References
  1. Alves, P.J., Barreto, R.T., Barrois, B.M., Gryson, L.G., Meaume, S., and Monstrey, S.J. (2021). Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. International Wound J . 18 , 342–358. doi: org/10.1111/iwj.13537
  2. Astrada, A., Nakagami, G., Minematsu, T., Goto, T., Kitamura, A., Mugita, Y., and Sanada, H. (2021). Concurrent validity of biofilm detection by wound blotting on hard-to-heal wounds. J. Wound Care30, S4–S13. doi: org/10.12968/jowc.2021.30.Sup4.S4
  3. Balaban, N., Stoodly, P., Fux, C.A., Wilson, S., Costerton, J.W., and Dell-Acqua, G. (2005) Prevention of Staphylococcal biofilm associated infections by quorum sensing inhibitor RIP. Clin Orthop Relat Res. 437 , 48-54. doi: org/10.1097/01.blo.0000175889.82865.67.
  4. Barsotti, M.C., Losi, P., Briganti, E., Sanguinetti, E., Magera, A., Al Kayal, T., Feriani, R., Di Stefano, R., and Soldani, G. (2013). Effect of platelet lysate on human cells involved in different phases of wound healing. PloS one . 8 , e84753. doi: org/10.1371/journal.pone.0084753
  5. Bauer, S.M., Santschi, E.M., Fialkowski, J., Clayton, M.K., and Proctor, R.A. (2004) Quantification of Staphylococcus aureus adhesion to equine bone surfaces passivated with Plasmalyte and hyperimmune plasma. Vet Surg. 33 , 376-381. doi: org/10.1111/j.1532-950X-2004.04054.x.
  6. Bianchi, T., Wolcott, R.D., Peghetti, A., Leaper, D., Cutting, K., Polignano, R., Rita, Z.R., Moscatelli, A., Greco, A., Romanelli, M., Pancani, S., Bellingeri, A., Ruggeri, V., Postacchini, L., Tedesco, S., Manfredi, L., Camerlingo, M., Rowan, S., Gabrielli, A., and Pomponio, G. (2016) Recommendations for the management of biofilm: a consensus document. J Wound Care. 25 , 305-317. doi: org/10.12968.jowc.2016.25.6.305.
  7. Bjarnsholt, T., Alhede, M., Alhede, M., Eickhardt-Sørensen, S.R., Moser, C., Kühl, M., Jensen, P.Ø., and Høiby, N. (2013). The in vivo biofilm. Trends in microbiology21 , 466–474. doi: org/10.1016/j.tim.2013.06.002
  8. Bowler, P.G. (2003) The 105 bacterial growth guideline: reassessing its clinical relevance in wound healing.Ostomy Wound Manage. 49 , 44.
  9. Brackman, G., and Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current pharmaceutical design21 , 5–11. doi: org/10.2174/1381612820666140905114627
  10. Brackman, G., Cos, P., Maes, L., Nelis, H.J., and Coenye, T. (2011). Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrobial agents and chemotherapy55 , 2655–2661. doi: org/10.1128/AAC.00045-11
  11. Bussche, L., Harman, R.M., Syracuse, B.A., Plante, E.L., Lu, Y., Curtis, T.M., Ma, M., and Van de Walle, G.R. (2015) Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res Ther. 6 , 66. doi: 10.1186/s13287-015-0037-x.
  12. Caley, M.P., Martins, V.L., and O’Toole, E.A. (2015). Metalloproteinases and Wound Healing. Advances in wound care4 , 225–234. https://doi.org/10.1089/wound.2014.0581
  13. Clutterbuck, A.L., Woods, E.J., Knottenbelt, D.C., Clegg, P.D., Cochrane, C.A., and Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary microbiology121 , 1–17. doi: org/10.1016/j.vetmic.2006.12.029
  14. Costerton, J.W., Stewart, P.S., and Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science.284 , 1318-1322. doi: 10.1126/science.284.5418.1318.
  15. da Fonseca, L., Santos, G.S., Huber, S.C., Setti, T.M., Setti, T., and Lana, J.F. (2021). Human platelet lysate - A potent (and overlooked) orthobiologic. Journal of clinical orthopaedics and trauma21 , 101534. doi: org/10.1016/j.jcot.2021.101534
  16. Dart, A.J., Sole-Guitart, A., Stashak, T.S., and Theoret, C. (2017a) Selected factors that negatively impact healing. In: Theoret C, ed. Equine wound management, 3rd ed. Ames, IA: John Wiley & Sons, Inc., 30-46.
  17. Dart, A.J., Sole-Guitart, A, Stashak, T.S., and Theoret, C. (2017b) Management practices that influence wound infection and healing. In: Theoret C, ed. Equine wound management, 3rd ed. Ames, IA: John Wiley & Sons, Inc., 47-74.
  18. Darvishi S., Tavakoli, S., Kharaziha, M., Girault, H.H., Kaminski, C.F., and Mela, I. (2022) Advances in the sensing and treatment of biofilms. Angew. Chem. Int. Ed.   61 , e202112218. doi: 10.1002/anie.202112218.
  19. Donlan RM. (2001) Role of biofilms in antimicrobial resistance.ASAIO J. 46, S47-552. doi: 10.1097/00002480-200011000-00037.
  20. Dowd, S.E., Sun, Y., Secor, P.R., Rhoads, D.D., Wolcott, B.M., James, G.A., and Wolcott, R.D. (2008) Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8 , 43. doi: 10.1186/1471-2180-8-43.
  21. Felts, A.G., Grainger D.W., and Slunt, J.B. (2000) Locally delivered antibodies combined with systemic antibiotics confer synergistic protection against antibiotic-resistant burn wound infection. J Trauma. 49 , 873-878. Doi: 10.1097/00005373-200011000-0014
  22. Fey P.D. (2010). Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?. Current opinion in microbiology. 13 , 610–615. doi: org/10.1016/j.mib.2010.09.007
  23. Flemming H, and Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology8 , 623–633. doi: org/10.1038/nrmicro2415
  24. Freeman, K., Woods, E., Welsby, S., Percival, S.L., and Cochrane, C.A. (2009) Biofilm evidence and the microbial diversity of horse wounds.Can J Microbiol. 55 , 197-202. doi: org/10.1139/w08-115.
  25. Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. (2005) Survival strategies of infectious biofilms. Trends Microbiol.13 , 34-40. doi: 10.1016/j.tim.2004.11.010.
  26. Gandini, M., Cerullo, A., Franci, P., and Giusto, G. (2022) Changes in perioperative antimicrobial and anti-inflammatory drugs regimens for colic surgery in horses: a single center report. Vet Sci.9 , 546. doi: org/10.3390/vetsci9100546.
  27. Gilbertie, J.M., Schaer, T.P., Schubert, A.G., Jacob, M.E., Menegatti, S., Ashton Lavoie, R., and Schnabel, L.V. (2020). Platelet-rich plasma lysate displays antibiofilm properties and restores antimicrobial activity against synovial fluid biofilms in vitro. J. Orthop. Res. 38 , 1365–1374. doi: org/10.1002/jor.24584
  28. Gordon, J., Álvarez-Narváez, S., and Peroni, J. F. (2021). Antimicrobial Effects of Equine Platelet Lysate. Frontiers Vet Sci8 , 703414. doi: org/10.3389/fvets.2021.703414
  29. Grassi, L., Maisetta, G., Esin, S., and Batoni, G. (2017). Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Frontiers Microbiol8 , 2409. doi: org/10.3389/fmicb.2017.02409
  30. Gunasekaran, T., Nigusse, T., and Dhanaraju, M.D. (2012). Silver nanoparticles as real topical bullets for wound healing. J Am College Clinical Wound Specialists . 3 , 82–96. doi: org/10.1016/j.jcws.2012.05.001
  31. Hajská, M., Slobodníková, L., Hupková, H., and Koller, J. (2014).In vitro efficacy of various topical antimicrobial agents in different time periods from contamination to application against 6 multidrug-resistant bacterial strains isolated from burn patients. Burns. 40 , 713–718. doi: org/10.1016/j.burns.2013.09.003.
  32. Han, A., Zenilman, J.M. Melendez, J.H., Shirtliff, M.E., Agostinho, A., James, G., Stewart, P.S., Mongodin, E.F., Rao, D., Rickard, A.H., and Lazarus, G.S. (2011). The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen . 19 , 532-541. doi: org/10.1111/j.1524-475X.2011.00720.x.
  33. Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., and Ding, J. (2019). Mesenchymal Stem Cells for Regenerative Medicine. Cells8 , 886. doi: org/10.3390/cells8080886
  34. Hansen, E., Belden, K., Siibovsky, R., Vogt, M., Arnold, W.V., Bicanic, G., Bini, S.A., Catani, F., Chen, J., Ghazavi, M.T., Godefroy, K.M., Holham, P., Hosseinzadeh, H., Kim, K.I., Kirketerp-Moller, K., Lidgren, L., Lin, J.H., Lonner, J.H., Moore, C.C., Papagelopoulos, P., Poultsides, L., Randall, R.L., Roslund, B., Saleh, K., Salmon, J.V., Schwarz, E.M., Stuyck, J., Dahl, A.W., and Yamada, K. (2014) Perioperative antibiotics. J Arthroplast.29 , 29-48. doi: 10.1016/j.arth.2013.09.030.
  35. Hendrickson D. Superficial wounds, deep and chronic wounds, sinus tracts, and fistulas. (2019) In: Auer JA, Stick JA, Kummerle JM, Prange T, ed. Equine surgery, 5th ed. St. Louis, MO: Elsevier, 403-422.
  36. Herdan, C., Acke, E., Dicken, M., Archer, R., Forsyth, S., Gee, E., and Pauwels, F. (2012). Multi-drug resistant Enterococcus spp. as a cause of nonresponsive septic synovitis in three horses. N Z Vet J. 60 , 297-304. doi: 10.1080/00480169.2011.651702.
  37. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Intern J Antimicrob Agents. 35 , 322–332. doi: org/10.1016/j.ijantimicag.2009.12.011
  38. Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D., and Bowler, P. (2015). Clinical Biofilms: A Challenging Frontier in Wound Care. Advances Wound Care4 , 295–301. doi: org/10.1089/wound.2014.0567
  39. Jacques M, Aragon V, and Tremblay YDN. (2010) Biofilm formation in bacterial pathogens of veterinary importance. Anim Health Res Rev. 11 , 97-121. doi: 10.1017/S1466252310000149.
  40. James, G., Swogger, E., Wolcott, R., Pulcini, E.D., Secor, P., Sestrich, J., Costerton, J.W., and Stewart, P.S. (2008) Biofilms in chronic wounds. Wound Repair Regen. 16 , 37-44. doi: 10.1111/j.1524-475X.2007.00321.x
  41. Jiang, Q., Chen, J., Yang, C., Yin, Y., and Yao, K. (2019). Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed Res Intern 2015978. doi: org/10.1155/2019/2015978
  42. Joshi, A. S., Singh, P., and Mijakovic, I. (2020). Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Intern J Mol Sci. 21 , 7658. doi: org/10.3390/ijms21207658
  43. Kandhwal, M., Behl, T., Singh, S., Sharma, N., Arora, S., Bhatia, S., Al-Harrasi, A., Sachdeva, M., and Bungau, S. (2022). Role of matrix metalloproteinase in wound healing. Am J Transl Res.14 , 4391–4405.
  44. Kirketerp-Moller, K., Jensen, P.O., Fazli, M., Madsen, K.G., Pedersen, J, Moser, C, Tolker-Nielsen, T., Hoiby, N., Givskov, M., and Bjarnssholt, T. (2008) Distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol. 46 , 2717-2722. doi: 10.1128/JCM.00501-08.
  45. Klausen, M., Aaes-Jørgensen, A., Molin, S., and Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms.Molecular microbiol. 50 , 61–68. doi: org/10.1046/j.1365-2958.2003.03677.x
  46. Kostakioti, M., Hadjifrangiskou, M., and Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Persp Med3 , a010306. doi: org/10.1101/cshperspect.a010306
  47. Lappin-Scott, H.M., and Bass, C. (2001) Biofilm formation: attachment, growth, and detachment of microbes from surfaces. Am J Infect Control. 29 , 250-251. doi: 10.1067/mic.2001.115674.
  48. Leaper, D.J., Schultz, G., Carville, K., Fletcher, J., Swanson, T., and Drake, R. (2012) Extending the TIME concept: what have we learned in the past 10 years? Int Wound J. 9 , 1-19. doi: org/10.1111/j.1742-481X.2012.01097.x.
  49. Leid, J.G., Shirtliff, M.E., Costerton, J.W., and Stoodley, P. (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun. 70 , 6339-6345. doi: 10.1128/IAI.70.11.6339-6345.2002.
  50. Levy, M.L., Luu, T., Meltzer, H.S., Bennett, R., and Bruce, D.A. (2004) Bacterial adhesion to surfactant-modified silicone surfaces.Neurosurgery. 54 , 488-490. doi: 10.1227/01.neu.0000103673.13196.7f.
  51. Lewenza, S. (2013). Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosaFrontiers Microbiol4 , 21. doi: org/10.3389/fmicb.2013.00021
  52. Loncaric, I., Kunzel, F., Licka, T., Simhofer, H/, Spergser, J., and Rosengarten, R. (2014). Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet Microbiol. 168 , 381-387. doi: org/10.1016/j.vetmic.2013.11.022.
  53. Lopez, C., Carmona, J.U., Giraldo, C.E., and Alvarez, M.E. (2014) Bacteriostatic effect of equine pure platelet-rich plasma and other blood products against methicillin-sensitive Staphylococcus aureus. An in vitro study. Vet Comp Orthop Traumatol. 27 , 372-378. doi: org/10.3415/VCOT-14-04-0054.
  54. Malone, M., Bjarnsholt, T., McBain, A.J., James, G.A., Stoodley, P., Leaper, D., Tachi, M., Schultz, G., Swanson, T., and Wolcott, R.D. (2017). The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care.  26 , 20–25. doi: org/10.12968/jowc.2017.26.1.20
  55. McCarty, S.M., Cochrane, C.A., Clegg, P.D., and Percival, S.L. (2012). The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen.20 , 125–136. doi: org/10.1111/j.1524-475X.2012.00763.x
  56. Metcalf, D.G., Bowler, P.G., and Hurlow, J. (2014) A clinical algorithm for wound biofilm identification. J Wound Care.23 , 137-143. doi: 10.12968/jowc.2014.23.3.137.
  57. Michałkiewicz, J., Stachowski, J., Barth, C., Patzer, J., Dzierzanowska, D., and Madaliński, K. (1999). Effect of Pseudomonas aeruginosa exotoxin A on IFN-gamma synthesis: expression of costimulatory molecules on monocytes and activity of NK cells. Immunology letters69 , 359–366. doi: org/10.1016/s0165-2478(99)00121-2
  58. Minematsu, T., Nakagami, G., Yamamoto, Y., Kanazawa, T., Huang, L., Koyanagi, H., Sasaki, S., Uchida, G., Fujita, H., Haga, N., Yoshimura, K., Nagase, T., and Sanada, H. (2013). Wound blotting: a convenient biochemical assessment tool for protein components in exudate of chronic wounds. Wound Repair Regen.21 , 329–334. doi: org/10.1111/wrr.12017
  59. Mohamed, M.F., Abdelkhalek, A., and Seleem, M.N. (2016). Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Scientific reports6 , 29707. doi: org/10.1038/srep29707
  60. Molan, P., and Rhodes, T. (2015). Honey: A Biologic Wound Dressing. Wounds. 27 , 141–151.
  61. Morasso, M.I., and Tomic-Canic, M. (2005). Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biology Cell.  97 , 173–183. doi: org/10.1042/BC20040098
  62. Mori, Y., Nakagami, G., Kitamura, A., Minematsu, T., Kinoshita, M., Suga, H., Kurita, M., Hayashi, C., Kawasaki, A., and Sanada, H. (2019). Effectiveness of biofilm-based wound care system on wound healing in chronic wounds. Wound Repair Regen. 27 , 540–547. doi: org/10.1111/wrr.12738
  63. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., and Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology16 , 2346–2353. doi: org/10.1088/0957-4484/16/10/059
  64. Nablo, B.J., Rothrock, A.R., and Schoenfisch, M.H. (2005) Nitric oxide releasing sol-gels as antibacterial coatings for orthopedic implants.Biomaterials. 26 , 917-924. doi: org/10.1016/j.biomaterials.2004.03.031.
  65. Orsini, J.A., Elce, Y.A., and Kraus, B. (2017) Management of severely infected wounds. In: Theoret C, ed. Equine wound management, 3rd ed. Ames, IA: John Wiley & Sons, Inc., 449-475.
  66. Otero-Viñas, M. and Falanga, V. (2016). Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Advances Wound Care5 , 149–163. doi: org/10.1089/wound.2015.0627
  67. Palumbo, F.P., Harding, K.G., Abbritti, F., Bradbury, S., Cech, J.D., Ivins, N., Klein, D., Menzinger, G., Meuleneire, F., Seratoni, S., Zölß, C., and Mayer, D. (2016). New Surfactant-based Dressing Product to Improve Wound Closure Rates of Nonhealing Wounds: A European Multicenter Study Including 1036 Patients. Wounds . 28 , 233–240.
  68. Parsek, M.R. and Greenberg, E.P. (2005) Sociomicrobiology – the connection between quorum sensing and biofilms. Trends Microbiol. 13 , 27-33. doi: 10.1016/j.tim.2004.11.007.
  69. Pastar, I., Nusbaum, A.G., Gil, J., Patel, S.B., Chen, J., Valdes, J., Stojadinovic, O., Plano, L. R., Tomic-Canic, M., and Davis, S.C. (2013). Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PloS one8 , e56846. doi: org/10.1371/journal.pone.0056846
  70. Percival, S.L., Vuotto, C., Donelli, G., Lipsky, B.A. (2015) Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care (New Rochelle). 4 , 389-397. doi: org.10.1089/wound.2014.0574.
  71. Percival, S. L., McCarty, S. M., & Lipsky, B. (2015). Biofilms and Wounds: An Overview of the Evidence. Advances in wound care4 , 373–381. doi: org/10.1089/wound.2014.0557
  72. Percival, S.L., Mayer, D., Kirsner, R.S., Schultz, G., Weir, D., Roy, S., Alavi, A., and Romanelli, M. (2019). Surfactants: Role in biofilm management and cellular behaviour. International wound journal16 , 753–760. doi: org/10.1111/iwj.13093
  73. Pezzanite, L.M. and Hendrickson, D.A. (2021). Controlling wound bacteria and biofilm. Am Assoc Equine Pract Annual Meeting Proceedings , Nashville, TN. Vol 67, 58-63.
  74. Preda, V.G. and Săndulescu, O. (2019). Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova, Romania) . 7 , e100. doi: org/10.15190/d.2019.13
  75. Rhoads, D.D., Wolcott, R.D., Sun, Y., and Dowd, S. E. (2012). Comparison of culture and molecular identification of bacteria in chronic wounds. International J Mol Sci13 , 2535–2550. doi: org/10.3390/ijms13032535
  76. Richardson, D.W. and Stewart, S. Synovial and osseous infection. In: Auer JA, Stick JA, Kummerle JM, Prange T, ed. Equine Surgery, 5th ed. St. Louis, MO: Elsevier, 2019;1458-1470.
  77. Robson, M.C. and Heggers, J. (1969) Bacterial quantification of open wounds. Mil Medicine. 134 , 19-24.
  78. Roche, E.D., Renick, P.J., Tetens, S.P., and Carson, D.L.(2012) A model for evaluation topical antimicrovial efficacy against methicillin-resistant Staphylococcus aureus biofilms in superficial murine wounds. Antimicrob Agents Chemother.56 , 4508-4510. doi: org/10.1128/AAC.00467-12.
  79. Rodeheaver, G., Pettry, D., Turnbull, V., Edgerton, M.T., and Edlich, R.F. (1974) Identification of the wound infection-promoting factors in soil. Am J Surg. 128 , 8-14. doi: org.10.1016/0002-9610(74)90226-8.
  80. Schaer, T.P., Stewart, S., Hsu, B.B., and Klibanov, A.M. (2012) Hydrophobia polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials. 33 , 1245-1254. doi: org.10.1016/j.biomaterials.2011.10.038.
  81. Schierle, C.F., de la Garza, M., Mustoe, T.A., and Galiano, R.D. (2009) Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen. 17 , 354-359. doi: org/10.1111/j.1524-475X.2009.00489.x.
  82. Schultz, G.S., and Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen.  17 , 153–162. doi: org/10.1111/j.1524-475X.2009.00466.x
  83. Schultz, G., Bjarnsholt, T., James, G.A, Leaper, D.J., McBain, A.J., Malone, M., Stoodley, P., Swanson, T., Tachi, M., and Wolcott, R.D. (2017) Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen Rep Reg. 25 , 744–757. doi: org/10.1111/wrr.12590.
  84. Sen, C.K., Roy, S., Mathew-Steiner, S.S., and Gordillo, G. M. (2021). Biofilm Management in Wound Care. Plastic Reconstructive Surgery148 , 275e–288e. doi: org/10.1097/PRS.0000000000008142
  85. Serra, R., Grande, R., Butrico, L., Rossi, A., Settimio, U.F., Caroleo, B., Amato, B., Gallelli, L., de Franciscis, S. (2015) Chronic wound infections: the role of Pseudomonas aeruginosa andStaphylococcus aureus . Expert Rev Anti Infect Ther.13 , 605-613.
  86. Smith, O.J., Wicaksana, A., Davidson, D., Spratt, D., and Mosahebi, A. (2021). An evaluation of the bacteriostatic effect of platelet-rich plasma. International Wound J. 18 , 448–456. doi: org/10.1111/iwj.13545
  87. Spaas, J.H., Broeckx, S., Van de Walle, G.R., Polettini, M. (2013) The effects of equine peripheral blood stem cells on cutaneous wound healing: a clinical evaluation in four horses. Clin Exp Dermatol. 38 , 280-284. doi: 10.1111/ced.12068.
  88. Stewart, S., Barr, S., Engiles, J., Hickok, N.J., Shapiro, I.M., Richardson, D.W., Parvizi, J., Schaer, T.P. (2012) Vancomycin-modified implant surface inhibits biofilm formation and supports bone healing in an infected osteotomy model in sheep: a proof of concept study.J Bone Joint Surg Am. 94 , 1406-1415. doi: org.10.2106/JBJS.K.00886.
  89. Stewart, S. and Richardson, D. (2017) Surgical site infection and the use of antimicrobials. In: Auer JA, Stick JA, Kummerle JM, Prange T, ed. Equine surgery, 5th ed. St. Louis, MO: Elsevier, 77-108.
  90. Theelen, M.J., Wilson, W.D., Edman, J.M., Magdesian, K.G., and Kass, P.H. (2014). Temporal trends in prevalence of bacteria isolated from foals with sepsis: 1979-2010. Equine Vety J . 46 , 169–173. doi: org.10.1111/evj.12131.
  91. Tiller, J.C., Liao, C.L., Lewis, K., Klibanov, A.M. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA .98 , 5981-5985. doi: org.10.1073/pnnas.111143098.
  92. Thomann, A., Brengel, C., Börger, C., Kail, D., Steinbach, A., Empting, M., and Hartmann, R.W. (2016). Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release of Pseudomonas aeruginosa. ChemMedChem11 , 2522–2533. doi: org/10.1002/cmdc.201600419.
  93. Toczek, J., Sadłocha, M., Major, K., and Stojko, R. (2022). Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. Biomedicines10 , 679. doi: org/10.3390/biomedicines10030679
  94. van den Eede, A., Hermans, K., van den Abeele, A., Floré, K., Dewulf, J., Vanderhaeghen, W., Crombé, F., Butaye, P., Gasthuys, F., Haesebrouck, F., & Martens, A. (2012). Methicillin-resistant Staphylococcus aureus (MRSA) on the skin of long- term hospitalized horses. Vet J. , 193 , 408–411.
  95. Westgate, S.J., Percival, S.L., Knottenbelt, D.C., Clegg, P.D., and Cochrane, C.A. (2011) Microbiology of equine wounds and evidence of bacterial biofilms. Vet Microbiol. 150 , 152-9. doi: org/10.1016/j.vetmic.2011.01.003.
  96. Williams, A.R., and Hare, J.M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation research109 , 923–940. doi: org/10.1161/CIRCRESAHA.111.243147
  97. Wolcott, R.D., Rhoads, D.D., Dowd, S.E. (2008a) Biofilms and chronic wound inflammation. J Wound Care. 17 , 333-341. Doi: 10.12968/jowc.2008.17.8.30796.
  98. Wolcott, R.D. and Rhoads, D.D. (2008b) A study of biofilm-based wound management in subjects with critical limb ischaemia. J Wound Care. 17 , 145–155. doi: 10.12968/jowc.2008.17.4.28835
  99. Wolcott, R.D., Rumbaugh, K.P., James, G., Schultz, G., Phillips, P., Yang, Q., Watters, C., Stewart, P.S., and Dowd, S.E. (2010). Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. J Wound Care . 19 , 320–328. doi: org/10.12968/jowc.2010.19.8.77709
  100. Wu, H., Moser, C., Wang, H.Z., Høiby, N., and Song, Z.J. (2014). Strategies for combating bacterial biofilm infections.International J Oral Science. 7 , 1–7. doi: org/10.1038/ijos.2014.65
  101. Wu, Y.K., Cheng, N.C., and Cheng, C.M. (2019). Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotech.  37 , 505–517. doi: org/10.1016/j.tibtech.2018.10.011
  102. Yamanaka, M., Hara, K., and Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and environmental microbiology . 71 , 7589–7593. doi: org/10.1128/AEM.71.11.7589-7593.2005