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Abstract—Electricity theft poses significant challenges to utility
companies worldwide, resulting in substantial financial losses.
This study addresses the problem by leveraging machine learning
algorithms to detect energy theft in smart grids. The insufficiency
of data on theft conditions and the imbalance of datasets have
always hindered the precise identification of fraudulent activity.
To mitigate these challenges, we curated a dataset from the Open
Energy Data Initiative, which encompasses sixteen consumer
categories and six theft conditions. Our approach focuses on
using the Synthetic Minority Oversampling Technique (SMOTE)
to address class imbalance by generating synthetic samples for
minority classes. We conducted a comparative analysis of various
machine learning based classification algorithms, including K-
Nearest Neighbors (KNN), Decision Tree, Random Forest (RF),
Bagging with RF, and Ensemble Learning, and observed the
results before and after the implementation of SMOTE on the
dataset. We find that SMOTE demonstrates its most significant
impact on classifying the most challenging classes within the
dataset. In particular, it shows improvements of 57.00%, 37.88%,
and 36.88,% for Class 6, Class 1, and Class 3, respectively, with
the KNN algorithm. Other algorithms also indicate significant
increments in terms of accuracy, kappa, F1-score, and AUC
metrics in detecting fraudulent activity. Overall, this research
contributes to advancing energy security by highlighting the
importance of robust theft detection frameworks for safeguarding
energy distribution systems.

Index Terms—Electricity Theft, Machine Learning, Smart
Grids, Ensemble, Algorithm, Class Imbalance

I. INTRODUCTION

The widespread issue of electricity theft, characterized by
unauthorized consumption bypassing payment, imposes sub-
stantial financial burdens on utility companies globally, with
estimated annual losses surpassing $96 billion [1]. The advent
of smart grids and Advanced Metering Infrastructure (AMI)
presents an opportunity to utilize machine learning (ML)
techniques for analyzing smart meter data to detect anomalies
indicative of electricity theft [2].

Deep learning models and optimization techniques have
shown promising results in analyzing power systems [3] and
renewable energy [4]. So involving deep learning in Energy
theft detection can help in detecting anomalies and patterns
that traditional methods might miss. It begins with the pre-
processing and feature engineering of smart meter data to
extract attributes distinguishing standard from abnormal usage
patterns. To mitigate the disparity in data distribution between
legitimate and fraudulent instances, various sampling strategies

are employed. Key contributions of this research include
aggregating a dataset from publicly available smart meter
readings representing diverse consumer categories, employing
tailored data preprocessing, feature engineering, and sampling
techniques for electricity theft detection, and assessing both
machine learning and ensemble algorithms for classifying
electricity theft across multiple categories. Model performance
is comprehensively evaluated using rigorous metrics such as
accuracy and F1-score.

The remainder of the paper is organized as follows: Section
2 provides a literature overview on ML-based electricity
theft detection. Section 3 details the dataset, preprocessing
steps, and methodologies employed. Section 4 analyzes model
performance across various metrics. The paper concludes
in Section 5, presenting conclusions and avenues for future
research.

The rise of smart grids marks a transformative shift in
the energy sector toward greater efficiency and reliability.
However, this digital evolution also brings challenges such
as energy theft, leading to significant economic losses and
grid inefficiencies [5]. Traditional theft detection approaches
often fall short of addressing the complex data patterns and
anomalies inherent in smart grid systems. This study aims to
overcome these challenges by harnessing ML techniques to
enhance the accuracy of theft detection and fortify system
integrity. Notably, our investigation reveals that integrating
the K-Nearest Neighbors algorithm with the Synthetic Mi-
nority Over-sampling Technique (SMOTE) to mitigate class
imbalance demonstrates exceptional proficiency in identifying
abnormal consumption behaviors indicative of energy theft [6].

II. BACKGROUND STUDY

The integration of Machine Learning (ML) techniques in
electricity theft detection within smart grid systems addresses
the limitations of traditional methods while leveraging ad-
vanced data analytics [7] [8] [9]. Smart meters within the
Smart Grid framework enable precise monitoring and man-
agement of energy consumption, enhancing grid efficiency
and resilience [10] [11]. However, the proliferation of smart
metering systems has amplified the challenge of energy theft,
resulting in substantial financial losses and compromising grid
safety and reliability [12][13].



To address these challenges, there is a growing emphasis on
leveraging ML techniques for more effective theft detection.
Traditional methods, such as statistical techniques [14] and
conventional data analysis algorithms, have shown limitations
in adapting to the dynamic and complex nature of smart grid
data, often leading to low accuracy in theft detection [15]. In
contrast, Supervised [16] and Unsupervised ML algorithms,
including extreme learning machines (ELM), and deep learn-
ing approaches like Convolutional Neural Networks (CNN)
[17], Multimodel Transformers [18] and Long Short-Term
Memory (LSTM) networks [19], have demonstrated superior
performance by effectively capturing and analyzing intricate
patterns associated with energy theft [20].

The application of CNNs and RNNs extends beyond tradi-
tional uses, showcasing effectiveness in analyzing time-series
data and pattern recognition within energy systems, high-
lighting their adaptability and potential for energy-efficient
computing [21] [22]. Similarly, Random Forest (RF) algo-
rithms, particularly when combined with Synthetic Minority
Over-sampling Technique (SMOTE), have proven effective in
handling imbalanced datasets, a common challenge in theft
detection, by improving classification performance through the
generation of synthetic samples in the minority class [23] [24].

Despite these advancements, challenges persist, including
the reliance on large, labeled datasets and substantial computa-
tional resources for deep learning models [25], and variability
in the effectiveness of techniques like SMOTE based on
dataset characteristics [26]. Other approaches, such as Stacked
Machine and Deep Learning models, Adaptive Boosting, and
Adaptive Random Forest, offer unique advantages but are
also subject to limitations related to feature extraction, hyper-
parameter optimization, and the choice of optimization algo-
rithms [27].

In conclusion, the transition towards ML-based theft de-
tection in smart grids represents a significant advancement
in addressing energy theft challenges. While each ML tech-
nique has unique strengths and limitations, careful algorithm
selection should consider dataset characteristics and desired
performance metrics. Future research should focus on over-
coming existing barriers, exploring hybrid model fusion, and
enhancing the adaptability and efficacy of ML techniques in
practical scenarios.

III. METHODOLOGY

A. Dataset Description

The dataset utilized in this study was obtained from the
Open Energy Data Initiative (OEDI) platform, a renowned
repository of energy research datasets sourced from various
programs, offices, and national laboratories under the U.S.
Department of Energy [28]. This dataset encompasses
comprehensive energy consumption data across diverse
consumer types, collected over a year at hourly intervals.

1) Origin and Composition: The dataset, originally sourced
from OEDI, has been refined to facilitate machine learning-
based detection of fraudulent activities within smart grids[29].

TABLE I
GENERAL STATISTICS OF THE DATASET

Item Numbers
Total number of instances 560,640
Number of columns 12
Number of features 11
Number of numerical features 10
Number of categorical features 1
Label encoding technique IE*
Number of consumer types 16
Number of instances per consumer type 35,040

TABLE II
LIST OF CONSUMER TYPES

SN* Customer Type SN* Customer Type
1 FullServiceRestaurant 9 Warehouse
2 Hospital 10 SecondarySchool
3 LargeHotel 11 SmallHotel
4 LargeOffice 12 SmallOffice
5 MediumOffice 13 Stand-aloneRetail
6 MidriseApartment 14 StripMall
7 PrimarySchool 15 SuperMarket
8 OutPatient 16 QuickServiceRestaurant

TABLE III
STATISTICAL NUMBERS FOR EACH CLASS

CN* Class name Number of instances
1 Normal 331,824
2 Theft1 51,083
3 Theft2 22,958
4 Theft3 44,349
5 Theft4 41,460
6 Theft5 33,553
7 Theft6 35,413
*IE stands for Integer Encoding Technique.

*CN stands for the class number.
*SN stands for the sequence number.

TABLE IV
FEATURES INFORMATION

Feature Name Type
Electricity:Facility [kW](Hourly) Float
Fans:Electricity [kW](Hourly) Float
Cooling:Electricity [kW](Hourly) Float
Heating:Electricity [kW](Hourly) Float
InteriorLights:Electricity [kW](Hourly) Float
InteriorEquipment:Electricity [kW](Hourly) Float
Gas:Facility [kW](Hourly) Float
Heating:Gas [kW](Hourly) Float
InteriorEquipment:Gas [kW](Hourly) Float
WaterHeater:WaterSystems:Gas [kW](Hourly) Float
ConsumerType String

It includes six distinct fraud scenarios mirroring different
methods of electricity theft and covers sixteen consumer cate-
gories, representing various establishments such as restaurants,
warehouses, hospitals, and schools.

2) Feature Representation: The dataset is feature-rich,
capturing nuanced aspects of energy consumption patterns
through numerical and categorical attributes. Features include
electricity consumption metrics across facility components like
cooling, heating, lighting, and equipment.The dataset contains
a total of 560,640 instances distributed across 12 columns.



Fig. 1. Histogram of normal condition and different types of theft count. As
can be seen from the figure, compared to the number of normal instances, the
number of different types of theft instances is significantly low

Fig. 2. Histogram different types of theft count after applying SMOTE.The
class imbalance issue is fixed by creating synthetic data using SMOTE. All
the numbers for the classes are now same.

Among these columns, 11 represent distinct features, with 10
being numerical and one categorical. The dataset displays 16
distinct consumer types, such as restaurants, hospitals, hotels,
offices, schools, retail outlets etc., with an equal distribution of
instances per consumer type, with each type containing 35,040
instances.

3) Fraud Detection Context: Fraud-related scenarios, la-
beled as theft1 through theft6, are integrated into the dataset
to facilitate advanced anomaly detection and fraud mitigation
strategies within smart grid environments. In summary, Re-
searchers can leverage this dataset to uncover insights and
develop robust frameworks for combating fraudulent activities
within energy distribution networks.

B. SMOTE

SMOTE (Synthetic Minority Over-sampling Technique) is
an advanced over-sampling approach used to address class
imbalance in machine learning datasets. This imbalance typi-
cally occurs when one class (the majority class) significantly
outweighs another (the minority class), leading to models that
are biased towards the majority class. SMOTE addresses this

issue by creating synthetic examples of the minority class,
rather than simply duplicating existing instances[29].

1) Why Use SMOTE: SMOTE is essential in machine learn-
ing when the dataset is imbalanced. Traditional algorithms
may not learn effectively from the minority class due to its
underrepresentation, which can result in models that fail to
identify this class accurately. By enhancing the representation
of the minority class, SMOTE improves the model’s training
phase and its ability to classify instances of the minority class
correctly[30].

2) Steps of the SMOTE Algorithm: [31]
• Select a Minority Class Instance: Start by choosing a

sample from the minority class.
• Identify Nearest Neighbors: Find its k-nearest neighbors

in the feature space.
• Random Neighbor Selection: Randomly pick one of these

neighbors.
• Synthetic Instance Generation: Create a new synthetic

instance along the line segment connecting the selected
minority class instance with its chosen neighbor.

This process not only balances the class distribution within
the dataset but also enhances the generalization capabilities
of the model. By interpolating among existing minority class
instances, SMOTE fosters a more diverse dataset, thereby
reducing the risk of overfitting to the minority class[29].

3) Mathematical Representation of SMOTE: The creation
of a synthetic sample involves linear interpolation between a
minority class sample xi and one of its k-nearest neighbors
xzi. The synthetic sample xnew is calculated using the equa-
tion:
xnew = xi + λ · (xzi − xi)
where λ is a random number between 0 and 1. This

formula demonstrates how new instances are generated by
combining features of existing data points, preserving the
feature space’s underlying relationships and enhancing the
informational continuity of the dataset[30].

4) Benefits of SMOTE:
• Addressing Class Imbalance In imbalanced datasets,

where one class (majority class) significantly outweighs
the other (minority class), biased models favoring the
majority class may result. SMOTE resolves this issue
by generating synthetic samples for the minority class,
balancing the distribution, and enhancing model perfor-
mance [29].

• Improved Generalization By creating synthetic samples
via interpolation among existing minority class instances,
SMOTE increases dataset diversity, fostering better model
generalization and reducing the risk of overfitting to the
minority class [29].

• Preservation of Information SMOTE generates synthetic
samples based on feature space, focusing on feature
relationships to preserve underlying dataset information
while balancing class distribution [29].

• Enhanced Performance Studies demonstrate that SMOTE
significantly boosts classifier performance on imbalanced



TABLE V
CLASSWISE PERFORMANCE OF DIFFERENT ALGORITHMS FOR KNOWN CONSUMERS (BEFORE AND AFTER APPLYING SMOTE)

KNN DT RF Bagging Ensemble Learning
Before After Change Before After Change Before After Change Before After Change Before After Change

Class 0 93.12 100 6.88 97.03 95.08 -1.95 94.23 94.03 -0.2 93.87 94.11 0.24 93.78 95.69 1.91
Class 1 60.23 98.11 37.88 74.21 92.19 17.98 75.16 95.80 20.64 72.10 94.86 22.76 74.76 97.84 23.08
Class 2 100.00 100.0 0 100 100 0 100 100 0.00 100 100 0 100 100 0
Class 3 61.24 98.12 36.88 69.09 91.05 21.96 78.01 92.02 14.01 75.89 90.58 14.69 74.93 95.76 20.83
Class 4 74.35 98.65 24.3 88.13 96.11 7.98 87.31 96.97 9.66 84.78 94.68 9.90 86.82 98.65 11.83
Class 5 88.43 98.75 10.32 96.80 100.00 3.2 97.11 100.00 2.89 95.21 100.00 4.79 96.45 99.68 3.23
Class 6 38.23 95.23 57.00 55.24 88.89 33.65 28.19 91.79 63.6 40.16 92.67 52.51 46.23 94.86 48.63

TABLE VI
OVERALL IMPROVEMENTS ACCURACY, F1 SCORE, KAPPA AND, AUC FOR KNOWN CONSUMER

Accuracy F1 Score Kappa AUC
Before After Change Before After Change Before After Change Before After Change

KNN 84.85 97.68 12.83 82.78 97.68 14.9 74.57 97.79 23.22 90.87 98.79 7.92
DT 89.40 94.69 5.29 89.41 94.68 5.27 82.96 93.80 10.84 90.59 96.90 6.31
RF 87.90 95.75 7.85 87.05 95.72 8.67 80.23 95.04 14.81 96.72 99.73 3.01

Bagging 88.67 94.78 6.11 86.78 94.78 8.00 81.69 94.88 13.19 95.45 99.85 3.4
Ensemble 89.21 97.7 8.49 88.14 97.70 9.56 82.23 97.32 15.09 97.30 99.94 2.64

datasets, making it invaluable for handling such chal-
lenges [29].

• Versatility SMOTE’s success spans various domains and
has inspired the development of new approaches for
tackling class imbalance. Its simplicity, robustness, and
effectiveness have made it a popular choice among
researchers and practitioners working with imbalanced
datasets[29].

In summary, SMOTE is favored for addressing class imbal-
ance, improving generalization, enhancing performance, and
offering versatility in handling data challenges.

IV. EXPERIMENTS AND RESULTS

In the experimental phase of our study, we utilized vari-
ous classification algorithms implemented through the Python
sklearn package to explore the effectiveness of the Synthetic
Minority Oversampling Technique (SMOTE) in improving the
detection of electricity theft. The focus was particularly on K-
Nearest Neighbors (KNN), Decision Tree (DT), Random For-
est (RF), Bagging, and Ensemble Learning methods. TABLE
V compares the classification accuracy using these algorithms.
This comparison was evaluated under the challenging condi-
tions posed by an imbalanced dataset characterizing different
classes of electricity theft.

Initially, our models struggled to accurately classify particu-
larly problematic classes—namely Class 1, Class 3, and most
notably, Class 6, which proved to be the most challenging
scenario. Class 0, representing normal conditions, was consis-
tently identified with high accuracy, demonstrating the initial
competence of our models in recognizing standard patterns of
electricity usage.

Upon the application of SMOTE, a dramatic transformation
was observed. The accuracy improvements for Class 6 were
particularly striking, illustrating the power of SMOTE in
leveling the playing field for minority classes. KNN showed
the most significant enhancement, with accuracy jumping by

57.00%, while RF also showed a remarkable increase of
63.00%. Similarly, Decision Tree, Bagging, and Ensemble
Learning methods exhibited substantial improvements with
increases of 33.65%, 52.51%, and 48.63% respectively.

To provide a comprehensive view of the impact of SMOTE
across all models, we compiled the changes in performance
metrics such as accuracy, F1 score, kappa, and AUC into
TABLE VI. The results were telling: post-SMOTE, all models
not only surpassed the 90% accuracy threshold but also
showed notable improvements in F1 scores, which ranged from
increases of 5.27% to 14.9%. The Kappa score, a metric that
quantifies the agreement between predicted and actual class
labels, along with the AUC, which assesses the ability of a
classifier to discriminate between classes, both confirmed the
enhanced capability of our models to accurately identify and
classify instances of electricity theft.

KNN, in particular, stood out not only for its improved
accuracy but also for its efficiency, taking the least amount
of time to run among the tested algorithms. This combination
of high performance and efficiency underscores the suitability
of KNN, augmented by SMOTE, for real-world applications
where rapid and reliable theft detection is crucial.

These experimental results vividly demonstrate how
SMOTE can dramatically boost the performance of machine
learning models dealing with imbalanced data, thereby signif-
icantly enhancing their practical utility in detecting complex
patterns such as those presented by electricity theft in smart
grids. This narrative of transformation, from initial struggles
to remarkable achievements in classification accuracy, paints
a compelling story of the potential of SMOTE in advancing
the field of anomaly detection within machine learning.

V. CONCLUSION & FUTURE WORK

This study underscores the impactful role of machine learn-
ing, particularly when combined with the Synthetic Minority



Oversampling Technique (SMOTE), in enhancing the detec-
tion of electricity theft within smart grids. Through strategic
SMOTE utilization, our study effectively balanced imbalanced
datasets, thereby bolstering model accuracy in identifying
instances of theft. This method, alongside rigorous data pre-
processing and judicious algorithm selection, forms a robust
defense mechanism for utility companies, shielding both them
and their consumers from fraudulent activities.

Looking ahead, the machine learning landscape in electricity
theft detection faces challenges. These include the reliance on
extensive, well-labeled datasets and significant computational
resources, hindering widespread adoption. Additionally, the
efficacy of SMOTE and similar techniques can vary based on
data characteristics and specific scenarios.

To surmount these challenges, future research should focus
on developing hybrid models. These models would integrate
diverse machine learning approaches, leveraging their respec-
tive strengths to create adaptable and efficient systems tailored
to smart grid environments. Such advancements are essential
for ensuring the intelligence and resilience of smart grid
systems against evolving threats of electricity theft. Embrac-
ing more sophisticated, hybrid machine learning frameworks
promises to fortify energy infrastructure in the digital age.
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