References
- Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang,
and M. J. Deen, “A novel cloud-based framework for the elderly
healthcare services using digital twin,” IEEE Access, vol. 7, pp.
49088–49101, 2019.
- S. Gahlot, S. R. N. Reddy, and D. Kumar, “Review of smart health
monitoring approach with survey analysis and proposed framework,”
IEEE Internet Things J., vol. 6, no. 2, pp. 2116–2127, Apr. 2019.
- N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in Proc.
IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2017, pp. 1–5.
- T. Ruohomaki, E. Airaksinen, P. Huuska, O. Kesaniemi, M. Martikka, and
J. Suomisto, “Smart city platform enabling digital twin,” in Proc.
Int. Conf. Intell. Syst. (IS), Sep. 2018, pp. 155–161.
- Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin:
Enabling technologies, challenges and open research. IEEE access, 8,
108952-108971.
- K. Sivalingam, M. Sepulveda, M. Spring, and P. Davies, “A review and
methodology development for remaining useful life prediction of
offshore fixed and floating wind turbine power converter with digital
twin technology perspective,” in Proc. 2nd Int. Conf. Green Energy
Appl. (ICGEA), Mar. 2018, pp. 197–204.
- H. Pargmann, D. Euhausen, and R. Faber, “Intelligent big data
processing for wind farm monitoring and analysis based on
cloud-technologies and digital twins: A quantitative approach,” in
Proc. IEEE 3rd Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr.
2018, pp. 233–237.
- Bolton, R.N., McColl-Kennedy, J.R., Cheung, L., Gallan, A., Orsingher,
C., Witell, L. and Zaki, M. (2018), ‘Customer experience challenges:
bringing together digital, physical and social realms’, Journal of
Service Management, Vol. 29 No. 5, pp. 776-808.
https://doi.org/10.1108/JOSM-04-2018-0113.
- Eder, M.A., & Chen, X. (2020). FASTIGUE: A computationally efficient
approach for simulating discrete fatigue crack growth in large-scale
structures. Engineering Fracture Mechanics, 233, [107075].
https://doi.org/10.1016/j.engfracmech.2020.107075.
- Chen, X., & Eder, M.A. (2020). A Critical Review of Damage and
Failure of Composite Wind Turbine Blade Structures. IOP Conference
Series: Materials Science and Engineering, 942(1), [012001].
https://doi.org/10.1088/1757-899X/942/1/012001.
- Shihavuddin ASM, Chen X, Fedorov V, Christensen AN, Riis NAB, Branner
K, Dahl AB, Paulsen RR. 2019. Wind Turbine Surface Damage Detection by
Deep Learning Aided Drone Inspection Analysis. Energies. 12(4).
https://doi.org/10.3390/en12040676.
- Benzon, H.-H.; Chen, X.; Belcher, L.; Castro, O.; Branner, K.; Smit,
J. An Operational Image-Based Digital Twin for Large-Scale Structures.
Appl. Sci. 2022, 12, 3216. https://doi.org/10.3390/app12073216.
- M. Mandirola, C. Casarotti, S. Peloso, I. Lanese, E. Brunesi, I.
Senaldi. Use of UAS for damage inspection and assessment of bridge
infrastructures, International Journal of Disaster Risk Reduction,
Volume 72, 2022, 102824, ISSN 2212-4209,
https://doi.org/10.1016/j.ijdrr.2022.102824.
- Guido Morgenthal, Norman Hallermann, Jens Kersten, Jakob Taraben, Paul
Debus, Marcel Helmrich, Volker Rodehorst. Framework for automated
UAS-based structural condition assessment of bridges, Automation in
Construction, Volume 97, 2019, Pages 77-95, ISSN 0926-5805,
https://doi.org/10.1016/j.autcon.2018.10.006.
- Hammad, A.W.A.; da Costa, B.B.F.; Soares, C.A.P.; Haddad, A.N. The Use
of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in
Large-Scale Construction Projects. Buildings 2021, 11, 602.
https://doi.org/10.3390/buildings11120602.
- Kyungil Kong, Kirsten Dyer, Christopher Payne, Ian Hamerton, Paul M.
Weaver. Progress and Trends in Damage Detection Methods, Maintenance,
and Data-driven Monitoring of Wind Turbine Blades – A Review,
Renewable Energy Focus, 2022, ISSN 1755-0084,
https://doi.org/10.1016/j.ref.2022.08.005.
- Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao.
“YOLOv4: Optimal Speed and Accuracy of Object Detection.”
ArXiv:2004.10934 [Cs, Eess], April 22, 2020.
https://arxiv.org/abs/2004.10934.
- Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. ”You
only look once: Unified, real-time object detection.” In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
779–788. Las Vegas, NV: USA: IEEE, 2016.
https://doi.org/10.1109/CVPR.2016.91.
- Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; NanoCode012; Xie,
T.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; et al.
Ultralytics/yolov5: V4.0-nn.SiLU() Activations, Weights & Biases
Logging, PyTorch Hub Integration (v4.0). 2021. Available online:
https://github.com/ultralytics/yolov5 (accessed on 13 February 2021).
- H.D. Cheng, X.H. Jiang, Y. Sun, Jingli Wang. Color image segmentation:
advances and prospects, Pattern Recognition, Volume 34, Issue 12,
2001, Pages 2259-2281, ISSN 0031-3203,
https://doi.org/10.1016/S0031-3203(00)00149-7.
- F Kurugollu, B Sankur, A.E Harmanci. Color image segmentation using
histogram multithresholding and fusion, Image and Vision Computing,
Volume 19, Issue 13, 2001, Pages 915-928, ISSN 0262-8856,
https://doi.org/10.1016/S0262-8856(01)00052-X.
- Javad Baqersad, Peyman Poozesh, Christopher Niezrecki, Peter
Avitabile. Photogrammetry and optical methods in structural dynamics
– A review. Mechanical Systems and Signal Processing, Volume 86, Part
B, 2017, Pages 17-34, ISSN 0888-3270,
https://doi.org/10.1016/j.ymssp.2016.02.011.
- Remondino, Fabio, et al. UAV photogrammetry for mapping and 3d
modeling–current status and future perspectives. International
archives of the photogrammetry, remote sensing and spatial information
sciences, 2011, 38.1: C22.
- Bentley Institute Inc. (2021) “ContextCapture: 4D Digital Context for
Digital Twins”. United States.
- Chen, X., Semenov, S., McGugan, M., Madsen, S. H., Yeniceli, S. C.,
Berring, P., & Branner, K. (2021). Fatigue testing of a 14.3 m
composite blade embedded with artificial defects – damage growth and
structural health monitoring. Composites - Part A: Applied Science and
Manufacturing, 140, [106189].
https://doi.org/10.1016/j.compositesa.2020.106189