Reference
1. Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol. 2018;102:4269-4278. doi: 10.1007/s00253-018-8916-6 2. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K, Tokuda M. A novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. J Biosci Bioeng. 2003;96:89-91. doi: 10.1016/s1389-1723(03)90104-6 3. Mitani T, Hoshikawa H, Mori T, Hosokawa T, Tsukamoto I, Yamaguchi F, Kamitori K, Tokuda M, Mori N. Growth inhibition of head and neck carcinomas by D-allose. Head Neck. 2009;31:1049-1055. doi: 10.1002/hed.21070 4. Ueki M, Taie S, Chujo K, Asaga T, Iwanaga Y, Maekawa N. Inhibitory effect of d-allose on neutrophil activation after rat renal ischemia/reperfusion. J Biosci Bioeng. 2007;104:304-308. doi: 10.1263/jbb.104.304 5. Hossain MA, Wakabayashi H, Izuishi K, Okano K, Yachida S, Tokuda M, Izumori K, Maeta H. Improved microcirculatory effect of D-allose on hepatic ischemia reperfusion following partial hepatectomy in cirrhotic rat liver. J Biosci Bioeng. 2006;101:369-371. doi: 10.1263/jbb.101.369 6. Hirooka K, Miyamoto O, Jinming P, Du Y, Itano T, Baba T, Tokuda M, Shiraga F. Neuroprotective effects of D-allose against retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2006;47:1653-1657. doi: 10.1167/iovs.05-1018 7. Gao D, Kawai N, Nakamura T, Lu F, Fei Z, Tamiya T. Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats.Neurol Med Chir (Tokyo). 2013;53:365-374. doi: 10.2176/nmc.53.365 8. Hankey GJ. Stroke. Lancet. 2017;389:641-654. doi: 10.1016/S0140-6736(16)30962-X 9. Wang YJ, Li ZX, Gu HQ, Zhai Y, Zhou Q, Jiang Y, Zhao XQ, Wang YL, Yang X, Wang CJ, et al. China Stroke Statistics: an update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke Vasc Neurol. 2022;7:415-450. doi: 10.1136/svn-2021-001374 10. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interv Neurol. 2013;1:185-199. doi: 10.1159/000353125 11. DeLong JH, Ohashi SN, O’Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol. 2022;44:625-648. doi: 10.1007/s00281-022-00943-7 12. Zhang G, Li Q, Tao W, Qin P, Chen J, Yang H, Chen J, Liu H, Dai Q, Zhen X. Sigma-1 receptor-regulated efferocytosis by infiltrating circulating macrophages/microglial cells protects against neuronal impairments and promotes functional recovery in cerebral ischemic stroke. Theranostics. 2023;13:543-559. doi: 10.7150/thno.77088 13. Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation. 2021;18:123. doi: 10.1186/s12974-021-02137-8 14. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19092834 15. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ. Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway.J Immunol. 2010;185:7037-7046. doi: 10.4049/jimmunol.1000154 16. Nishikawa H, Suzuki H. Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sci. 2018;8. doi: 10.3390/brainsci8020030 17. Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19020379 18. Ekingen E, Yilmaz M, Yildiz M, Atescelik M, Goktekin MC, Gurger M, Alatas OD, Basturk M, Ilhan N. Utilization of glial fibrillary acidic protein and galectin-3 in the diagnosis of cerebral infarction patients with normal cranial tomography. Niger J Clin Pract. 2017;20:433-437. doi: 10.4103/1119-3077.187311 19. Shin T. The pleiotropic effects of galectin-3 in neuroinflammation: a review. Acta Histochem. 2013;115:407-411. doi: 10.1016/j.acthis.2012.11.010 20. Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells. 2021;10. doi: 10.3390/cells10113047 21. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, Fukada SY, Liu FT, Liew FY, Lukic ML. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol. 2009;182:1167-1173. doi: 10.4049/jimmunol.182.2.1167 22. Mietto BS, Jurgensen S, Alves L, Pecli C, Narciso MS, Assuncao-Miranda I, Villa-Verde DM, de Souza Lima FR, de Menezes JR, Benjamim CF, et al. Lack of galectin-3 speeds Wallerian degeneration by altering TLR and pro-inflammatory cytokine expressions in injured sciatic nerve. Eur J Neurosci. 2013;37:1682-1690. doi: 10.1111/ejn.12161 23. Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res. 2013;1496:1-9. doi: 10.1016/j.brainres.2012.12.008 24. Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation.J Cereb Blood Flow Metab. 2021;41:857-873. doi: 10.1177/0271678X20931137 25. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003;63:8302-8311. 26. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. Journal of Neuroinflammation. 2019;16. doi: 10.1186/s12974-019-1516-2 27. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24-32. doi: 10.1016/j.smim.2006.12.004 28. Dong X, Wang L, Song G, Cai X, Wang W, Chen J, Wang G. Physcion Protects Rats Against Cerebral Ischemia-Reperfusion Injury via Inhibition of TLR4/NF-kB Signaling Pathway. Drug Des Devel Ther. 2021;15:277-287. doi: 10.2147/DDDT.S267856 29. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, Shao M, Xu H, Ma X, Lyu F. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis. 2020;11:693. doi: 10.1038/s41419-020-02824-z 30. Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ. Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Hispolon in Mice, Through Regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 Pathways, and Suppressing Oxidative Stress-Mediated ER Stress-Induced Apoptosis and Autophagy. Nutrients. 2020;12. doi: 10.3390/nu12061742 31. Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao Y, Zhang H, et al. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-kappaB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis. 2017;8:e3090. doi: 10.1038/cddis.2017.490 32. Zhang L, Wei Q, Liu X, Zhang T, Wang S, Zhou L, Zou L, Fan F, Chi H, Sun J, et al. Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway.Int Immunopharmacol. 2021;101:107592. doi: 10.1016/j.intimp.2021.107592 33. Liu Y, Zhao C, Meng J, Li N, Xu Z, Liu X, Hou S. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune uveitis. Clin Immunol. 2022;236:108939. doi: 10.1016/j.clim.2022.108939 34. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84-91. doi: 10.1161/01.str.20.1.84 35. Huang T, Gao D, Hei Y, Zhang X, Chen X, Fei Z. D-allose protects the blood brain barrier through PPARgamma-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury. Brain Res. 2016;1642:478-486. doi: 10.1016/j.brainres.2016.04.038 36. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189:49-57. doi: 10.1016/s0022-510x(01)00557-3 37. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682-2688. doi: 10.1161/hs1101.098367 38. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17:1304-1308. doi: 10.1161/01.str.17.6.1304 39. Hatashita S, Hoff JT, Salamat SM. Ischemic brain edema and the osmotic gradient between blood and brain. J Cereb Blood Flow Metab. 1988;8:552-559. doi: 10.1038/jcbfm.1988.96 40. Loo DT. In situ detection of apoptosis by the TUNEL assay: an overview of techniques. Methods Mol Biol. 2011;682:3-13. doi: 10.1007/978-1-60327-409-8_1 41. Kim H, Yoon SC, Lee TY, Jeong D. Discriminative cytotoxicity assessment based on various cellular damages. Toxicol Lett. 2009;184:13-17. doi: 10.1016/j.toxlet.2008.10.006 42. Anne Waller H, Kay Savage A. mRNA detection by in situ rt-PCR.Methods Mol Med. 2001;39:417-429. doi: 10.1385/1-59259-071-3:417 43. Lin JS, Lai EM. Protein-Protein Interactions: Co-Immunoprecipitation. Methods Mol Biol. 2017;1615:211-219. doi: 10.1007/978-1-4939-7033-9_17 44. Keiser MS, Chen YH, Davidson BL. Techniques for Intracranial Stereotaxic Injections of Adeno-Associated Viral Vectors in Adult Mice.Curr Protoc Mouse Biol. 2018;8:e57. doi: 10.1002/cpmo.57 45. Shi K, Tian D-C, Li Z-G, Ducruet AF, Lawton MT, Shi F-D. Global brain inflammation in stroke. The Lancet Neurology. 2019;18:1058-1066. doi: 10.1016/s1474-4422(19)30078-x 46. Savitz SI, Baron JC, Yenari MA, Sanossian N, Fisher M. Reconsidering Neuroprotection in the Reperfusion Era. Stroke. 2017;48:3413-3419. doi: 10.1161/STROKEAHA.117.017283 47. Wu PF, Zhang Z, Wang F, Chen JG. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin. 2010;31:1523-1531. doi: 10.1038/aps.2010.186 48. Lim YR, Oh DK. Microbial metabolism and biotechnological production of D-allose. Appl Microbiol Biotechnol. 2011;91:229-235. doi: 10.1007/s00253-011-3370-8 49. Hoshikawa H, Kamitori K, Indo K, Mori T, Kamata M, Takahashi T, Tokuda M. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer.Oncol Lett. 2018;15:3422-3428. doi: 10.3892/ol.2018.7787 50. Noguchi C, Kamitori K, Hossain A, Hoshikawa H, Katagi A, Dong Y, Sui L, Tokuda M, Yamaguchi F. D-Allose Inhibits Cancer Cell Growth by Reducing GLUT1 Expression. Tohoku J Exp Med. 2016;238:131-141. doi: 10.1620/tjem.238.131 51. Ju J, Hou R, Zhang P. D-allose alleviates ischemia/reperfusion (I/R) injury in skin flap via MKP-1. Mol Med. 2020;26:21. doi: 10.1186/s10020-020-0138-6 52. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K, Tokuda M. A novel inhibitory effect of d-allose on production of reactive oxygen species from neutrophils. Journal of Bioscience and Bioengineering. 2003;96:89-91. doi: 10.1016/s1389-1723(03)90104-6 53. Ishihara Y, Katayama K, Sakabe M, Kitamura M, Aizawa M, Takara M, Itoh K. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells.J Biosci Bioeng. 2011;112:638-642. doi: 10.1016/j.jbiosc.2011.08.005 54. Zhang M, Fu YH, Luo YW, Gou MR, Zhang L, Fei Z, Gao DK. d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress. Neurosci Lett. 2023;793:137000. doi: 10.1016/j.neulet.2022.137000 55. Khajeh S, Ganjavi M, Panahi G, Zare M, Zare M, Tahami SM, Razban V. D-allose: molecular pathways and therapeutic capacity in cancer.Curr Mol Pharmacol. 2022. doi: 10.2174/1874467216666221227105011 56. Kanaji N, Kamitori K, Hossain A, Noguchi C, Katagi A, Kadowaki N, Tokuda M. Additive antitumour effect of D‑allose in combination with cisplatin in non-small cell lung cancer cells. Oncol Rep. 2018;39:1292-1298. doi: 10.3892/or.2018.6192 57. Hossain MA, Izuishi K, Maeta H. Protective effects of D-allose against ischemia reperfusion injury of the rat liver. J Hepatobiliary Pancreat Surg. 2003;10:218-225. doi: 10.1007/s00534-002-0785-8 58. Mizote M, Hirooka K, Fukuda K, Nakamura T, Itano T, Shiraga F. D-allose as ischemic retina injury inhibitor during rabbit vitrectomy.Jpn J Ophthalmol. 2011;55:294-300. doi: 10.1007/s10384-011-0012-8 59. Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F. Galectins and gliomas. Brain Pathol. 2010;20:17-27. doi: 10.1111/j.1750-3639.2009.00270.x 60. Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Savman K. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis. 2010;38:36-46. doi: 10.1016/j.nbd.2009.12.024 61. Lin CI, Whang EE, Donner DB, Jiang X, Price BD, Carothers AM, Delaine T, Leffler H, Nilsson UJ, Nose V, et al. Galectin-3 targeted therapy with a small molecule inhibitor activates apoptosis and enhances both chemosensitivity and radiosensitivity in papillary thyroid cancer.Mol Cancer Res. 2009;7:1655-1662. doi: 10.1158/1541-7786.MCR-09-0274 62. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock. 2009;32:4-16. doi: 10.1097/SHK.0b013e318193e333 63. Xu GR, Zhang C, Yang HX, Sun JH, Zhang Y, Yao TT, Li Y, Ruan L, An R, Li AY. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-kappaB signaling pathway. Biomed Pharmacother. 2020;126:110071. doi: 10.1016/j.biopha.2020.110071 64. Feng C, Wan H, Zhang Y, Yu L, Shao C, He Y, Wan H, Jin W. Neuroprotective Effect of Danhong Injection on Cerebral Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt Pathway. Front Pharmacol. 2020;11:298. doi: 10.3389/fphar.2020.00298 65. Li D, Guo YY, Cen XF, Qiu HL, Chen S, Zeng XF, Zeng Q, Xu M, Tang QZ. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-kappaB pathways. Acta Pharmacol Sin. 2022;43:1989-2002. doi: 10.1038/s41401-021-00820-3
Table 1: Primer sequences of GAPDH and Lgals 3 genes.