Reference
1. Yan F, Gao F. An overview of potential inhibitors targeting
non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of
SARS-CoV-2. Computational and structural biotechnology journal.2021;19:4868-4883.
2. Lee YR, Chang CM, Yeh YC, et al. Honeysuckle Aqueous Extracts Induced
let-7a Suppress EV71 Replication and Pathogenesis In Vitro and In Vivo
and Is Predicted to Inhibit SARS-CoV-2. Viruses. 2021;13(2).
3. Moradi M-T, Karimi A, Rafieian-Kopaei M, Rabiei-Faradonbeh M, Momtaz
H. Pomegranate peel extract inhibits internalization and replication of
the influenza virus: An in vitro study. Avicenna Journal of
Phytomedicine. 2020;10(2):143.
4. Rajbhandari M, Wegner U, Schoepke T, Lindequist U, Mentel R.
Inhibitory effect of Bergenia ligulata on influenza virus A. Die
Pharmazie-An International Journal of Pharmaceutical Sciences.2003;58(4):268-271.
5. Guan W, Li J, Chen Q, et al. Pterodontic acid isolated from Laggera
pterodonta inhibits viral replication and inflammation induced by
influenza a virus. Molecules. 2017;22(10):1738.
6. Zheng X, Fu Y, Shi S-S, et al. Effect of Forsythiaside a on the RLRs
signaling pathway in the lungs of mice infected with the influenza a
virus FM1 strain. Molecules. 2019;24(23):4219.
7. Liang X, Huang Y, Pan X, et al. Erucic acid from Isatis indigotica
Fort. suppresses influenza A virus replication and inflammation in vitro
and in vivo through modulation of NF-κB and p38 MAPK pathway.Journal of pharmaceutical analysis. 2020;10(2):130-146.
8. Li T, Peng T. Traditional Chinese herbal medicine as a source of
molecules with antiviral activity. Antiviral research.2013;97(1):1-9.
9. Abiri R, Abdul-Hamid H, Sytar O, et al. A brief overview of potential
treatments for viral diseases using natural plant compounds: the case of
SARS-Cov. Molecules. 2021;26(13):3868.
10. Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha LY. Extraction,
isolation and characterization of bioactive compounds from plants’
extracts. African journal of traditional, complementary and
alternative medicines. 2011;8(1).
11. Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting
SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Front
Chem. 2021;9:819165.
12. Drayman N, DeMarco JK, Jones KA, et al. Masitinib is a broad
coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2.Science. 2021;373(6557):931-936.
13. Yang M, Lin L, Scartelli C, et al. Inhibition of Sars-Cov-2 Viral
Replication and In Vivo Thrombus Formation By a Novel Plant Flavonoid.Blood. 2021;138:3144.
14. Hu Q, Xiong Y, Zhu GH, et al. The SARS‐CoV‐2 main protease (Mpro):
Structure, function, and emerging therapies for COVID‐19.MedComm. 2022;3(3):e151.
15. Kneller DW, Phillips G, O’Neill HM, et al. Room-temperature X-ray
crystallography reveals the oxidation and reactivity of cysteine
residues in SARS-CoV-2 3CL Mpro: insights into enzyme mechanism and drug
design. IUCrJ. 2020;7(6):1028-1035.
16. Su H, Yao S, Zhao W, et al. Identification of pyrogallol as a
warhead in design of covalent inhibitors for the SARS-CoV-2 3CL
protease. Nature communications. 2021;12(1):3623.
17. Xiong Y, Zhu G-H, Zhang Y-N, et al. Flavonoids in Ampelopsis
grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition
potentials, covalent binding sites and inhibitory mechanisms.International Journal of Biological Macromolecules.2021;187:976-987.
18. Davis DA, Bulut H, Shrestha P, et al. Regulation of the dimerization
and activity of SARS-CoV-2 main protease through reversible
glutathionylation of cysteine 300. Mbio. 2021;12(4):e02094-02021.
19. Tao X, Zhang L, Du L, et al. Allosteric inhibition of SARS-CoV-2 3CL
protease by colloidal bismuth subcitrate. Chemical science.2021;12(42):14098-14102.
20. Chen Z, Cui Q, Cooper L, et al. Ginkgolic acid and anacardic acid
are specific covalent inhibitors of SARS-CoV-2 cysteine proteases.Cell Biosci. 2021;11(1):45.
21. Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. In silico screening-based
discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease.European Journal of Medicinal Chemistry. 2022;231:114130.
22. Zhong B, Peng W, Du S, et al. Oridonin inhibits SARS‐CoV‐2 by
targeting its 3C‐Like protease. Small science. 2022;2(6):2100124.
23. Khan A, Heng W, Imran K, et al. Discovery of Isojacareubin as a
covalent inhibitor of SARS-CoV-2 main protease using structural and
experimental approaches. J Med Virol. 2023;95(2):e28542.
24. Zhang YN, Zhu GH, Liu W, et al. Discovery and characterization of
the covalent SARS-CoV-2 3CL(pro) inhibitors from Ginkgo biloba extract
via integrating chemoproteomic and biochemical approaches.Phytomedicine. 2023;114:154796.
25. Alhadrami HA, Hassan AM, Chinnappan R, et al. Peptide substrate
screening for the diagnosis of SARS-CoV-2 using fluorescence resonance
energy transfer (FRET) assay. Microchimica Acta. 2021;188:1-10.
26. Wei L, Huang J, Zhang F, et al. Comprehensive profiling and
characterization of the absorbed components and metabolites in mice
serum and tissues following oral administration of Qing-Fei-Pai-Du
decoction by UHPLC-Q-Exactive-Orbitrap HRMS. Chinese Journal of
Natural Medicines. 2021;19(4):305-320.
27. Tu D-Z, Mao X, Zhang F, et al. Reversible and irreversible
inhibition of cytochrome P450 enzymes by methylophiopogonanone A.Drug Metabolism and Disposition. 2021;49(6):459-469.
28. Chen Z, Du R, Cooper L, et al. Sulforaphane is a reversible covalent
inhibitor of 3-chymotrypsin-like protease of SARS-CoV-2. J Med
Virol. 2023;95(3):e28609.
29. Xiong J, Xiang Y, Huang Z, et al. Structure-Based Virtual Screening
and Identification of Potential Inhibitors of SARS-CoV-2 S-RBD and ACE2
Interaction. Front Chem. 2021;9:740702.
30. Paul AS, Islam R, Parves MR, et al. Cysteine focused covalent
inhibitors against the main protease of SARS-CoV-2. Journal of
Biomolecular Structure and Dynamics. 2022;40(4):1639-1658.
31. Xia X-F, Xia G-Y, Wu Y-Z, et al. Trace therapeutic substances of
traditional Chinese medicine: great resources of innovative drugs
derived from traditional Chinese medicine. Zhongguo Zhong yao za
zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica.2022;47(7):1705-1729.
32. Awad HM, Boersma MG, Boeren S, Van Bladeren PJ, Vervoort J, Rietjens
IM. Quenching of quercetin quinone/quinone methides by different
thiolate scavengers: stability and reversibility of conjugate formation.Chemical research in toxicology. 2003;16(7):822-831.
33. Baron G, Borella S, Della Vedova L, et al. An integrated metabolomic
and proteomic approach for the identification of covalent inhibitors of
the main protease (Mpro) of SARS-CoV-2 from crude natural extracts.Talanta. 2023;252:123824.
34. Ferreira JC, Fadl S, Villanueva AJ, Rabeh WM. Catalytic dyad
residues His41 and Cys145 impact the catalytic activity and overall
conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like
protease. Frontiers in Chemistry. 2021;9:692168.
35. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample
preparation method for proteome analysis. Nature methods.2009;6(5):359-362.
36. Ravanfar R, Sheng Y, Shahgholi M, et al. Surface cysteines could
protect the SARS-CoV-2 main protease from oxidative damage. J
Inorg Biochem. 2022;234:111886.
37. Kneller DW, Phillips G, O’Neill HM, et al. Room-temperature X-ray
crystallography reveals the oxidation and reactivity of cysteine
residues in SARS-CoV-2 3CL M(pro): insights into enzyme mechanism and
drug design. IUCrJ. 2020;7(Pt 6):1028-1035.
38. Bahun M, Jukic M, Oblak D, et al. Inhibition of the SARS-CoV-2
3CL(pro) main protease by plant polyphenols. Food Chem.2022;373(Pt B):131594.
39. Hu Q, Xiong Y, Zhu GH, et al. The SARS-CoV-2 main protease (M(pro)):
Structure, function, and emerging therapies for COVID-19. MedComm
(2020). 2022;3(3):e151.
40. Paasche A, Schiller M, Schirmeister T, Engels B. Mechanistic Study
of the Reaction of Thiol‐Containing Enzymes with α, β‐Unsaturated
Carbonyl Substrates by Computation and Chemoassays. ChemMedChem:
Chemistry Enabling Drug Discovery. 2010;5(6):869-880.
41. Ramos‐Guzmán CA, Ruiz‐Pernía JJ, Tuñón I. Inhibition mechanism of
SARS‐CoV‐2 main protease with ketone‐based inhibitors unveiled by
multiscale simulations: insights for improved designs. Angewandte
Chemie International Edition. 2021;60(49):25933-25941.
42. Chen Z, Lv Y, Xu H, Deng L. Herbal medicine, gut microbiota, and
COVID-19. Frontiers in Pharmacology. 2021;12:646560.
43. Taylor-Swanson L, Altschuler D, Taromina K, et al. SEAttle-based
Research of Chinese Herbs for COVID-19 Study: A Whole Health Perspective
on Chinese Herbal Medicine for Symptoms that may be Related to COVID-19.Global Advances in Health and Medicine.2022;11:21649561211070483.
44. El Zakhem A, Chalhoub MA, Bassil M. The role of herbal and
nutritional treatments in the fight against COVID-19 and other
respiratory tract infections. International Journal of
Environmental Research and Public Health. 2021;18(22):12001.
45. Hall V, Foulkes S, Insalata F, et al. Protection against SARS-CoV-2
after Covid-19 vaccination and previous infection. New England
Journal of Medicine. 2022;386(13):1207-1220.
46. Wang X, Ma S, Zhao B, et al. Correlations between the viral loads
and symptoms in the SARS‐CoV‐2‐infected patients. MedComm.2023;4(4).
47. Zhu D, Su H, Ke C, et al. Efficient discovery of potential
inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a
native MS-based affinity-selection method. Journal of
Pharmaceutical and Biomedical Analysis. 2022;209:114538.
48. Wang Y, Chen W, Zhong S, Zhang H, Xue M, Gu B. Effect of
heat-clearing and detoxifying health function of lonicera japonica in
rats based on metabonomics. Zhong yao cai= Zhongyaocai= Journal of
Chinese Medicinal Materials. 2016;39(5):1129-1133.
49. Xin N, Li W, Li Y-J, Ma X-K, Fu Z-P, Li Y. Study of antivirus,
antibacteria and immune functions of Gaoreqing freeze-dried powder.J Med Plants Res. 2011;5(22):5407-5412.
50. Chen W-C, Liou S-S, Tzeng T-F, Lee S-L, Liu I-M. Wound repair and
anti-inflammatory potential of Lonicera japonica in excision
wound-induced rats. BMC Complementary and Alternative Medicine.2012;12(1):1-9.