References
[1]Sung, H., J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021.71 (3): p. 209-249.DOI: 10.3322/caac.21660.
[2]Campo, E., S.H. Swerdlow, N.L. Harris, S. Pileri, H. Stein, and E.S. Jaffe, The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood, 2011. 117 (19): p. 5019-32.DOI: 10.1182/blood-2011-01-293050.
[3]Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114 (2): p. 97-109.DOI: 10.1007/s00401-007-0243-4.
[4]Buric, S.S., A. Podolski-Renic, J. Dinic, T. Stankovic, M. Jovanovic, S. Hadzic, et al.,Modulation of Antioxidant Potential with Coenzyme Q10 Suppressed Invasion of Temozolomide-Resistant Rat Glioma In Vitro and In Vivo.Oxid Med Cell Longev, 2019. 2019 : p. 3061607.DOI: 10.1155/2019/3061607.
[5]O’Brien, S.J., C. Fiechter, J. Burton, J. Hallion, M. Paas, A. Patel, et al., Long non-coding RNA ZFAS1 is a major regulator of epithelial-mesenchymal transition through miR-200/ZEB1/E-cadherin, vimentin signaling incolon adenocarcinom. Cell Death Discovery, 2021. 7 (61).DOI: 10.1038/s41420-021-00427-x.
[6]Birko, Z., B. Nagy, A. Klekner, and J. Virga, Novel Molecular Markers in Glioblastoma-Benefits of Liquid Biopsy. Int J Mol Sci, 2020. 21 (20).DOI: 10.3390/ijms21207522.
[7]Guttman, M. and J.L. Rinn,Modular regulatory principles of large non-coding RNAs. Nature, 2012. 482 (7385): p. 339-46.DOI: 10.1038/nature10887.
[8]Katsushima, K., G. Jallo, C.G. Eberhart, and R.J. Perera, Long non-coding RNAs in brain tumors.NAR Cancer, 2021. 3 (1): p. zcaa041.DOI: 10.1093/narcan/zcaa041.
[9]Zottel, A., N. Samec, A. Videtic Paska, and I. Jovcevska, Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers (Basel), 2020. 12 (7).DOI: 10.3390/cancers12071842.
[10]Baspinar, Y., I. Elmaci, A. Ozpinar, and M.A. Altinoz, Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles’ heal?Gene, 2020. 739 : p. 144518.DOI: 10.1016/j.gene.2020.144518.
[11]Chen, X., Y. Li, C. Zuo, K. Zhang, X. Lei, J. Wang, et al., Long Non-Coding RNA H19 Regulates Glioma Cell Growth and Metastasis via miR-200a-Mediated CDK6 and ZEB1 Expression. Front Oncol, 2021. 11 : p. 757650.DOI: 10.3389/fonc.2021.757650.
[12]Wang, X., X. Yu, H. Xu, K. Wei, S. Wang, Y. Wang, et al., Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis, 2022. 13 (4): p. 344.DOI: 10.1038/s41419-022-04699-8.
[13]Dong, D., Z. Mu, C. Zhao, and M. Sun, ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int, 2018. 18 : p. 125.DOI: 10.1186/s12935-018-0623-y.
[14]Su, Y., W. Hou, C. Zhang, P. Ji, R. Hu, Q. Zhang, et al., Long non-coding RNA ZFAS1 regulates cell proliferation and invasion in cervical cancer via the miR-190a-3p/KLF6 axis. Bioengineered, 2022. 13 (2): p. 3840-3851.DOI: 10.1080/21655979.2021.2022265.
[15]Rao, M., S. Xu, Y. Zhang, Y. Liu, W. Luan, and J. Zhou, Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis, 2021. 12 (10): p. 859.DOI: 10.1038/s41419-021-04123-7.
[16]Wang, L., Y. Ruan, X. Wu, and X. Zhou, lncRNA ZFAS1 Promotes HMGCR mRNA Stabilization via Binding U2AF2 to Modulate Pancreatic Carcinoma Lipometabolism. J Immunol Res, 2022. 2022 : p. 4163198.DOI: 10.1155/2022/4163198.
[17]Zhang, B., J. Chen, M. Cui, and Y. Jiang, LncRNA ZFAS1/miR-1271-5p/HK2 Promotes Glioma Development Through Regulating Proliferation, Migration, Invasion and Apoptosis. Neurochemical Research, 2020. 45 (12): p. 2828-2839.DOI: 10.1007/s11064-020-03131-x.
[18]Gao, K., Z. Ji, K. She, Q. Yang, and L. Shao, Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma cell progression by activation of the Notch signaling pathway. Biomed Pharmacother, 2017. 87 : p. 555-560.DOI: 10.1016/j.biopha.2017.01.014.
[19]Lv, Q.L., S.H. Chen, X. Zhang, B. Sun, L. Hu, Q. Qu, et al., Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial-mesenchymal transition in vitro and predicts poor prognosis in glioma. Tumour Biol, 2017. 39 (3): p. 1010428317695022.DOI: 10.1177/1010428317695022.
[20]Tricco, A.C., E. Lillie, W. Zarin, K.K. O’Brien, H. Colquhoun, D. Levac, et al., PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation.Ann Intern Med, 2018. 169 (7): p. 467-473.DOI: 10.7326/M18-0850.
[21]Arksey, H. and L. O’Malley,Scoping studies: towards a methodological framework.International Journal of Social Research Methodology, 2005.8 (1): p. 19-32.DOI: 10.1080/1364557032000119616.
[22]Beylerli, O., I. Gareev, A. Sufianov, T. Ilyasova, and F. Zhang, The role of microRNA in the pathogenesis of glial brain tumors. Noncoding RNA Res, 2022.7 (2): p. 71-76.DOI: 10.1016/j.ncrna.2022.02.005.
[23]Li, N., Z.-H. Sun, M. Fang, J.-Y. Xin, and C.-Y. Wan, Long non-coding RNA ZFAS1 sponges miR-486 to promote osteosarcoma cells progression and metastasis in vitro and vivo. Oncotarget, 2017. 8 (61): p. 104160-104170.DOI: 10.18632/oncotarget.22032.
[24]Salmena, L., L. Poliseno, Y. Tay, L. Kats, and P.P. Pandolfi, A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011. 146 (3): p. 353-358.
[25]Liang, L., Z. Zhang, X. Qin, Y. Gao, P. Zhao, J. Liu, et al., Long noncoding RNA ZFAS1 promotes tumorigenesis through regulation of miR-150-5p/RAB9A in melanoma.Melanoma research, 2019. 29 (6): p. 569-581.
[26]Zhang, F., Y. Li, W. Xu, L. He, Y. Tan, and H. Xu, Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci Biotechnol Biochem, 2019. 83 (7): p. 1289-1299.DOI: 10.1080/09168451.2019.1606697.
[27]Dong, D., Z. Mu, N. Wei, M. Sun, W. Wang, N. Xin, et al., Long non-coding RNA ZFAS1 promotes proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-10a/SKA1 pathway. Biomedicine & Pharmacotherapy, 2019.111 : p. 917-925.DOI: https://doi.org/10.1016/j.biopha.2018.12.143.
[28]Wang, J.-S., Q.-H. Liu, X.-H. Cheng, W.-Y. Zhang, and Y.-C. Jin, The long noncoding RNA ZFAS1 facilitates bladder cancer tumorigenesis by sponging miR-329.Biomedicine & Pharmacotherapy, 2018. 103 : p. 174-181.
[29]Xie, S., Q. Ge, X. Wang, X. Sun, and Y. Kang, Long non-coding RNA ZFAS1 sponges miR-484 to promote cell proliferation and invasion in colorectal cancer. Cell cycle, 2018. 17 (2): p. 154-161.
[30]Li, X., Y. Luo, L. Liu, S. Cui, W. Chen, A. Zeng, et al., The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR‐150‐5p/PLP2 axis. Journal of cellular physiology, 2020. 235 (3): p. 2937-2946.
[31]Yang, G., B. Han, and T. Feng, ZFAS1 knockdown inhibits viability and enhances cisplatin cytotoxicity by up‐regulating miR‐432‐5p in glioma cells. Basic & clinical pharmacology & toxicology, 2019. 125 (6): p. 518-526.
[32]Chen, Y.-H., D.-Y. Hueng, and W.-C. Tsai, Proteolipid protein 2 overexpression indicates aggressive tumor behavior and adverse prognosis in human gliomas.International journal of molecular sciences, 2018. 19 (11): p. 3353.
[33]Xia, B., Y. Hou, H. Chen, S. Yang, T. Liu, M. Lin, et al., Long non-coding RNA ZFAS1 interacts with miR-150-5p to regulate Sp1 expression and ovarian cancer cell malignancy. Oncotarget, 2017. 8 (12): p. 19534-19546.DOI: 10.18632/oncotarget.14663.
[34]Fan, G., J. Jiao, F. Shen, and F. Chu, Upregulation of lncRNA ZFAS1 promotes lung adenocarcinoma progression by sponging miR-1271-5p and upregulating FRS2. Thorac Cancer, 2020. 11 (8): p. 2178-2187.DOI: 10.1111/1759-7714.13525.
[35]Liu, T., J. Zuo, F. Li, Y. Xu, A. Zheng, and Z. Tao, LncRNA SNHG1 promotes cell proliferation in laryngeal cancer via Notch1 signaling pathway. European review for medical and pharmacological sciences, 2019. 23 (15): p. 6562–6569.DOI: https://doi.org/10.26355/eurrev_201908_18542.
[36]Yang, G., B. Han, and T. Feng, ZFAS1 knockdown inhibits viability and enhances cisplatin cytotoxicity by up-regulating miR-432-5p in glioma cells. Basic Clin Pharmacol Toxicol, 2019. 125 (6): p. 518-526.DOI: 10.1111/bcpt.13286.
[37]Liu, Y., C. Lu, Y. Zhou, Z. Zhang, and L. Sun, Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem Biophys Res Commun, 2018. 502 (3): p. 358-363.DOI: 10.1016/j.bbrc.2018.05.166.
[38]Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119 (6): p. 1429-37.DOI: 10.1172/JCI36183.
[39]Iwadate, Y.,Epithelial-mesenchymal transition in glioblastoma progression.Oncol Lett, 2016. 11 (3): p. 1615-1620.DOI: 10.3892/ol.2016.4113.
[40]Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119 (6): p. 1420-8.DOI: 10.1172/JCI39104.
[41]Charles, N.A., E.C. Holland, R. Gilbertson, R. Glass, and H. Kettenmann, The brain tumor microenvironment. Glia, 2011. 59 (8): p. 1169-80.DOI: 10.1002/glia.21136.
[42]Santamaria, P.G., M.J. Mazon, P. Eraso, and F. Portillo, UPR: An Upstream Signal to EMT Induction in Cancer. J Clin Med, 2019. 8 (5).DOI: 10.3390/jcm8050624.
[43]Iser, I.C., M.B. Pereira, G. Lenz, and M.R. Wink, The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev, 2017. 37 (2): p. 271-313.DOI: 10.1002/med.21408.
[44]Cheng, J.T., L. Wang, H. Wang, F.R. Tang, W.Q. Cai, G. Sethi, et al., Insights into Biological Role of LncRNAs in Epithelial-Mesenchymal Transition. Cells, 2019. 8 (10).DOI: 10.3390/cells8101178.
[45]Lv, Q.-L., S.-H. Chen, X. Zhang, B. Sun, L. Hu, Q. Qu, et al., Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial–mesenchymal transition in vitro and predicts poor prognosis in glioma. Tumor Biology, 2017. 39 (3): p. 1010428317695022.
[46]Gao, K., Z. Ji, K. She, Q. Yang, and L. Shao, Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma cell progression by activation of the Notch signaling pathway. Biomedicine & pharmacotherapy, 2017.87 : p. 555-560.
[47]Andersson, E.R., R. Sandberg, and U. Lendahl, Notch signaling: simplicity in design, versatility in function. Development, 2011. 138 (17): p. 3593-612.DOI: 10.1242/dev.063610.
[48]Wang, X., Y. Yan, C. Zhang, W. Wei, X. Ai, Y. Pang, et al., Upregulation of lncRNA PlncRNA-1 indicates the poor prognosis and promotes glioma progression by activation of Notch signal pathway. Biomed Pharmacother, 2018.103 : p. 216-221.DOI: 10.1016/j.biopha.2018.03.150.
[49]Wu, Q., S. Lu, L. Zhang, and L. Zhao, LncRNA HOXA-AS2 Activates the Notch Pathway to Promote Cervical Cancer Cell Proliferation and Migration. Reprod Sci, 2021.28 (10): p. 3000-3009.DOI: 10.1007/s43032-021-00626-y.
[50]Lu, S., W. Dong, P. Zhao, and Z. Liu, lncRNA FAM83H-AS1 is associated with the prognosis of colorectal carcinoma and promotes cell proliferation by targeting the Notch signaling pathway. Oncol Lett, 2018. 15 (2): p. 1861-1868.DOI: 10.3892/ol.2017.7520.
[51]Xu, P., S. Yu, R. Jiang, C. Kang, G. Wang, H. Jiang, et al., Differential expression of Notch family members in astrocytomas and medulloblastomas. Pathol Oncol Res, 2009. 15 (4): p. 703-10.DOI: 10.1007/s12253-009-9173-x.
[52]Mutvei, A.P., E. Fredlund, and U. Lendahl, Frequency and distribution of Notch mutations in tumor cell lines. BMC Cancer, 2015. 15 : p. 311.DOI: 10.1186/s12885-015-1278-x.
[53]Brzozowa-Zasada, M., A. Piecuch, M. Michalski, O. Segiet, J. Kurek, M. Harabin-Slowinska, et al., Notch and its oncogenic activity in human malignancies. Eur Surg, 2017. 49 (5): p. 199-209.DOI: 10.1007/s10353-017-0491-z.
[54]Yan, Y., Z. Xu, Z. Li, L. Sun, and Z. Gong, An Insight into the Increasing Role of LncRNAs in the Pathogenesis of Gliomas. Front Mol Neurosci, 2017. 10 : p. 53.DOI: 10.3389/fnmol.2017.00053.
[55]Zhang, P., X. Meng, L. Liu, S. Li, Y. Li, S. Ali, et al., Identification of the Prognostic Signatures of Glioma With Different PTEN Status. Front Oncol, 2021.11 : p. 633357.DOI: 10.3389/fonc.2021.633357.
[56]Qin, A., A. Musket, P.R. Musich, J.B. Schweitzer, and Q. Xie, Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter?Neurooncol Adv, 2021. 3 (1): p. vdab133.DOI: 10.1093/noajnl/vdab133.
[57]Li, X., Y. Luo, L. Liu, S. Cui, W. Chen, A. Zeng, et al., The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol, 2020. 235 (3): p. 2937-2946.DOI: 10.1002/jcp.29199.