References
1. Cooper, C., Thompson, R. C. A. & Clode, P. L. Investigating
parasites in three dimensions: trends in volume microscopy. Trends
in Parasitology 0 , (2023).
2. Harrison, F. & Corliss, J. Microscopic Anatomy of
Invertebrates, Volume 1: Protozoa . (Wiley-Liss, New-York, 1991).
3. Nellist, P. D. The Principles of STEM Imaging. in Scanning
Transmission Electron Microscopy (eds. Pennycook, S. J. & Nellist, P.
D.) 91–115 (Springer New York, 2011). doi:10.1007/978-1-4419-7200-2_2.
4. Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. STEM tomography
for thick biological specimens. Ultramicroscopy 109 ,
70–80 (2008).
5. Dubochet, J. & McDowall, A. w. Vitrification of Pure Water for
Electron Microscopy. Journal of Microscopy 124 , 3–4
(1981).
6. Dubochet, J. et al. Cryo-electron microscopy of vitrified
specimens. Q Rev Biophys 21 , 129–228 (1988).
7. Dahl, R. & Staehelin, L. A. High-pressure freezing for the
preservation of biological structure: Theory and practice. Journal
of Electron Microscopy Technique 13 , 165–174 (1989).
8. Al-Amoudi, A. et al. Cryo-electron microscopy of vitreous
sections. EMBO J 23 , 3583–3588 (2004).
9. Mahamid, J. et al. A focused ion beam milling and lift-out
approach for site-specific preparation of frozen-hydrated lamellas from
multicellular organisms. Journal of Structural Biology192 , 262–269 (2015).
10. Höög, J. L., Bouchet-Marquis, C., McIntosh, J. R., Hoenger, A. &
Gull, K. Cryo-electron tomography and 3-D analysis of the intact
flagellum in Trypanosoma brucei. Journal of Structural Biology178 , 189–198 (2012).
11. Koyfman, A. Y. et al. Structure of Trypanosoma brucei
flagellum accounts for its bihelical motion. Proceedings of the
National Academy of Sciences 108 , 11105–11108 (2011).
12. Zhang, J. et al. Structure of the trypanosome paraflagellar
rod and insights into non-planar motility of eukaryotic cells.Cell Discov 7 , 1–17 (2021).
13. Wolf, S. G., Houben, L. & Elbaum, M. Cryo-scanning transmission
electron tomography of vitrified cells. Nat Methods 11 ,
423–428 (2014).
14. Wolf, S. G. & Elbaum, M. CryoSTEM tomography in biology. inMethods in Cell Biology vol. 152 197–215 (Elsevier, 2019).
15. Wolf, S. G., Shimoni, E., Elbaum, M. & Houben, L. STEM Tomography
in Biology. in Cellular Imaging (ed. Hanssen, E.) 33–60
(Springer International Publishing, 2018).
doi:10.1007/978-3-319-68997-5_2.
16. Trépout, S. In situ structural analysis of the flagellum attachment
zone in Trypanosoma brucei using cryo-scanning transmission electron
tomography. Journal of Structural Biology: X 4 , 100033
(2020).
17. Biskupek, J., Leschner, J., Walther, P. & Kaiser, U. Optimization
of STEM tomography acquisition — A comparison of convergent beam and
parallel beam STEM tomography. Ultramicroscopy 110 ,
1231–1237 (2010).
18. Trepout, S., Messaoudi, C., Perrot, S., Bastin, P. & Marco, S.
Scanning transmission electron microscopy through-focal tilt-series on
biological specimens. Micron 77 , 9–15 (2015).
19. Trépout, S., Tassin, A.-M., Marco, S. & Bastin, P. STEM tomography
analysis of the trypanosome transition zone. Journal of Structural
Biology 202 , 51–60 (2018).
20. Woolf, R. J., Joy, D. C. & Tansley, D. W. A transmission stage for
the scanning electron microscope. J. Phys. E: Sci. Instrum.5 , 230 (1972).
21. Patel, B. & Watanabe, M. An inexpensive approach for bright-field
and dark-field imaging by scanning transmission electron microscopy in
scanning electron microscopy. Microsc Microanal 20 ,
124–132 (2014).
22. García-Negrete, C. A., Haro, M. C. J. de, Blasco, J., Soto, M. &
Fernández, A. STEM-in-SEM high resolution imaging of gold nanoparticles
and bivalve tissues in bioaccumulation experiments. Analyst140 , 3082–3089 (2015).
23. Leite, P. E. C. et al. Gold nanoparticles do not induce
myotube cytotoxicity but increase the susceptibility to cell death.Toxicology in Vitro 29 , 819–827 (2015).
24. Elad, N., Bellapadrona, G., Houben, L., Sagi, I. & Elbaum, M.
Detection of isolated protein-bound metal ions by single-particle
cryo-STEM. Proc. Natl. Acad. Sci. U.S.A. 114 ,
11139–11144 (2017).
25. Elbaum, M., Seifer, S., Houben, L., Wolf, S. G. & Rez, P. Toward
Compositional Contrast by Cryo-STEM. Acc. Chem. Res. 54 ,
3621–3631 (2021).
26. Frank, J. Electron Tomography . (Springer US, 1992).
doi:10.1007/978-1-4757-2163-8.
27. Engel, A. Molecular weight determination by scanning transmission
electron microscopy. Ultramicroscopy 3 , 273–281 (1978).
28. Engel, A. & Colliex, C. Application of scanning transmission
electron microscopy to the study of biological structure. Curr
Opin Biotechnol 4 , 403–411 (1993).
29. Hohmann-Marriott, M. F. et al. Nanoscale 3D cellular imaging
by axial scanning transmission electron tomography. Nat Methods6 , 729–731 (2009).
30. Midgley, P. A. & Weyland, M. STEM Tomography. in Scanning
Transmission Electron Microscopy (eds. Pennycook, S. J. & Nellist, P.
D.) 353–392 (Springer New York, 2011).
doi:10.1007/978-1-4419-7200-2_8.
31. Walther, P. et al. STEM tomography of high-pressure frozen
and freeze-substituted cells: a comparison of image stacks obtained at
200 kV or 300 kV. Histochem Cell Biol 150 , 545–556
(2018).
32. Rachel, R. Dual-axis STEM tomography at 200 kV: setup, performance,
limitations. 40.
33. Trépout, S., Bastin, P. & Marco, S. Preparation and Observation of
Thick Biological Samples by Scanning Transmission Electron Tomography.JoVE 55215 (2017) doi:10.3791/55215.
34. Kirchweger, P., Mullick, D., Wolf, S. & Elbaum, M. Visualization of
Organelles In Situ by Cryo-STEM Tomography.
https://app.jove.com/t/65052/visualization-of-organelles-in-situ-by-cryo-stem-tomography
(2023).
35. Rez, P., Larsen, T. & Elbaum, M. Exploring the theoretical basis
and limitations of cryo-STEM tomography for thick biological specimens.Journal of Structural Biology 196 , 466–478 (2016).
36. Adar-Levor, S., Goliand, I., Elbaum, M. & Elia, N. Studying the
Spatial Organization of ESCRTs in Cytokinetic Abscission Using the
High-Resolution Imaging Techniques SIM and Cryo-SXT. in The ESCRT
Complexes (eds. Culetto, E. & Legouis, R.) vol. 1998 129–148
(Springer New York, 2019).
37. Kirchenbuechler, D. et al. Cryo-STEM Tomography of Intact
Vitrified Fibroblasts. AIMS Biophysics 2 , 259–273
(2015).
38. Wolf, S. G. et al. 3D visualization of mitochondrial
solid-phase calcium stores in whole cells. eLife 6 ,
e29929 (2017).
39. Seifer, S., Houben, L. & Elbaum, M. Flexible STEM with Simultaneous
Phase and Depth Contrast. Microsc Microanal 27 ,
1476–1487 (2021).
40. Lazić, I. et al. Single-particle cryo-EM structures from
iDPC–STEM at near-atomic resolution. Nat Methods (2022)
doi:10.1038/s41592-022-01586-0.
41. Li, X. et al. Imaging biological samples by integrated
differential phase contrast (iDPC) STEM technique. Journal of
Structural Biology 214 , 107837 (2022).
42. Wang, G., Garcia, D., Liu, Y., de Jeu, R. & Johannes Dolman, A. A
three-dimensional gap filling method for large geophysical datasets:
Application to global satellite soil moisture observations.Environmental Modelling & Software 30 , 139–142 (2012).
43. Trépout, S. Tomographic Collection of Block-Based Sparse STEM
Images: Practical Implementation and Impact on the Quality of the 3D
Reconstructed Volume. Materials 12 , 2281 (2019).
44. Cossa, A., Arluison, V. & Trépout, S. Sparse cryo-STEM tomography
for biological samples. Microsc Microanal 27 , 3028–3030
(2021).