1. Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on
the physiological functions, applications, and biotechnological
production of D-allose. Appl Microbiol Biotechnol.
2018;102:4269-4278. doi: 10.1007/s00253-018-8916-6
2. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K,
Tokuda M. A novel inhibitory effect of D-allose on production of
reactive oxygen species from neutrophils. J Biosci Bioeng.
2003;96:89-91. doi: 10.1016/s1389-1723(03)90104-6
3. Mitani T, Hoshikawa H, Mori T, Hosokawa T, Tsukamoto I, Yamaguchi F,
Kamitori K, Tokuda M, Mori N. Growth inhibition of head and neck
carcinomas by D-allose. Head Neck. 2009;31:1049-1055. doi:
10.1002/hed.21070
4. Ueki M, Taie S, Chujo K, Asaga T, Iwanaga Y, Maekawa N. Inhibitory
effect of d-allose on neutrophil activation after rat renal
ischemia/reperfusion. J Biosci Bioeng. 2007;104:304-308. doi:
10.1263/jbb.104.304
5. Hossain MA, Wakabayashi H, Izuishi K, Okano K, Yachida S, Tokuda M,
Izumori K, Maeta H. Improved microcirculatory effect of D-allose on
hepatic ischemia reperfusion following partial hepatectomy in cirrhotic
rat liver. J Biosci Bioeng. 2006;101:369-371. doi:
10.1263/jbb.101.369
6. Hirooka K, Miyamoto O, Jinming P, Du Y, Itano T, Baba T, Tokuda M,
Shiraga F. Neuroprotective effects of D-allose against retinal
ischemia-reperfusion injury. Invest Ophthalmol Vis Sci.
2006;47:1653-1657. doi: 10.1167/iovs.05-1018
7. Gao D, Kawai N, Nakamura T, Lu F, Fei Z, Tamiya T. Anti-inflammatory
effect of D-allose in cerebral ischemia/reperfusion injury in rats.Neurol Med Chir (Tokyo). 2013;53:365-374. doi: 10.2176/nmc.53.365
8. Hankey GJ. Stroke. Lancet. 2017;389:641-654. doi:
10.1016/S0140-6736(16)30962-X
9. Wang YJ, Li ZX, Gu HQ, Zhai Y, Zhou Q, Jiang Y, Zhao XQ, Wang YL,
Yang X, Wang CJ, et al. China Stroke Statistics: an update on the 2019
report from the National Center for Healthcare Quality Management in
Neurological Diseases, China National Clinical Research Center for
Neurological Diseases, the Chinese Stroke Association, National Center
for Chronic and Non-communicable Disease Control and Prevention, Chinese
Center for Disease Control and Prevention and Institute for Global
Neuroscience and Stroke Collaborations. Stroke Vasc Neurol.
2022;7:415-450. doi: 10.1136/svn-2021-001374
10. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in
stroke. Interv Neurol. 2013;1:185-199. doi: 10.1159/000353125
11. DeLong JH, Ohashi SN, O’Connor KC, Sansing LH. Inflammatory
Responses After Ischemic Stroke. Semin Immunopathol.
2022;44:625-648. doi: 10.1007/s00281-022-00943-7
12. Zhang G, Li Q, Tao W, Qin P, Chen J, Yang H, Chen J, Liu H, Dai Q,
Zhen X. Sigma-1 receptor-regulated efferocytosis by infiltrating
circulating macrophages/microglial cells protects against neuronal
impairments and promotes functional recovery in cerebral ischemic
stroke. Theranostics. 2023;13:543-559. doi: 10.7150/thno.77088
13. Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators
involved in and therapies targeting the inflammatory response induced by
activation of the NLRP3 inflammasome in ischemic stroke. J
Neuroinflammation. 2021;18:123. doi: 10.1186/s12974-021-02137-8
14. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying
Neuron in Stroke. Int J Mol Sci. 2018;19. doi:
10.3390/ijms19092834
15. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ. Galectin-3
exerts cytokine-like regulatory actions through the JAK-STAT pathway.J Immunol. 2010;185:7037-7046. doi: 10.4049/jimmunol.1000154
16. Nishikawa H, Suzuki H. Possible Role of Inflammation and Galectin-3
in Brain Injury after Subarachnoid Hemorrhage. Brain Sci. 2018;8.
doi: 10.3390/brainsci8020030
17. Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De
Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule
for an Alphabet of Diseases, from A to Z. Int J Mol Sci. 2018;19.
doi: 10.3390/ijms19020379
18. Ekingen E, Yilmaz M, Yildiz M, Atescelik M, Goktekin MC, Gurger M,
Alatas OD, Basturk M, Ilhan N. Utilization of glial fibrillary acidic
protein and galectin-3 in the diagnosis of cerebral infarction patients
with normal cranial tomography. Niger J Clin Pract.
2017;20:433-437. doi: 10.4103/1119-3077.187311
19. Shin T. The pleiotropic effects of galectin-3 in neuroinflammation:
a review. Acta Histochem. 2013;115:407-411. doi:
10.1016/j.acthis.2012.11.010
20. Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M,
O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis,
Inflammation and Neurological Diseases. Cells. 2021;10. doi:
10.3390/cells10113047
21. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS,
Fukada SY, Liu FT, Liew FY, Lukic ML. Galectin-3 deficiency reduces the
severity of experimental autoimmune encephalomyelitis. J Immunol.
2009;182:1167-1173. doi: 10.4049/jimmunol.182.2.1167
22. Mietto BS, Jurgensen S, Alves L, Pecli C, Narciso MS,
Assuncao-Miranda I, Villa-Verde DM, de Souza Lima FR, de Menezes JR,
Benjamim CF, et al. Lack of galectin-3 speeds Wallerian degeneration by
altering TLR and pro-inflammatory cytokine expressions in injured
sciatic nerve. Eur J Neurosci. 2013;37:1682-1690. doi:
10.1111/ejn.12161
23. Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ. Galectin-3 enhances
angiogenic and migratory potential of microglial cells via modulation of
integrin linked kinase signaling. Brain Res. 2013;1496:1-9. doi:
10.1016/j.brainres.2012.12.008
24. Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF,
Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting
neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation.J Cereb Blood Flow Metab. 2021;41:857-873. doi:
10.1177/0271678X20931137
25. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa
S, Raz A. CD29 and CD7 mediate galectin-3-induced type II T-cell
apoptosis. Cancer Res. 2003;63:8302-8311.
26. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA.
Neuroinflammation: friend and foe for ischemic stroke. Journal of
Neuroinflammation. 2019;16. doi: 10.1186/s12974-019-1516-2
27. Kawai T, Akira S. TLR signaling. Semin Immunol.
2007;19:24-32. doi: 10.1016/j.smim.2006.12.004
28. Dong X, Wang L, Song G, Cai X, Wang W, Chen J, Wang G. Physcion
Protects Rats Against Cerebral Ischemia-Reperfusion Injury via
Inhibition of TLR4/NF-kB Signaling Pathway. Drug Des Devel Ther.
2021;15:277-287. doi: 10.2147/DDDT.S267856
29. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, Shao M, Xu H, Ma X,
Lyu F. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by
activating PI3K/AKT pathway after spinal cord injury. Cell Death
Dis. 2020;11:693. doi: 10.1038/s41419-020-02824-z
30. Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ. Attenuation of
Lipopolysaccharide-Induced Acute Lung Injury by Hispolon in Mice,
Through Regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 Pathways,
and Suppressing Oxidative Stress-Mediated ER Stress-Induced Apoptosis
and Autophagy. Nutrients. 2020;12. doi: 10.3390/nu12061742
31. Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao
Y, Zhang H, et al. Neuron and microglia/macrophage-derived FGF10
activate neuronal FGFR2/PI3K/Akt signaling and inhibit
microglia/macrophages TLR4/NF-kappaB-dependent neuroinflammation to
improve functional recovery after spinal cord injury. Cell Death
Dis. 2017;8:e3090. doi: 10.1038/cddis.2017.490
32. Zhang L, Wei Q, Liu X, Zhang T, Wang S, Zhou L, Zou L, Fan F, Chi H,
Sun J, et al. Exosomal microRNA-98-5p from hypoxic bone marrow
mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury
by reducing TLR4 and activating the PI3K/Akt signaling pathway.Int Immunopharmacol. 2021;101:107592. doi:
10.1016/j.intimp.2021.107592
33. Liu Y, Zhao C, Meng J, Li N, Xu Z, Liu X, Hou S. Galectin-3
regulates microglial activation and promotes inflammation through
TLR4/MyD88/NF-kB in experimental autoimmune uveitis. Clin
Immunol. 2022;236:108939. doi: 10.1016/j.clim.2022.108939
34. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle
cerebral artery occlusion without craniectomy in rats. Stroke.
1989;20:84-91. doi: 10.1161/01.str.20.1.84
35. Huang T, Gao D, Hei Y, Zhang X, Chen X, Fei Z. D-allose protects the
blood brain barrier through PPARgamma-mediated anti-inflammatory pathway
in the mice model of ischemia reperfusion injury. Brain Res.
2016;1642:478-486. doi: 10.1016/j.brainres.2016.04.038
36. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of
intracerebral transplantation of bone marrow stromal cells after
cerebral ischemia in rats. J Neurol Sci. 2001;189:49-57. doi:
10.1016/s0022-510x(01)00557-3
37. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J,
Chopp M. Intravenous administration of human umbilical cord blood
reduces behavioral deficits after stroke in rats. Stroke.
2001;32:2682-2688. doi: 10.1161/hs1101.098367
38. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL,
Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a
stain for detection and quantification of experimental cerebral
infarction in rats. Stroke. 1986;17:1304-1308. doi:
10.1161/01.str.17.6.1304
39. Hatashita S, Hoff JT, Salamat SM. Ischemic brain edema and the
osmotic gradient between blood and brain. J Cereb Blood Flow
Metab. 1988;8:552-559. doi: 10.1038/jcbfm.1988.96
40. Loo DT. In situ detection of apoptosis by the TUNEL assay: an
overview of techniques. Methods Mol Biol. 2011;682:3-13. doi:
10.1007/978-1-60327-409-8_1
41. Kim H, Yoon SC, Lee TY, Jeong D. Discriminative cytotoxicity
assessment based on various cellular damages. Toxicol Lett.
2009;184:13-17. doi: 10.1016/j.toxlet.2008.10.006
42. Anne Waller H, Kay Savage A. mRNA detection by in situ rt-PCR.Methods Mol Med. 2001;39:417-429. doi: 10.1385/1-59259-071-3:417
43. Lin JS, Lai EM. Protein-Protein Interactions:
Co-Immunoprecipitation. Methods Mol Biol. 2017;1615:211-219. doi:
10.1007/978-1-4939-7033-9_17
44. Keiser MS, Chen YH, Davidson BL. Techniques for Intracranial
Stereotaxic Injections of Adeno-Associated Viral Vectors in Adult Mice.Curr Protoc Mouse Biol. 2018;8:e57. doi: 10.1002/cpmo.57
45. Shi K, Tian D-C, Li Z-G, Ducruet AF, Lawton MT, Shi F-D. Global
brain inflammation in stroke. The Lancet Neurology.
2019;18:1058-1066. doi: 10.1016/s1474-4422(19)30078-x
46. Savitz SI, Baron JC, Yenari MA, Sanossian N, Fisher M. Reconsidering
Neuroprotection in the Reperfusion Era. Stroke.
2017;48:3413-3419. doi: 10.1161/STROKEAHA.117.017283
47. Wu PF, Zhang Z, Wang F, Chen JG. Natural compounds from traditional
medicinal herbs in the treatment of cerebral ischemia/reperfusion
injury. Acta Pharmacol Sin. 2010;31:1523-1531. doi:
10.1038/aps.2010.186
48. Lim YR, Oh DK. Microbial metabolism and biotechnological production
of D-allose. Appl Microbiol Biotechnol. 2011;91:229-235. doi:
10.1007/s00253-011-3370-8
49. Hoshikawa H, Kamitori K, Indo K, Mori T, Kamata M, Takahashi T,
Tokuda M. Combined treatment with D-allose, docetaxel and radiation
inhibits the tumor growth in an in vivo model of head and neck cancer.Oncol Lett. 2018;15:3422-3428. doi: 10.3892/ol.2018.7787
50. Noguchi C, Kamitori K, Hossain A, Hoshikawa H, Katagi A, Dong Y, Sui
L, Tokuda M, Yamaguchi F. D-Allose Inhibits Cancer Cell Growth by
Reducing GLUT1 Expression. Tohoku J Exp Med. 2016;238:131-141.
doi: 10.1620/tjem.238.131
51. Ju J, Hou R, Zhang P. D-allose alleviates ischemia/reperfusion (I/R)
injury in skin flap via MKP-1. Mol Med. 2020;26:21. doi:
10.1186/s10020-020-0138-6
52. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K,
Tokuda M. A novel inhibitory effect of d-allose on production of
reactive oxygen species from neutrophils. Journal of Bioscience
and Bioengineering. 2003;96:89-91. doi: 10.1016/s1389-1723(03)90104-6
53. Ishihara Y, Katayama K, Sakabe M, Kitamura M, Aizawa M, Takara M,
Itoh K. Antioxidant properties of rare sugar D-allose: Effects on
mitochondrial reactive oxygen species production in Neuro2A cells.J Biosci Bioeng. 2011;112:638-642. doi:
10.1016/j.jbiosc.2011.08.005
54. Zhang M, Fu YH, Luo YW, Gou MR, Zhang L, Fei Z, Gao DK. d-allose
protects brain microvascular endothelial cells from hypoxic/reoxygenated
injury by inhibiting endoplasmic reticulum stress. Neurosci Lett.
2023;793:137000. doi: 10.1016/j.neulet.2022.137000
55. Khajeh S, Ganjavi M, Panahi G, Zare M, Zare M, Tahami SM, Razban V.
D-allose: molecular pathways and therapeutic capacity in cancer.Curr Mol Pharmacol. 2022. doi: 10.2174/1874467216666221227105011
56. Kanaji N, Kamitori K, Hossain A, Noguchi C, Katagi A, Kadowaki N,
Tokuda M. Additive antitumour effect of D‑allose in combination with
cisplatin in non-small cell lung cancer cells. Oncol Rep.
2018;39:1292-1298. doi: 10.3892/or.2018.6192
57. Hossain MA, Izuishi K, Maeta H. Protective effects of D-allose
against ischemia reperfusion injury of the rat liver. J
Hepatobiliary Pancreat Surg. 2003;10:218-225. doi:
10.1007/s00534-002-0785-8
58. Mizote M, Hirooka K, Fukuda K, Nakamura T, Itano T, Shiraga F.
D-allose as ischemic retina injury inhibitor during rabbit vitrectomy.Jpn J Ophthalmol. 2011;55:294-300. doi: 10.1007/s10384-011-0012-8
59. Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F. Galectins and
gliomas. Brain Pathol. 2010;20:17-27. doi:
10.1111/j.1750-3639.2009.00270.x
60. Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A,
Savman K. Galectin-3 contributes to neonatal hypoxic-ischemic brain
injury. Neurobiol Dis. 2010;38:36-46. doi:
10.1016/j.nbd.2009.12.024
61. Lin CI, Whang EE, Donner DB, Jiang X, Price BD, Carothers AM,
Delaine T, Leffler H, Nilsson UJ, Nose V, et al. Galectin-3 targeted
therapy with a small molecule inhibitor activates apoptosis and enhances
both chemosensitivity and radiosensitivity in papillary thyroid cancer.Mol Cancer Res. 2009;7:1655-1662. doi:
10.1158/1541-7786.MCR-09-0274
62. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM.
Toll-like receptors in ischemia-reperfusion injury. Shock.
2009;32:4-16. doi: 10.1097/SHK.0b013e318193e333
63. Xu GR, Zhang C, Yang HX, Sun JH, Zhang Y, Yao TT, Li Y, Ruan L, An
R, Li AY. Modified citrus pectin ameliorates myocardial fibrosis and
inflammation via suppressing galectin-3 and TLR4/MyD88/NF-kappaB
signaling pathway. Biomed Pharmacother. 2020;126:110071. doi:
10.1016/j.biopha.2020.110071
64. Feng C, Wan H, Zhang Y, Yu L, Shao C, He Y, Wan H, Jin W.
Neuroprotective Effect of Danhong Injection on Cerebral
Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt
Pathway. Front Pharmacol. 2020;11:298. doi:
10.3389/fphar.2020.00298
65. Li D, Guo YY, Cen XF, Qiu HL, Chen S, Zeng XF, Zeng Q, Xu M, Tang
QZ. Lupeol protects against cardiac hypertrophy via
TLR4-PI3K-Akt-NF-kappaB pathways. Acta Pharmacol Sin.
2022;43:1989-2002. doi: 10.1038/s41401-021-00820-3
Table 1: Primer sequences of GAPDH and Lgals 3 genes.