/cells9061399
  45. Cutuli, M., Cristiani, S., Lipton, J. M., & Catania, A. (2000). Antimicrobial effects of alpha-MSH peptides. Journal of leukocyte biology, 67(2), 233–239. https://doi.org/10.1002/jlb.67.2.233
  46. Dalli, J., Ramon, S., Norris, P. C., Colas, R. A., & Serhan, C. N. (2015). Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(5), 2120–2136. https://doi.org/10.1096/fj.14-268441
  47. da Silva, S. F., da Silva Cavalcante, L. R., Fonseca Junior, E. A., da Silva, J. M., Lopes, J. C., & Damazo, A. S. (2021). Analysis of the myeloid-derived suppressor cells and annexin A1 in multibacillary leprosy and reactional episodes. BMC infectious diseases, 21(1), 1050. https://doi.org/10.1186/s12879-021-06744-x
  48. da Silveira, K. D., Coelho, F. M., Vieira, A. T., Sachs, D., Barroso, L. C., Costa, V. V., Bretas, T. L., Bader, M., de Sousa, L. P., da Silva, T. A., dos Santos, R. A., Simões e Silva, A. C., & Teixeira, M. M. (2010). Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. Journal of immunology (Baltimore, Md. : 1950), 185(9), 5569–5576. https://doi.org/10.4049/jimmunol.1000314
  49. Dar, H. H., Epperly, M. W., Tyurin, V. A., Amoscato, A. A., Anthonymuthu, T. S., Souryavong, A. B., Kapralov, A. A., Shurin, G. V., Samovich, S. N., St Croix, C. M., Watkins, S. C., Wenzel, S. E., Mallampalli, R. K., Greenberger, J. S., Bayır, H., Kagan, V. E., & Tyurina, Y. Y. (2022). P. aeruginosa augments irradiation injury via 15-lipoxygenase-catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis. JCI insight, 7(4), e156013. https://doi.org/10.1172/jci.insight.156013
  50. Das, R., Ganapathy, S., Settle, M., & Plow, E. F. (2014). Plasminogen promotes macrophage phagocytosis in mice. Blood, 124(5), 679–688. https://doi.org/10.1182/blood-2014-01-549659
  51. de Araújo, S., de Melo Costa, V. R., Santos, F. M., de Sousa, C. D. F., Moreira, T. P., Gonçalves, M. R., Félix, F. B., Queiroz-Junior, C. M., Campolina-Silva, G. H., Nogueira, M. L., Sugimoto, M. A., Bonilha, C. S., Perretti, M., Souza, D. G., Costa, V. V., & Teixeira, M. M. (2022). Annexin A1-FPR2/ALX Signaling Axis Regulates Acute Inflammation during Chikungunya Virus Infection. Cells, 11(17), 2717. https://doi.org/10.3390/cells11172717
  52. de Carvalho Santuchi, M., Dutra, M. F., Vago, J. P., Lima, K. M., Galvão, I., de Souza-Neto, F. P., Morais E Silva, M., Oliveira, A. C., de Oliveira, F. C. B., Gonçalves, R., Teixeira, M. M., Sousa, L. P., Dos Santos, R. A. S., & da Silva, R. F. (2019). Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators of inflammation, 2019, 2401081. https://doi.org/10.1155/2019/2401081
  53. De Cosmi, V., Mazzocchi, A., Turolo, S., Syren, M. L., Milani, G. P., & Agostoni, C. (2022). Long-Chain Polyunsaturated Fatty Acids Supplementation and Respiratory Infections. Annals of nutrition & metabolism, 1–8. Advance online publication. https://doi.org/10.1159/000522093
  54. de Freitas, D. D. N., Marinho Franceschina, C., Muller, D., Hilario, G. T., Gassen, R. B., Fazolo, T., de Lima Kaminski, V., Bogo Chies, J. A., Maito, F., Antunes, K. H., Zanin, R. F., Rodrigues, L. C., Jr, & Duarte de Souza, A. P. (2021). RvD1 treatment during primary infection modulates memory response increasing viral load during respiratory viral reinfection. Immunobiology, 226(6), 152151. https://doi.org/10.1016/j.imbio.2021.152151
  55. Diaz, L. A., Altman, N. H., Khan, W. N., Serhan, C. N., & Adkins, B. (2017). Specialized Proresolving Mediators Rescue Infant Mice from Lethal Citrobacter rodentium Infection and Promote Immunity against Reinfection. Infection and immunity, 85(10), e00464-17. https://doi.org/10.1128/IAI.00464-17
  56. Dinparastisaleh, R., & Mirsaeidi, M. (2021). Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel, Switzerland), 14(1), 45. https://doi.org/10.3390/ph14010045
  57. Donnarumma, G., Paoletti, I., Buommino, E., Tufano, M. A., & Baroni, A. (2004). Alpha-MSH reduces the internalization of Staphylococcus aureus and down-regulates HSP 70, integrins and cytokine expression in human keratinocyte cell lines. Experimental dermatology, 13(12), 748–754. https://doi.org/10.1111/j.0906-6705.2004.00218.x
  58. Du, P., Geng, J., Wang, F., Chen, X., Huang, Z., & Wang, Y. (2021). Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. International journal of medical sciences, 18(6), 1356–1362. https://doi.org/10.7150/ijms.53564
  59. El-Hashim, A. Z., Renno, W. M., Raghupathy, R., Abduo, H. T., Akhtar, S., & Benter, I. F. (2012). Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. British journal of pharmacology, 166(6), 1964–1976. https://doi.org/10.1111/j.1476-5381.2012.01905.x
  60. Ellouze, M., Vigouroux, L., Tcherakian, C., Woerther, P. L., Guguin, A., Robert, O., Surenaud, M., Tran, T., Calmette, J., Barbin, T., Perlemuter, G., Cassard, A. M., Launay, P., Maxime, V., Annane, D., Levy, Y., & Godot, V. (2020). Overexpression of GILZ in macrophages limits systemic inflammation while increasing bacterial clearance in sepsis in mice. European journal of immunology, 50(4), 589–602. https://doi.org/10.1002/eji.201948278
  61. Ernst, J. D., Hoye, E., Blackwood, R. A., & Jaye, D. (1990). Purification and characterization of an abundant cytosolic protein from human neutrophils that promotes Ca2(+)-dependent aggregation of isolated specific granules. The Journal of clinical investigation, 85(4), 1065–1071. https://doi.org/10.1172/JCI114537
  62. Fagundes, C. T., Amaral, F. A., Teixeira, A. L., Souza, D. G., & Teixeira, M. M. (2012). Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunological reviews, 245(1), 250–264. https://doi.org/10.1111/j.1600-065X.2011.01077.x
  63. Feehan, K. T., & Gilroy, D. W. (2019). Is Resolution the End of Inflammation?. Trends in molecular medicine, 25(3), 198–214. https://doi.org/10.1016/j.molmed.2019.01.006
  64. Flitter, B. A., Hvorecny, K. L., Ono, E., Eddens, T., Yang, J., Kwak, D. H., Bahl, C. D., Hampton, T. H., Morisseau, C., Hammock, B. D., Liu, X., Lee, J. S., Kolls, J. K., Levy, B. D., Madden, D. R., & Bomberger, J. M. (2017). Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 136–141. https://doi.org/10.1073/pnas.1610242114
  65. Flower, R. J., & Blackwell, G. J. (1979). Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature, 278(5703), 456–459. https://doi.org/10.1038/278456a0
  66. Gallagher, P. E., & Tallant, E. A. (2004). Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis, 25(11), 2045–2052. https://doi.org/10.1093/carcin/bgh236
  67. Gallo, C. G., Fiorino, S., Posabella, G., Antonacci, D., Tropeano, A., Pausini, E., Pausini, C., Guarniero, T., Hong, W., Giampieri, E., Corazza, I., Loiacono, R., Loggi, E., de Biase, D., Zippi, M., Lari, F., & Zancanaro, M. (2022). The function of specialized pro-resolving endogenous lipid mediators, vitamins, and other micronutrients in the control of the inflammatory processes: Possible role in patients with SARS-CoV-2 related infection. Prostaglandins & other lipid mediators, 159, 106619. https://doi.org/10.1016/j.prostaglandins.2022.106619
  68. Gao, J., Wang, S., Dong, X., Leanse, L. G., Dai, T., & Wang, Z. (2020). Co-delivery of resolvin D1 and antibiotics with nanovesicles to lungs resolves inflammation and clears bacteria in mice. Communications biology, 3(1), 680. https://doi.org/10.1038/s42003-020-01410-5
  69. Garcia, C. C., Guabiraba, R., Soriani, F. M., & Teixeira, M. M. (2010). The development of anti-inflammatory drugs for infectious diseases. Discovery medicine, 10(55), 479–488.
  70. GGenis, P., Jett, M., Bernton, E. W., Boyle, T., Gelbard, H. A., Dzenko, K., Keane, R. W., Resnick, L., Mizrachi, Y., & Volsky, D. J. (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. The Journal of experimental medicine, 176(6), 1703–1718. https://doi.org/10.1084/jem.176.6.1703
  71. Gewirtz, A. T., McCormick, B., Neish, A. S., Petasis, N. A., Gronert, K., Serhan, C. N., & Madara, J. L. (1998). Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. The Journal of clinical investigation, 101(9), 1860–1869. https://doi.org/10.1172/JCI1339
  72. Guo, Y., Tu, Y. H., Wu, X., Ji, S., Shen, J. L., Wu, H. M., & Fei, G. H. (2021). ResolvinD1 Protects the Airway Barrier Against Injury Induced by Influenza A Virus Through the Nrf2 Pathway. Frontiers in cellular and infection microbiology, 10, 616475. https://doi.org/10.3389/fcimb.2020.616475
  73. Grossi LC, Zaidan I, Souza JAM, et al. GILZ Modulates the Recruitment of Monocytes/Macrophages Endowed with a Resolving Phenotype and Favors Resolution of Escherichia coli Infection. Cells. 2023;12(10),1403. http://doi.org/10.3390/cells12101403
  74. Hamidzadeh, K., Westcott, J., Wourms, N., Shay, A. E., Panigrahy, A., Martin, M. J., Nshimiyimana, R., & Serhan, C. N. (2022). A newly synthesized 17-epi-NeuroProtectin D1/17-epi-Protectin D1: Authentication and functional regulation of Inflammation-Resolution. Biochemical pharmacology, 203, 115181. https://doi.org/10.1016/j.bcp.2022.115181
  75. Hannon, R., Croxtall, J. D., Getting, S. J., Roviezzo, F., Yona, S., Paul-Clark, M. J., Gavins, F. N., Perretti, M., Morris, J. F., Buckingham, J. C., & Flower, R. J. (2003). Aberrant inflammation and resistance to glucocorticoids in annexin 1-/- mouse. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17(2), 253–255. https://doi.org/10.1096/fj.02-0239fje
  76. Hansen, T. V., Vik, A., & Serhan, C. N. (2019). The Protectin Family of Specialized Pro-resolving Mediators: Potent Immunoresolvents Enabling Innovative Approaches to Target Obesity and Diabetes. Frontiers in pharmacology, 9, 1582. https://doi.org/10.3389/fphar.2018.01582
  77. He, Z., Chen, X., Fu, M., Tang, J., Li, X., Cao, H., Wang, Y., & Zheng, S. J. (2018). Infectious bursal disease virus protein VP4 suppresses type I interferon expression via inhibiting K48-linked ubiquitylation of glucocorticoid-induced leucine zipper (GILZ). Immunobiology, 223(4-5), 374–382. https://doi.org/10.1016/j.imbio.2017.10.048
  78. Heissig, B., Salama, Y., Takahashi, S., Osada, T., & Hattori, K. (2020). The multifaceted role of plasminogen in inflammation. Cellular signalling, 75, 109761. https://doi.org/10.1016/j.cellsig.2020.109761
  79. Higgins, G., Fustero Torre, C., Tyrrell, J., McNally, P., Harvey, B. J., & Urbach, V. (2016). Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa. American journal of physiology. Lung cellular and molecular physiology, 310(11), L1053–L1061. https://doi.org/10.1152/ajplung.00368.2015
  80. Hiramoto, H., Dansako, H., Takeda, M., Satoh, S., Wakita, T., Ikeda, M., & Kato, N. (2015). Annexin A1 negatively regulates viral RNA replication of hepatitis C virus. Acta medica Okayama, 69(2), 71–78. https://doi.org/10.18926/AMO/53335
  81. Hirayama, S., Domon, H., Hiyoshi, T., Isono, T., Tamura, H., Sasagawa, K., Takizawa, F., & Terao, Y. (2022). Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS open bio, 12(6), 1206–1219. https://doi.org/10.1002/2211-5463.13396
  82. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. The Journal of biological chemistry, 278(17), 14677–14687. https://doi.org/10.1074/jbc.M300218200
  83. Hoppstädter, J., Diesel, B., Linnenberger, R., Hachenthal, N., Flamini, S., Minet, M., Leidinger, P., Backes, C., Grässer, F., Meese, E., Bruscoli, S., Riccardi, C., Huwer, H., & Kiemer, A. K. (2019). Amplified Host Defense by Toll-Like Receptor-Mediated Downregulation of the Glucocorticoid-Induced Leucine Zipper (GILZ) in Macrophages. Frontiers in immunology, 9, 3111. https://doi.org/10.3389/fimmu.2018.03111
  84. Huang, F., Guo, J., Zou, Z., Liu, J., Cao, B., Zhang, S., Li, H., Wang, W., Sheng, M., Liu, S., Pan, J., Bao, C., Zeng, M., Xiao, H., Qian, G., Hu, X., Chen, Y., Chen, Y., Zhao, Y., Liu, Q., … Li, L. (2014). Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nature communications, 5, 3595. https://doi.org/10.1038/ncomms4595
  85. Huang, Q. H., Hruby, V. J., & Tatro, J. B. (1998). Systemic alpha-MSH suppresses LPS fever via central melanocortin receptors independently of its suppression of corticosterone and IL-6 release. The American journal of physiology, 275(2), R524–R530. https://doi.org/10.1152/ajpregu.1998.275.2.R524
  86. Hvorecny, K. L., Dolben, E., Moreau-Marquis, S., Hampton, T. H., Shabaneh, T. B., Flitter, B. A., Bahl, C. D., Bomberger, J. M., Levy, B. D., Stanton, B. A., Hogan, D. A., & Madden, D. R. (2018). An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. American journal of physiology. Lung cellular and molecular physiology, 314(1), L150–L156. https://doi.org/10.1152/ajplung.00383.2017
  87. Isopi, E., Mattoscio, D., Codagnone, M., Mari, V. C., Lamolinara, A., Patruno, S., D’Aurora, M., Cianci, E., Nespoli, A., Franchi, S., Gatta, V., Dubourdeau, M., Moretti, P., Di Sabatino, M., Iezzi, M., Romano, M., & Recchiuti, A. (2020). Resolvin D1 Reduces Lung Infection and Inflammation Activating Resolution in Cystic Fibrosis. Frontiers in immunology, 11, 581. https://doi.org/10.3389/fimmu.2020.00581
  88. Jiang, C., Parrish, N. F., Wilen, C. B., Li, H., Chen, Y., Pavlicek, J. W., Berg, A., Lu, X., Song, H., Tilton, J. C., Pfaff, J. M., Henning, E. A., Decker, J. M., Moody, M. A., Drinker, M. S., Schutte, R., Freel, S., Tomaras, G. D., Nedellec, R., Mosier, D. E., … Gao, F. (2011). Primary infection by a human immunodeficiency virus with atypical coreceptor tropism. Journal of virology, 85(20), 10669–10681. https://doi.org/10.1128/JVI.05249-11
  89. Jiang, L., Wang, J., Xu, L., Cai, J., Zhao, S., & Ma, A. (2022). Lactobacillus casei modulates inflammatory cytokines and metabolites during tuberculosis treatment: A post hoc randomized controlled trial. Asia Pacific journal of clinical nutrition, 31(1), 66–77. https://doi.org/10.6133/apjcn.202203_31(1).0008
  90. Jiang, T., Gao, L., Guo, J., Lu, J., Wang, Y., & Zhang, Y. (2012). Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. British journal of pharmacology, 167(7), 1520–1532. https://doi.org/10.1111/j.1476-5381.2012.02105.x
  91. Kelvin, A. A., Degousee, N., Banner, D., Stefanski, E., Leόn, A. J., Angoulvant, D., Paquette, S. G., Huang, S. S., Danesh, A., Robbins, C. S., Noyan, H., Husain, M., Lambeau, G., Gelb, M., Kelvin, D. J., & Rubin, B. B. (2014). Lack of group X secreted phospholipase A₂ increases survival following pandemic H1N1 influenza infection. Virology, 454-455, 78–92. https://doi.org/10.1016/j.virol.2014.01.030
  92. Krishnamoorthy, N., Walker, K. H., Brüggemann, T. R., Tavares, L. P., Smith, E. W., Nijmeh, J., Bai, Y., Ai, X., Cagnina, R. E., Duvall, M. G., Lehoczky, J. A., & Levy, B. D. (2023). The Maresin 1-LGR6 axis decreases respiratory syncytial virus-induced lung inflammation. Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2206480120. https://doi.org/10.1073/pnas.2206480120
  93. Lee C. H. (2021). Role of specialized pro-resolving lipid mediators and their receptors in virus infection: a promising therapeutic strategy for SARS-CoV-2 cytokine storm. Archives of pharmacal research, 44(1), 84–98. https://doi.org/10.1007/s12272-020-01299-y
  94. Lee, S., Kim, S., Park, S., Lee, J., & Yu, H. S. (2022). Effect of resolvin D1 on experimental bacterial keratitis to prevent corneal scar. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 260(10), 3293–3302. https://doi.org/10.1007/s00417-022-05686-7
  95. Levy, B. D., Abdulnour, R. E., Tavares, A., Brüggemann, T. R., Norris, P. C., Bai, Y., Ai, X., & Serhan, C. N. (2020). Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes. The Journal of allergy and clinical immunology, 145(1), 335–344. https://doi.org/10.1016/j.jaci.2019.09.028
  96. Li, Q., Jiang, B., Zhang, Z., Huang, Y., Xu, Z., Chen, X., Huang, Y., Jian, J., & Yan, Q. (2022). α-MSH is partially involved in the immunomodulation of Nile tilapia (Oreochromis niloticus) antibacterial immunity. Fish & shellfish immunology, 131, 929–938. https://doi.org/10.1016/j.fsi.2022.11.001
  97. Li, Y., Hou, G., Zhou, H., Wang, Y., Tun, H. M., Zhu, A., Zhao, J., Xiao, F., Lin, S., Liu, D., Zhou, D., Mai, L., Zhang, L., Zhang, Z., Kuang, L., Guan, J., Chen, Q., Wen, L., Zhang, Y., Zhuo, J., … Xu, Y. (2021). Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal transduction and targeted therapy, 6(1), 155. https://doi.org/10.1038/s41392-021-00508-4
  98. Li, Z., Wang, Y., Li, X., Li, X., Cao, H., & Zheng, S. J. (2013). Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. Journal of virology, 87(2), 1221–1231. https://doi.org/10.1128/JVI.02421-12
  99. Liu, G. C., Oudit, G. Y., Fang, F., Zhou, J., & Scholey, J. W. (2012). Angiotensin-(1-7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. American journal of physiology. Renal physiology, 302(6), F784–F790. https://doi.org/10.1152/ajprenal.00455.2011
  100. Ma, X., Zhang, K., Luo, Z., Nian, X., Choudhury, S. K. M., Zhu, Z., Song, R., Pei, J., Huo, Y., Li, Y., Yang, F., Cao, W., Liu, H., Liu, X., & Zheng, H. (2022). FMDV 3A Antagonizes the Effect of ANXA1 to Positively Modulate Viral Replication. Journal of virology, 96(12), e0031722. https://doi.org/10.1128/jvi.00317-22
  101. Machado, M. G., Tavares, L. P., Souza, G. V. S., Queiroz-Junior, C. M., Ascenção, F. R., Lopes, M. E., Garcia, C. C., Menezes, G. B., Perretti, M., Russo, R. C., Teixeira, M. M., & Sousa, L. P. (2020). The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(2), 2749–2764. https://doi.org/10.1096/fj.201902172R
  102. Madhuri, Shireen, T., Venugopal, S. K., Ghosh, D., Gadepalli, R., Dhawan, B., & Mukhopadhyay, K. (2009). In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus. Peptides, 30(9), 1627–1635. https://doi.org/10.1016/j.peptides.2009.06.020
  103. Magalhaes, G. S., Barroso, L. C., Reis, A. C., Rodrigues-Machado, M. G., Gregório, J. F., Motta-Santos, D., Oliveira, A. C., Perez, D. A., Barcelos, L. S., Teixeira, M. M., Santos, R. A. S., Pinho, V., & Campagnole-Santos, M. J. (2018). Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma. Frontiers in immunology, 9, 58. https://doi.org/10.3389/fimmu.2018.00058
  104. Manickam, M., Meenakshisundaram, S., & Pillaiyar, T. (2022). Activating endogenous resolution pathways by soluble epoxide hydrolase inhibitors for the management of COVID-19. Archiv der Pharmazie, 355(3), e2100367. https://doi.org/10.1002/ardp.202100367
  105. Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., & Bazan, N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. The Journal of biological chemistry, 278(44), 43807–43817. https://doi.org/10.1074/jbc.M305841200
  106. Maskin, L. P., Bonelli, I., Olarte, G. L., Palizas, F., Jr, Velo, A. E., Lurbet, M. F., Lovazzano, P., Kotsias, S., Attie, S., Lopez Saubidet, I., Baredes, N. D., Setten, M., & Rodriguez, P. O. (2022). High- Versus Low-Dose Dexamethasone for the Treatment of COVID-19-Related Acute Respiratory Distress Syndrome: A Multicenter, Randomized Open-Label Clinical Trial. Journal of intensive care medicine, 37(4), 491–499. https://doi.org/10.1177/08850666211066799
  107. Melo, E. M., Del Sarto, J., Vago, J. P., Tavares, L. P., Rago, F., Gonçalves, A. P. F., Machado, M. G., Aranda-Pardos, I., Valiate, B. V. S., Cassali, G. D., Pinho, V., Sousa, L. P., A-Gonzalez, N., Campagnole-Santos, M. J., Bader, M., Santos, R. A. S., Machado, A. V., Ludwig, S., & Teixeira, M. M. (2021). Relevance of angiotensin-(1-7) and its receptor Mas in pneumonia caused by influenza virus and post-influenza pneumococcal infection. Pharmacological research, 163, 105292. https://doi.org/10.1016/j.phrs.2020.105292
  108. Montero-Melendez, T., Patel, H. B., Seed, M., Nielsen, S., Jonassen, T. E., & Perretti, M. (2011). The melanocortin agonist AP214 exerts anti-inflammatory and proresolving properties. The American journal of pathology, 179(1), 259–269. https://doi.org/10.1016/j.ajpath.2011.03.042
  109. Morita, M., Kuba, K., Ichikawa, A., Nakayama, M., Katahira, J., Iwamoto, R., Watanebe, T., Sakabe, S., Daidoji, T., Nakamura, S., Kadowaki, A., Ohto, T., Nakanishi, H., Taguchi, R., Nakaya, T., Murakami, M., Yoneda, Y., Arai, H., Kawaoka, Y., Penninger, J. M., … Imai, Y. (2013). The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell, 153(1), 112–125. https://doi.org/10.1016/j.cell.2013.02.027
  110. Motwani, M. P., Colas, R. A., George, M. J., Flint, J. D., Dalli, J., Richard-Loendt, A., De Maeyer, R. P., Serhan, C. N., & Gilroy, D. W. (2018). Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI insight, 3(6), e94463. https://doi.org/10.1172/jci.insight.94463
  111. Mumtaz, S., Behera, S., Joshi, S., & Mukhopadhyay, K. (2022). Efficacy and Toxicity Studies of Novel α-MSH Analogues with Antibiofilm Action and β-Lactam Resensitization Potential against MRSA. ACS infectious diseases, 8(12), 2480–2493. https://doi.org/10.1021/acsinfecdis.2c00280
  112. Mumtaz, S., Behera, S., & Mukhopadhyay, K. (2020). Lipidated Short Analogue of α-Melanocyte Stimulating Hormone Exerts Bactericidal Activity against the Stationary Phase of Methicillin-Resistant Staphylococcus aureus and Inhibits Biofilm Formation. ACS omega, 5(44), 28425–28440. https://doi.org/10.1021/acsomega.0c01462
  113. Murakami, T., Suzuki, K., Tamura, H., & Nagaoka, I. (2011). Suppressive action of resolvin D1 on the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. Experimental and therapeutic medicine, 2(1), 57–61. https://doi.org/10.3892/etm.2010.170
  114. Najjar-Debbiny, R., Gronich, N., Weber, G., Khoury, J., Amar, M., Stein, N., Goldstein, L. H., & Saliba, W. (2023). Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 76(3), e342–e349. https://doi.org/10.1093/cid/ciac443
  115. Nataraja, C., Flynn, J., Dankers, W., Northcott, M., Zhu, W., Sherlock, R., Bennett, T. J., Russ, B. E., Miceli, I., Pervin, M., D’Cruz, A., Harris, J., Morand, E. F., & Jones, S. A. (2022). GILZ regulates type I interferon release and sequesters STAT1. Journal of autoimmunity, 131, 102858. https://doi.org/10.1016/j.jaut.2022.102858
  116. Nedellec, R., Coetzer, M., Shimizu, N., Hoshino, H., Polonis, V. R., Morris, L., Mårtensson, U. E., Binley, J., Overbaugh, J., & Mosier, D. E. (2009). Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. Journal of virology, 83(17), 8353–8363. https://doi.org/10.1128/JVI.00780-09
  117. Ni, C., Gao, S., Zheng, Y., Liu, P., Zhai, Y., Huang, W., Jiang, H., Lv, Q., Kong, D., & Jiang, Y. (2021). Annexin A1 Attenuates Neutrophil Migration and IL-6 Expression through Fpr2 in a Mouse Model of Streptococcus suis-Induced Meningitis. Infection and immunity, 89(3), e00680-20. https://doi.org/10.1128/IAI.00680-20
  118. Ni, L., Feng, Y., Wan, H., Ma, Q., Fan, L., Qian, Y., Li, Q., Xiang, Y., & Gao, B. (2012). Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncology reports, 27(3), 783–790. https://doi.org/10.3892/or.2011.1554
  119. Ng, H. P., Jennings, S., Nelson, S., & Wang, G. (2020). Short-Chain Alcohols Upregulate GILZ Gene Expression and Attenuate LPS-Induced Septic Immune Response. Frontiers in immunology, 11, 53. https://doi.org/10.3389/fimmu.2020.00053
  120. Norris, P. C., Arnardottir, H., Sanger, J. M., Fichtner, D., Keyes, G. S., & Serhan, C. N. (2018). Resolvin D3 multi-level proresolving actions are host protective during infection. Prostaglandins, leukotrienes, and essential fatty acids, 138, 81–89. https://doi.org/10.1016/j.plefa.2016.01.001
  121. Pal, A., Gowdy, K. M., Oestreich, K. J., Beck, M., & Shaikh, S. R. (2020). Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection. Frontiers in immunology, 11, 1997. https://doi.org/10.3389/fimmu.2020.01997
  122. Palmas, F., Clarke, J., Colas, R. A., Gomez, E. A., Keogh, A., Boylan, M., McEvoy, N., McElvaney, O. J., McElvaney, O., Alalqam, R., McElvaney, N. G., Curley, G. F., & Dalli, J. (2021). Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PloS one, 16(8), e0256226. https://doi.org/10.1371/journal.pone.0256226
  123. Palmer, C. D., Mancuso, C. J., Weiss, J. P., Serhan, C. N., Guinan, E. C., & Levy, O. (2011). 17(R)-Resolvin D1 differentially regulates TLR4-mediated responses of primary human macrophages to purified LPS and live E. coli. Journal of leukocyte biology, 90(3), 459–470. https://doi.org/10.1189/jlb.0311145
  124. Pan, H., Huang, W., Wang, Z., Ren, F., Luo, L., Zhou, J., Tian, M., & Tang, L. (2021). The ACE2-Ang-(1‑7)-Mas Axis Modulates M1/M2 Macrophage Polarization to Relieve CLP-Induced Inflammation via TLR4-Mediated NF-кb and MAPK Pathways. Journal of inflammation research, 14, 2045–2060. https://doi.org/10.2147/JIR.S307801
  125. Panigrahy, D., Gilligan, M. M., Serhan, C. N., & Kashfi, K. (2021). Resolution of inflammation: An organizing principle in biology and medicine. Pharmacology & therapeutics, 227, 107879. https://doi.org/10.1016/j.pharmthera.2021.107879
  126. Pérez-Novo, C. A., Claeys, C., Van Zele, T., Holtapples, G., Van Cauwenberge, P., & Bachert, C. (2006). Eicosanoid metabolism and eosinophilic inflammation in nasal polyp patients with immune response to Staphylococcus aureus enterotoxins. American journal of rhinology, 20(4), 456–460. https://doi.org/10.2500/ajr.2006.20.2873
  127. Pham, T. L., He, J., Kakazu, A. H., Calandria, J., Do, K. V., Nshimiyimana, R., Lam, T. F., Petasis, N. A., Bazan, H. E. P., & Bazan, N. G. (2021). ELV-N32 and RvD6 isomer decrease pro-inflammatory cytokines, senescence programming, ACE2 and SARS-CoV-2-spike protein RBD binding in injured cornea. Scientific reports, 11(1), 12787. https://doi.org/10.1038/s41598-021-92293-x
  128. Phan, T. A., & Taylor, A. W. (2013). The neuropeptides α-MSH and NPY modulate phagocytosis and phagolysosome activation in RAW 264.7 cells. Journal of neuroimmunology, 260(1-2), 9–16. https://doi.org/10.1016/j.jneuroim.2013.04.019
  129. Pouliot, M., Clish, C. B., Petasis, N. A., Van Dyke, T. E., & Serhan, C. N. (2000). Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry, 39(16), 4761–4768. https://doi.org/10.1021/bi992551b
  130. Qi, W., Li, H., Cai, X. H., Gu, J. Q., Meng, J., Xie, H. Q., Zhang, J. L., Chen, J., Jin, X. G., Tang, Q., Hao, Y., Gao, Y., Wen, A. Q., Xue, X. Y., Gao Smith, F., & Jin, S. W. (2015). Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury. Laboratory investigation; a journal of technical methods and pathology, 95(11), 1258–1268. https://doi.org/10.1038/labinvest.2015.109
  131. Rago, J. V., Vath, G. M., Tripp, T. J., Bohach, G. A., Ohlendorf, D. H., & Schlievert, P. M. (2000). Staphylococcal exfoliative toxins cleave alpha- and beta-melanocyte-stimulating hormones. Infection and immunity, 68(4), 2366–2368. https://doi.org/10.1128/IAI.68.4.2366-2368.2000
  132. Rahman, F., Chebbo, M., Courtin, N., Fotso Fotso, A., Alessi, M. C., & Riteau, B. (2018). The Annexin A1 Receptor FPR2 Regulates the Endosomal Export of Influenza Virus. International journal of molecular sciences, 19(5), 1400. https://doi.org/10.3390/ijms19051400
  133. Rajasagi, N. K., Bhela, S., Varanasi, S. K., & Rouse, B. T. (2017). Frontline Science: Aspirin-triggered resolvin D1 controls herpes simplex virus-induced corneal immunopathology. Journal of leukocyte biology, 102(5), 1159–1171. https://doi.org/10.1189/jlb.3HI1216-511RR
  134. Rajasagi, N. K., Reddy, P. B., Mulik, S., Gjorstrup, P., & Rouse, B. T. (2013). Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Investigative ophthalmology & visual science, 54(9), 6269–6279. https://doi.org/10.1167/iovs.13-12152
  135. Rajasagi, N. K., Reddy, P. B., Suryawanshi, A., Mulik, S., Gjorstrup, P., & Rouse, B. T. (2011). Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. Journal of immunology (Baltimore, Md. : 1950), 186(3), 1735–1746. https://doi.org/10.4049/jimmunol.1003456
  136. Recchiuti, A., Patruno, S., Mattoscio, D., Isopi, E., Pomilio, A., Lamolinara, A., Iezzi, M., Pecce, R., & Romano, M. (2021). Resolvin D1 and D2 reduce SARS-CoV-2-induced inflammatory responses in cystic fibrosis macrophages. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35(4), e21441. https://doi.org/10.1096/fj.202001952R
  137. Regidor, P. A., De La Rosa, X., Santos, F. G., Rizo, J. M., Gracia Banzo, R., & Silva, R. S. (2021). Acute severe SARS COVID-19 patients produce pro-resolving lipids mediators and eicosanoids. European review for medical and pharmacological sciences, 25(21), 6782–6796. https://doi.org/10.26355/eurrev_202111_27123
  138. Ribeiro, A. B., Caloi, C. M., Pimenta, S. T. S., Seshayyan, S., Govindarajulu, S., Souto, F. J. D., & Damazo, A. S. (2020). Expression of annexin-A1 in blood and tissue leukocytes of leprosy patients. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20200277. https://doi.org/10.1590/0037-8682-0277-2020
  139. Ricci, E., Ronchetti, S., Gabrielli, E., Pericolini, E., Gentili, M., Roselletti, E., Vecchiarelli, A., & Riccardi, C. (2019). GILZ restrains neutrophil activation by inhibiting the MAPK pathway. Journal of leukocyte biology, 105(1), 187–194. https://doi.org/10.1002/JLB.3AB0718-255R
  140. Ricci, E., Roselletti, E., Gentili, M., Sabbatini, S., Perito, S., Riccardi, C., Migliorati, G., Monari, C., & Ronchetti, S. (2021). Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells, 10(9), 2228. https://doi.org/10.3390/cells10092228
  141. Rogero, M. M., Leão, M. C., Santana, T. M., Pimentel, M. V. M. B., Carlini, G. C. G., da Silveira, T. F. F., Gonçalves, R. C., & Castro, I. A. (2020). Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free radical biology & medicine, 156, 190–199. https://doi.org/10.1016/j.freeradbiomed.2020.07.005
  142. Ronchetti, S., Migliorati, G., & Riccardi, C. (2015). GILZ as a Mediator of the Anti-Inflammatory Effects of Glucocorticoids. Frontiers in endocrinology, 6, 170. https://doi.org/10.3389/fendo.2015.00170
  143. Ruiz, A., Sarabia, C., Torres, M., & Juárez, E. (2019). Resolvin D1 (RvD1) and maresin 1 (Mar1) contribute to human macrophage control of M. tuberculosis infection while resolving inflammation. International immunopharmacology, 74, 105694. https://doi.org/10.1016/j.intimp.2019.105694
  144. Ryu, S., Johnson, A., Park, Y., Kim, B., Norris, D., Armstrong, C. A., & Song, P. I. (2015). The Alpha-Melanocyte-Stimulating Hormone Suppresses TLR2-Mediated Functional Responses through IRAK-M in Normal Human Keratinocytes. PloS one, 10(8), e0136887. https://doi.org/10.1371/journal.pone.0136887
  145. Sahanic, S., Löffler-Ragg, J., Tymoszuk, P., Hilbe, R., Demetz, E., Masanetz, R. K., Theurl, M., Holfeld, J., Gollmann-Tepeköylü, C., Tzankov, A., Weiss, G., Giera, M., & Tancevski, I. (2021). The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Frontiers in physiology, 12, 688946. https://doi.org/10.3389/fphys.2021.688946
  146. Sampaio, W. O., Henrique de Castro, C., Santos, R. A., Schiffrin, E. L., & Touyz, R. M. (2007). Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension (Dallas, Tex. : 1979), 50(6), 1093–1098. https://doi.org/10.1161/HYPERTENSIONAHA.106.084848
  147. Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N., Bader, M., & Campagnole-Santos, M. J. (2018). The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiological reviews, 98(1), 505–553. https://doi.org/10.1152/physrev.00023.2016
  148. Santos, S. H., Giani, J. F., Burghi, V., Miquet, J. G., Qadri, F., Braga, J. F., Todiras, M., Kotnik, K., Alenina, N., Dominici, F. P., Santos, R. A., & Bader, M. (2014). Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats. Journal of molecular medicine (Berlin, Germany), 92(3), 255–265. https://doi.org/10.1007/s00109-013-1087-0
  149. Schloer, S., Hübel, N., Masemann, D., Pajonczyk, D., Brunotte, L., Ehrhardt, C., Brandenburg, L. O., Ludwig, S., Gerke, V., & Rescher, U. (2019). The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(11), 12188–12199. https://doi.org/10.1096/fj.201901265R
  150. Schwab, J. M., Chiang, N., Arita, M., & Serhan, C. N. (2007). Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature, 447(7146), 869–874. https://doi.org/10.1038/nature05877
  151. Sekheri, M., El Kebir, D., Edner, N., & Filep, J. G. (2020). 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proceedings of the National Academy of Sciences of the United States of America, 117(14), 7971–7980. https://doi.org/10.1073/pnas.1920193117
  152. Seki, H., Fukunaga, K., Arita, M., Arai, H., Nakanishi, H., Taguchi, R., Miyasho, T., Takamiya, R., Asano, K., Ishizaka, A., Takeda, J., & Levy, B. D. (2010). The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. Journal of immunology (Baltimore, Md. : 1950), 184(2), 836–843. https://doi.org/10.4049/jimmunol.0901809
  153. Serhan, C. N., & Levy, B. D. (2018). Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. The Journal of clinical investigation, 128(7), 2657–2669. https://doi.org/10.1172/JCI97943
  154. Serhan, C. N., Libreros, S., & Nshimiyimana, R. (2022). E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Seminars in immunology, 59, 101597. https://doi.org/10.1016/j.smim.2022.101597
  155. Serhan, C. N., Yang, R., Martinod, K., Kasuga, K., Pillai, P. S., Porter, T. F., Oh, S. F., & Spite, M. (2009). Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. The Journal of experimental medicine, 206(1), 15–23. https://doi.org/10.1084/jem.20081880
  156. Shimizu, N., Tanaka, A., Oue, A., Mori, T., Apichartpiyakul, C., & Hoshino, H. (2008). A short amino acid sequence containing tyrosine in the N-terminal region of G protein-coupled receptors is critical for their potential use as co-receptors for human and simian immunodeficiency viruses. The Journal of general virology, 89(Pt 12), 3126–3136. https://doi.org/10.1099/vir.0.2008/002188-0
  157. Shireen, T., Basu, A., Sarkar, M., & Mukhopadhyay, K. (2015). Lipid composition is an important determinant of antimicrobial activity of alpha-melanocyte stimulating hormone. Biophysical chemistry, 196, 33–39. https://doi.org/10.1016/j.bpc.2014.09.002
  158. Shireen, T., Singh, M., Dhawan, B., & Mukhopadhyay, K. (2012). Characterization of cell membrane parameters of clinical isolates of Staphylococcus aureus with varied susceptibility to alpha-melanocyte stimulating hormone. Peptides, 37(2), 334–339. https://doi.org/10.1016/j.peptides.2012.05.025
  159. Shirey, K. A., Lai, W., Pletneva, L. M., Karp, C. L., Divanovic, S., Blanco, J. C., & Vogel, S. N. (2014). Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal immunology, 7(3), 549–557. https://doi.org/10.1038/mi.2013.71
  160. Siegel, E. R., Croze, R. H., Fang, X., Matthay, M. A., & Gotts, J. E. (2021). Inhibition of the lipoxin A4 and resolvin D1 receptor impairs host response to acute lung injury caused by pneumococcal pneumonia in mice. American journal of physiology. Lung cellular and molecular physiology, 320(6), L1085–L1092. https://doi.org/10.1152/ajplung.00046.2021
  161. Silva, J. B. N. F., Calcia, T. B. B., Silva, C. P., Guilherme, R. F., Almeida-Souza, F., Lemos, F. S., Calabrese, K. S., Caruso-Neves, C., Neves, J. S., & Benjamim, C. F. (2021). ATRvD1 Attenuates Renal Tubulointerstitial Injury Induced by Albumin Overload in Sepsis-Surviving Mice. International journal of molecular sciences, 22(21), 11634. https://doi.org/10.3390/ijms222111634
  162. Sordi, R., Menezes-de-Lima, O., Jr, Horewicz, V., Scheschowitsch, K., Santos, L. F., & Assreuy, J. (2013). Dual role of lipoxin A4 in pneumosepsis pathogenesis. International immunopharmacology, 17(2), 283–292. https://doi.org/10.1016/j.intimp.2013.06.010
  163. Soto, M., Gaffney, K. J., & Rodgers, K. E. (2019). Improving the Innate Immune Response in Diabetes by Modifying the Renin Angiotensin System. Frontiers in immunology, 10, 2885. https://doi.org/10.3389/fimmu.2019.02885
  164. Sousa, L. P., Alessandri, A. L., Pinho, V., & Teixeira, M. M. (2013). Pharmacological strategies to resolve acute inflammation. Current opinion in pharmacology, 13(4), 625–631. https://doi.org/10.1016/j.coph.2013.03.007
  165. Sousa, L. P., Pinho, V., & Teixeira, M. M. (2020). Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19?. British journal of pharmacology, 177(17), 3898–3904. https://doi.org/10.1111/bph.15164
  166. Souza, J. A. M., Carvalho, A. F. S., Grossi, L. C., Zaidan, I., de Oliveira, L. C., Vago, J. P., Cardoso, C., Machado, M. G., Souza, G. V. S., Queiroz-Junior, C. M., Morand, E. F., Bruscoli, S., Riccardi, C., Teixeira, M. M., Tavares, L. P., & Sousa, L. P. (2022). Glucocorticoid-Induced Leucine Zipper Alleviates Lung Inflammation and Enhances Bacterial Clearance during Pneumococcal Pneumonia. Cells, 11(3), 532. https://doi.org/10.3390/cells11030532
  167. Souza, P. R., Marques, R. M., Gomez, E. A., Colas, R. A., De Matteis, R., Zak, A., Patel, M., Collier, D. J., & Dalli, J. (2020). Enriched Marine Oil Supplements Increase Peripheral Blood Specialized Pro-Resolving Mediators Concentrations and Reprogram Host Immune Responses: A Randomized Double-Blind Placebo-Controlled Study. Circulation research, 126(1), 75–90. https://doi.org/10.1161/CIRCRESAHA.119.315506
  168. Star, R. A., Rajora, N., Huang, J., Stock, R. C., Catania, A., & Lipton, J. M. (1995). Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proceedings of the National Academy of Sciences of the United States of America, 92(17), 8016–8020. https://doi.org/10.1073/pnas.92.17.8016
  169. Sugimoto, M. A., Ribeiro, A. L. C., Costa, B. R. C., Vago, J. P., Lima, K. M., Carneiro, F. S., Ortiz, M. M. O., Lima, G. L. N., Carmo, A. A. F., Rocha, R. M., Perez, D. A., Reis, A. C., Pinho, V., Miles, L. A., Garcia, C. C., Teixeira, M. M., & Sousa, L. P. (2017). Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood, 129(21), 2896–2907. https://doi.org/10.1182/blood-2016-09-742825
  170. Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M., & Teixeira, M. M. (2016). Resolution of Inflammation: What Controls Its Onset?. Frontiers in immunology, 7, 160. https://doi.org/10.3389/fimmu.2016.00160
  171. Sugimoto, M. A., Vago, J. P., Perretti, M., & Teixeira, M. M. (2019). Mediators of the Resolution of the Inflammatory Response. Trends in immunology, 40(3), 212–227. https://doi.org/10.1016/j.it.2019.01.007
  172. Sundarasivarao, P. Y. K., Walker, J. M., Rodriguez, A., Spur, B. W., & Yin, K. (2022). Resolvin D2 induces anti-microbial mechanisms in a model of infectious peritonitis and secondary lung infection. Frontiers in immunology, 13, 1011944. https://doi.org/10.3389/fimmu.2022.1011944
  173. Svahn, S. L., Ulleryd, M. A., Grahnemo, L., Ståhlman, M., Borén, J., Nilsson, S., Jansson, J. O., & Johansson, M. E. (2016). Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis. Infection and immunity, 84(4), 1205–1213. https://doi.org/10.1128/IAI.01391-15
  174. P Tavares, L., Brüggemann, T. R., M Rezende, R., G Machado, M., Cagnina, R. E., Shay, A. E., C Garcia, C., Nijmeh, J., M Teixeira, M., & Levy, B. D. (2022). Cysteinyl Maresins Reprogram Macrophages to Protect Mice from Streptococcus pneumoniae after Influenza A Virus Infection. mBio, 13(4), e0126722. https://doi.org/10.1128/mbio.01267-22
  175. Tavares, L. P., Garcia, C. C., Vago, J. P., Queiroz-Junior, C. M., Galvão, I., David, B. A., Rachid, M. A., Silva, P. M., Russo, R. C., Teixeira, M. M., & Sousa, L. P. (2016). Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice. American journal of respiratory cell and molecular biology, 55(1), 24–34. https://doi.org/10.1165/rcmb.2015-0083OC
  176. Tavares, L. P., Melo, E. M., Sousa, L. P., & Teixeira, M. M. (2022). Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Seminars in immunology, 59, 101601. https://doi.org/10.1016/j.smim.2022.101601
  177. Tcherniuk, S., Cenac, N., Comte, M., Frouard, J., Errazuriz-Cerda, E., Galabov, A., Morange, P. E., Vergnolle, N., Si-Tahar, M., Alessi, M. C., & Riteau, B. (2016). Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. The Journal of infectious diseases, 214(2), 237–247. https://doi.org/10.1093/infdis/jiw127
  178. Thornton, J. M., Walker, J. M., Sundarasivarao, P. Y. K., Spur, B. W., Rodriguez, A., & Yin, K. (2021). Lipoxin A4 promotes reduction and antibiotic efficacy against Pseudomonas aeruginosa biofilm. Prostaglandins & other lipid mediators, 152, 106505. https://doi.org/10.1016/j.prostaglandins.2020.106505
  179. Tiwari, K., Singh, M., Kumar, P., & Mukhopadhyay, K. (2022). Binding of cationic analogues of α-MSH to lipopolysaccharide and disruption of the cytoplasmic membranes caused bactericidal action against Escherichia coli. Scientific reports, 12(1), 1987. https://doi.org/10.1038/s41598-022-05684-z
  180. Tsai, H. J., Liao, M. H., Shih, C. C., Ka, S. M., Tsao, C. M., & Wu, C. C. (2018). Angiotensin-(1-7) attenuates organ injury and mortality in rats with polymicrobial sepsis. Critical care (London, England), 22(1), 269. https://doi.org/10.1186/s13054-018-2210-y
  181. Ueda, T., Fukunaga, K., Seki, H., Miyata, J., Arita, M., Miyasho, T., Obata, T., Asano, K., Betsuyaku, T., & Takeda, J. (2014). Combination therapy of 15-epi-lipoxin A4 with antibiotics protects mice from Escherichia coli-induced sepsis*. Critical care medicine, 42(4), e288–e295. https://doi.org/10.1097/CCM.0000000000000162
  182. Ural, O., Kıratlı, H. E., Sümer, Ş., Aktuğ Demir, N., Yılmaz Kırık, S., Vatansev, H., Akyürek, F., Cebeci, H., Arslan, U., & Demir, L. S. (2022). COVID-19 Tanısıyla Takip Edilen Hastalarda Annexin-1 (ANXA-1), Annexin-2 (ANXA-2) ve Kemik Morfogenetik Protein-7 (BMP-7) Serum Düzeyinin Değerlendirilmesi [Evaluation of Annexin-1 (ANXA-1), Annexin-2 (ANXA-2) and Bone Morphogenetic Protein-7 (BMP-7) Serum Levels in Patients Followed Up With A Diagnosis of COVID-19]. Mikrobiyoloji bulteni, 56(1), 25–35. https://doi.org/10.5578/mb.20229903
  183. Vachier, I., Bonnans, C., Chavis, C., Farce, M., Godard, P., Bousquet, J., & Chanez, P. (2005). Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound. The Journal of allergy and clinical immunology, 115(1), 55–60. https://doi.org/10.1016/j.jaci.2004.09.038
  184. Vago, J. P., Sugimoto, M. A., Lima, K. M., Negreiros-Lima, G. L., Baik, N., Teixeira, M. M., Perretti, M., Parmer, R. J., Miles, L. A., & Sousa, L. P. (2019). Plasminogen and the Plasminogen Receptor, Plg-RKT, Regulate Macrophage Phenotypic, and Functional Changes. Frontiers in immunology, 10, 1458. https://doi.org/10.3389/fimmu.2019.01458
  185. Vanessa, K. H., Julia, M. G., Wenwei, L., Michelle, A. L., Zarina, Z. R., Lina, L. H., & Sylvie, A. (2015). Absence of Annexin A1 impairs host adaptive immunity against Mycobacterium tuberculosis in vivo. Immunobiology, 220(5), 614–623. https://doi.org/10.1016/j.imbio.2014.12.001
  186. Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European journal of internal medicine, 76, 14–20. https://doi.org/10.1016/j.ejim.2020.04.037
  187. Walker, J., Dichter, E., Lacorte, G., Kerner, D., Spur, B., Rodriguez, A., & Yin, K. (2011). Lipoxin a4 increases survival by decreasing systemic inflammation and bacterial load in sepsis. Shock (Augusta, Ga.), 36(4), 410–416. https://doi.org/10.1097/SHK.0b013e31822798c1
  188. Walker, J. M., Sundarasivarao, P. Y. K., Thornton, J. M., Sochacki, K., Rodriguez, A., Spur, B. W., Acharya, N. K., & Yin, K. (2022). Resolvin D2 promotes host defense in a 2 - hit model of sepsis with secondary lung infection. Prostaglandins & other lipid mediators, 159, 106617. https://doi.org/10.1016/j.prostaglandins.2022.106617
  189. Walker, K. H., Krishnamoorthy, N., Brüggemann, T. R., Shay, A. E., Serhan, C. N., & Levy, B. D. (2021). Protectins PCTR1 and PD1 Reduce Viral Load and Lung Inflammation During Respiratory Syncytial Virus Infection in Mice. Frontiers in immunology, 12, 704427. https://doi.org/10.3389/fimmu.2021.704427
  190. Wang, H., Anthony, D., Yatmaz, S., Wijburg, O., Satzke, C., Levy, B., Vlahos, R., & Bozinovski, S. (2017). Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model. Clinical science (London, England : 1979), 131(18), 2347–2362. https://doi.org/10.1042/CS20171006
  191. Wang, L. C., Wu, S. R., Yao, H. W., Ling, P., Perng, G. C., Chiu, Y. C., Hsu, S. M., & Chen, S. H. (2022). Suppression of annexin A1 and its receptor reduces herpes simplex virus 1 lethality in mice. PLoS pathogens, 18(8), e1010692. https://doi.org/10.1371/journal.ppat.1010692
  192. Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., Dong, L., Cui, X., Miao, Y., Wang, D., Dong, J., Xiao, C., Chen, W., & Wang, H. (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell discovery, 6, 31. https://doi.org/10.1038/s41421-020-0168-9
  193. Werz, O., Gerstmeier, J., Libreros, S., De la Rosa, X., Werner, M., Norris, P. C., Chiang, N., & Serhan, C. N. (2018). Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nature communications, 9(1), 59. https://doi.org/10.1038/s41467-017-02538-5
  194. Winkler, J. W., Orr, S. K., Dalli, J., Cheng, C. Y., Sanger, J. M., Chiang, N., Petasis, N. A., & Serhan, C. N. (2016). Resolvin D4 stereoassignment and its novel actions in host protection and bacterial clearance. Scientific reports, 6, 18972. https://doi.org/10.1038/srep18972
  195. Wu, B., Capilato, J., Pham, M. P., Walker, J., Spur, B., Rodriguez, A., Perez, L. J., & Yin, K. (2016). Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 30(6), 2400–2410. https://doi.org/10.1096/fj.201500029R
  196. Wu, B., Walker, J., Spur, B., Rodriguez, A., & Yin, K. (2015). Effects of Lipoxin A4 on antimicrobial actions of neutrophils in sepsis. Prostaglandins, leukotrienes, and essential fatty acids, 94, 55–64. https://doi.org/10.1016/j.plefa.2014.11.005
  197. Wu, H., Yang, J., Su, E. M., Li, L., Zhao, C., Yang, X., Gao, Z., Pan, M., Sun, P., Sun, W., Jiang, Y., & Su, X. (2014). Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice. PloS one, 9(3), e93003. https://doi.org/10.1371/journal.pone.0093003
  198. Wu, S. H., Chen, X. Q., Kong, X., Yin, P. L., Dong, L., Liao, P. Y., & Wu, J. M. (2016). Characteristics of respiratory syncytial virus-induced bronchiolitis co-infection with Mycoplasma pneumoniae and add-on therapy with montelukast. World journal of pediatrics : WJP, 12(1), 88–95. https://doi.org/10.1007/s12519-015-0024-4
  199. Yang, P., Gu, H., Zhao, Z., Wang, W., Cao, B., Lai, C., Yang, X., Zhang, L., Duan, Y., Zhang, S., Chen, W., Zhen, W., Cai, M., Penninger, J. M., Jiang, C., & Wang, X. (2014). Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Scientific reports, 4, 7027. https://doi.org/10.1038/srep07027
  200. Yap, G. L. R., Sachaphibulkij, K., Foo, S. L., Cui, J., Fairhurst, A. M., & Lim, L. H. K. (2020). Annexin-A1 promotes RIG-I-dependent signaling and apoptosis via regulation of the IRF3-IFNAR-STAT1-IFIT1 pathway in A549 lung epithelial cells. Cell death & disease, 11(6), 463. https://doi.org/10.1038/s41419-020-2625-7
  201. Yona, S., Heinsbroek, S. E., Peiser, L., Gordon, S., Perretti, M., & Flower, R. J. (2006). Impaired phagocytic mechanism in annexin 1 null macrophages. British journal of pharmacology, 148(4), 469–477. https://doi.org/10.1038/sj.bjp.0706730
  202. Zabrodskaya, Y., Plotnikova, M., Gavrilova, N., Lozhkov, A., Klotchenko, S., Kiselev, A., Burdakov, V., Ramsay, E., Purvinsh, L., Egorova, M., Vysochinskaya, V., Baranovskaya, I., Brodskaya, A., Povalikhin, R., & Vasin, A. (2022). Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells. Viruses, 14(12), 2690. https://doi.org/10.3390/v14122690
  203. Zhang, L., Zhang, X., Wu, P., Li, H., Jin, S., Zhou, X., Li, Y., Ye, D., Chen, B., & Wan, J. (2008). BML-111, a lipoxin receptor agonist, modulates the immune response and reduces the severity of collagen-induced arthritis. Inflammation research : official journal of the European Histamine Research Society … [et al.], 57(4), 157–162. https://doi.org/10.1007/s00011-007-7141-z
  204. Zeng, W., Chen, W., Leng, X., He, J. G., & Ma, H. (2009). Chronic angiotensin-(1-7) administration improves vascular remodeling after angioplasty through the regulation of the TGF-beta/Smad signaling pathway in rabbits. Biochemical and biophysical research communications, 389(1), 138–144. https://doi.org/10.1016/j.bbrc.2009.08.112
  205. Zhang, L., Zhang, Y., Qin, X., Jiang, X., Zhang, J., Mao, L., Jiang, Z., Jiang, Y., Liu, G., Qiu, J., Chen, C., Qiu, F., & Zou, Z. (2022). Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein. Critical care (London, England), 26(1), 171. https://doi.org/10.1186/s13054-022-04034-9
  206. Zhao, J., Geng, W., Wan, K., Guo, K., Xi, F., Xu, X., Xiong, X., Huang, X., Liu, J., & Kuang, X. (2021). Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. The Journal of international medical research, 49(2), 300060520981259. https://doi.org/10.1177/0300060520981259
  207. Zou, Z., Yan, Y., Shu, Y., Gao, R., Sun, Y., Li, X., Ju, X., Liang, Z., Liu, Q., Zhao, Y., Guo, F., Bai, T., Han, Z., Zhu, J., Zhou, H., Huang, F., Li, C., Lu, H., Li, N., Li, D., … Jiang, C. (2014). Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nature communications, 5, 3594. https://doi.org/10.1038/ncomms4594
  208. Zoued, A., Zhang, H., Zhang, T., Giorgio, R. T., Kuehl, C. J., Fakoya, B., Sit, B., & Waldor, M. K. (2021). Proteomic analysis of the host-pathogen interface in experimental cholera. Nature chemical biology, 17(11), 1199–1208. https://doi.org/10.1038/s41589-021-00894-4
Table 1 - Overall effects for the best studied pro-resolving molecules in the context of bacterial and viral infections.