References
- Ali, I., Conrad, R. J., Verdin, E., & Ott, M. (2018). Lysine
acetylation goes global: from epigenetics to metabolism and
therapeutics. Chemical reviews , 118 (3), 1216-1252.
doi: 10.1021/acs.chemrev.7b00181.
- Allfrey, V. G., Faulkner, R., & Mirsky, A. E. (1964). Acetylation and
methylation of histones and their possible role in the regulation of
RNA synthesis. Proceedings of the National Academy of Sciences ,51 (5), 786–794. doi: 10.1073/pnas.51.5.786.
- Alonso, V. L., & Serra, E.C. (2012). Lysine acetylation: elucidating
the components of an emerging global signaling pathway in
trypanosomes. Journal of Biomedicine and Biotechnology ,12 . doi: 10.1155/2012/452934
- Baeza, J., Dowell, J. A., Smallegan, M. J., Fan, J., Amador-Noguez,
D., Khan, Z., Denu, J. M. (2014). Stoichiometry of site-specific
lysine acetylation in an entire proteome. Journal of Biological
Chemistry , 289 (31), 21326-21338. doi:
10.1074/jbc.M114.581843.
- Baeza, J., Lawton, A. J., Fan, J., Smallegan, M. J., Lienert, I.,
Gandhi, T., … Denu, J. M. (2020). Revealing dynamic protein
acetylation across subcellular compartments. Journal of proteome
research , 19 (6), 2404-2418.
https://doi.org/10.1021/acs.jproteome.0c00088.
- Bai, L., Chang, M., Shan, J., Jiang, R., Zhang, Y., Zhang, R., & Li,
Y. (2011). Identification and characterization of a novel
spermidine/spermine acetyltransferase encoded by gene ste26 fromStreptomyces sp. 139. Biochimie , 93 (9),
1401-1407. https://doi.org/10.1016/j.biochi.2011.04.014.
- Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., & Kuster, B.
(2007). Quantitative mass spectrometry in proteomics: a critical
review. Analytical and bioanalytical
chemistry , 389 (4), 1017-1031. doi:
10.1007/s00216-007-1486-6.
- Barrett, O. J., Pushechnikov, A., Wu, M., & Disney, M.D. (2008).
Studying aminoglycoside modification by the acetyltransferase class of
resistance-causing enzymes via microarray. Carbohydrate
research , 343 (17), 2924-2931. doi:
10.1016/j.carres.2008.08.018.
- Bernal, V., Castaño-Cerezo, S., & Cánovas, M. (2016). Acetate
metabolism regulation in Escherichia coli: carbon overflow,
pathogenicity, and beyond. Applied microbiology and
biotechnology , 100 , 8985-9001. doi:
10.1007/s00253-016-7832-x.
- Berrabah, W., Aumercier, P., Lefebvre, P., & Staels, B. (2011).
Control of nuclear receptor activities in metabolism by
post-translational modifications. FEBS letters ,585 (11), 1640-1650. doi: 10.1016/j.febslet.2011.03.066.
- Blander, G., & Guarente, L. (2004). The Sir2 family of protein
deacetylases. Annual review of biochemistry , 73 (1),
417-435. doi: 10.1146/annurev.biochem.73.011303.073651.
- Blasl, A. T., Schulze, S., Qin, C., Graf, L. G., Vogt, R., & Lammers,
M. (2021). Post-translational lysine ac (et) ylation in health, ageing
and disease. Biological Chemistry , 403 (2),
151-194. doi: 10.1515/hsz-2021-0139.
- Bontemps-Gallo, S., Gaviard, C., Richards, C. L., Kentache, T.,
Raffel, S. J., Lawrence, K. A., … & Gherardini, F. C. (2018).
Global profiling of lysine acetylation in Borrelia burgdorferiB31 reveals its role in central metabolism. Frontiers in
microbiology , 9 , 2036.
https://doi.org/10.3389/fmicb.2018.02036.
- Carabetta, V. J., Greco, T. M., Tanner, A. W., Cristea, I. M. &
Dubnau, D. (2016). Temporal regulation of the Bacillus subtilisacetylome and evidence for a role of MreB acetylation in cell wall
growth. Msystems , 1 (3), e00005-16. doi:
10.1128/mSystems.00005-16.
- Card, G. L., Peterson, N. A., Smith, C. A., Rupp, B., Schick, B. M.,
& Baker, E. N. (2005). The crystal structure of rv1347c, a putative
antibiotic resistance protein from Mycobacterium tuberculosis ,
reveals a GCN5-related fold and suggests an alternative function in
siderophore biosynthesis. Journal of Biological
Chemistry , 280 (14), 13978-13986.
DOI:https://doi.org/10.1074/jbc.M413904200.
- Castaño‐Cerezo, S., Bernal, V., Blanco‐Catalá, J., Iborra, J. L., &
Cánovas, M. (2011). cAMP‐CRP co‐ordinates the expression of the
protein acetylation pathway with central metabolism in Escherichia
coli. Molecular microbiology , 82 (5), 1110-1128.
https://doi.org/10.1111/j.1365-2958.2011.07873.x.
- Castaño‐Cerezo, S., Bernal, V., Post, H., Fuhrer, T., Cappadona, S.,
Sánchez‐Díaz, N. C., & Cánovas, M. (2014). Protein acetylation
affects acetate metabolism, motility and acid stress response inEscherichia coli . Molecular systems
biology , 10 (11), 762. doi: 10.15252/msb.20145227.
- Castaño-Cerezo, S., Bernal, V., Röhrig, T., Termeer, S., & Cánovas,
M. (2015). Regulation of acetate metabolism in Escherichia coliBL21 by protein Nε-lysine acetylation. Applied microbiology and
biotechnology , 99 (8), 3533-3545. doi:
10.1007/s00253-014-6280-8.
- Chen, W., Biswas, T., Porter, V. R., Tsodikov, O. V., &
Garneau-Tsodikova, S. (2011). Unusual regioversatility of
acetyltransferase Eis, a cause of drug resistance in XDR-TB.Proceedings of the National Academy of Sciences ,108 (24), 9804 –9808. https://doi
.org/10.1073/pnas.1105379108.
- Chen, Z., Luo, L., Chen, R., Hu, H., Pan, Y., Jiang, H., … Gong, Y.
(2018). Acetylome profiling reveals extensive lysine acetylation of
the fatty acid metabolism pathway in the diatom Phaeodactylum
tricornutum . Molecular & Cellular Proteomics , 17 (3),
399-412. DOI:https://doi.org/10.1074/mcp.RA117.000339.
- Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M.,
Walther, T.C., … Mann, M. (2009). Lysine acetylation targets protein
complexes and co-regulates major cellular
functions. Science , 325 (5942), 834-840. doi:
10.1126/science.1175371.
- Christensen, D. G., Baumgartner, J. T., Xie, X., Jew, K.M., Basisty,
N., Schilling, B., … Wolfe, A.J. (2019). Mechanisms, detection, and
relevance of protein acetylation in
prokaryotes. MBio , 10 (2), e02708-18. doi:
10.1128/mBio.02708-18.
- Christensen, D. G., Meyer, J. G., Baumgartner, J. T., D’Souza, A. K.,
Nelson, W. C., Payne, S. H., … Wolfe, A. J. (2018). Identification
of novel protein lysine acetyltransferases in Escherichia
coli . MBio , 9 (5), e01905-18. doi:
10.1128/mBio.01905-18.
- Clements, A., Rojas, J. R., Trievel, R. C., Wang, L., Berger, S. L.,
& Marmorstein, R. (1999). Crystal structure of the histone
acetyltransferase domain of the human PCAF transcriptional regulator
bound to coenzyme A. The EMBO journal , 18 (13),
3521-3532. doi: 10.1093/emboj/18.13.3521.
- Cronan, Jr, J. E., & Laporte, D. (2005). Tricarboxylic acid cycle and
glyoxylate bypass. EcoSal Plus , 1 (2). doi:
10.1128/ecosalplus.3.5.2.
- Crosby, H. A., Heiniger, E. K., Harwood, C. S., & Escalante‐Semerena,
J. C. (2010). Reversible Nε‐lysine acetylation regulates the activity
of acyl‐CoA synthetases involved in anaerobic benzoate catabolism inRhodopseudomonas palustris . Molecular
microbiology , 76 (4), 874-888. doi:
10.1111/j.1365-2958.2010.07127.x.
- Crosby, H. A., Pelletier, D. A., Hurst, G. B., & Escalante-Semerena,
J.C. (2012). System-wide studies of N-lysine acetylation inRhodopseudomonas palustris reveal substrate specificity of
protein acetyltransferases. Journal of Biological Chemistry ,287 (19), 15590-15601. doi: 10.1074/jbc.M112.352104.
- DeLano, W. L. (2002). The PyMOL
molecular graphics system. http://www. pymol. org/.
- Diallo, I., Seve, M., Cunin, V., Minassian, F., Poisson, J. F.,
Michelland, S., & Bourgoin-Voillard, S. (2019). Current trends in
protein acetylation analysis. Expert Review of
Proteomics , 16 (2), 139-159. doi:
10.1080/14789450.2019.1559061.
- Dutnall, R. N., Tafrov, S. T., Sternglanz, R., & Ramakrishnan, V.
(1998). Structure of the histone acetyltransferase Hat1: a paradigm
for the GCN5-related N-acetyltransferase superfamily. Cell ,94 :427–438. 10.1016/S0092-8674(00)81584-6.
- Dyda, F., Klein, D. C., & Hickman, A. B. (2000). GCN5-related
N-acetyltransferases: a structural overview. Annual review of
biophysics and biomolecular structure , 29 (1), 81-103. doi:
10.1146/annurev.biophys.29.1.81.
- Favrot, L., Blanchard, J. S., & Vergnolle, O. (2016). Bacterial
GCN5-related N-acetyltransferases: from resistance to regulation.Biochemistry , 55 ,989–1002.
https://doi.org/10.1021/acs.biochem.5b01269. 59.
- Filippova, E. V., Kuhn, M. L., Osipiuk, J., Kiryukhina, O.,
Joachimiak, A., Ballicora, M. A., & Anderson, W. F. (2015). A novel
polyamine allosteric site of SpeG from Vibrio cholerae is
revealed by its dodecameric structure. Journal of molecular
biology , 427 (6), 1316-1334. doi: 10.1016/j.jmb.2015.01.009.
- Finkel, T., Deng, C. X., & Mostoslavsky, R. (2009). Recent progress
in the biology and physiology of sirtuins. Nature , 460(7255),
587-591. doi: 10.1038/nature08197.
- Finnin, C.A. (2005). Zinc hydrolases: the mechanisms of zinc-dependent
deacetylases. Archives of biochemistry and
biophysics , 433 (1), 71-84. doi: 10.1016/j.abb.2004.08.006.
- Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R.
A., Marks, P. A., … Pavletich, N. P. (1999). Structures of a histone
deacetylase homologue bound to the TSA and SAHA
inhibitors. Nature , 401 (6749), 188-193. doi:
10.1038/43710.
- Forouhar, F., Lee, I. S., Vujcic, J., Vujcic, S., Shen, J., Vorobiev,
S. M., … Tong, L. (2005). Structural and functional evidence forBacillus subtilis PaiA as a novel N1 -spermidine/spermine
acetyltransferase. Journal of Biological Chemistry ,280 (48), 40328–40336.
DOI:https://doi.org/10.1074/jbc.M505332200.
- Frankel, B. A. & Blanchard, J. S. (2008). Mechanistic analysis ofMycobacterium tuberculosis Rv1347c, a lysine Nε-acyltransferase
involved in mycobactin biosynthesis. Archives of biochemistry
and biophysics , 477 (2), 259-266. doi:
10.1016/j.abb.2008.05.013.
- Fredens, J., Wang, K., de la Torre, D., Funke, L. F. H., Robertson, W.
E., Christova, Y., … Chin, J. W. (2019). Total synthesis ofEscherichia coli with a recoded genome. Nature ,569 , 514–518. doi: 10.1038/s41586-019-1192-5.
- Fukuchi, J. I., Kashiwagi, K., Yamagishi, M., Ishihama, A., &
Igarashi, K. (1995). Decrease in cell viability due to the
accumulation of spermidine in spermidine acetyltransferase-deficient
mutant of Escherichia coli . Journal of Biological
Chemistry , 270 (32), 18831-18835. doi:
10.1074/jbc.270.32.18831.
- Gardner, J. G., Grundy, F. J., Henkin, T. M., & Escalante-Semerena,
J.C. (2006). Control of acetyl-coenzyme a synthetase (AcsA) activity
by acetylation/deacetylation without NAD+ involvement inBacillus subtilis . Journal of bacteriology ,188 (15), 5460–5468. https://doi.org/10.1128/JB.00215-06.
- Gaviard, C., Broutin, I., Cosette, P., Dé, E., Jouenne, T., &
Hardouin, J. (2018). Lysine succinylation and acetylation inPseudomonas aeruginosa . Journal of proteome
research , 17 (7), 2449-2459. doi:
10.1021/acs.jproteome.8b00210.
- Ghosh, S., Padmanabhan, B., Anand, C., & Nagaraja V. (2016). Lysine
acetylation of the Mycobacterium tuberculosis HU protein
modulates its DNA binding and genome organization. Molecular
microbiology , 100 (4):577–588. https://
doi.org/10.1111/mmi.13339.
- Gil, J., Ramírez-Torres, A., Chiappe, D., Luna-Peñaloza, J.,
Fernandez-Reyes, F. C., Arcos-Encarnación, B., …
Encarnación-Guevara, S. (2017). Lysine acetylation stoichiometry and
proteomics analyses reveal pathways regulated by sirtuin 1 in human
cells. Journal of Biological Chemistry , 292 (44),
18129-18144. DOI:https://doi.org/10.1074/jbc.M117.784546.
- Gingras, A. C., Gstaiger, M., Raught, B., & Aebersold, R. (2007).
Analysis of protein complexes using mass spectrometry. Nature
reviews Molecular cell biology , 8 (8), 645-654.
doi:10.1038/nrm2208.
- Gregoretti, I., Lee, Y. M., & Goodson, H. V. (2004). Molecular
evolution of the histone deacetylase family: functional implications
of phylogenetic analysis. Journal of molecular
biology , 338 (1), 17-31.
https://doi.org/10.1016/j.jmb.2004.02.006.
- Gu, W., & Roeder, R. G. (1997). Activation of p53 sequence-specific
DNA binding by acetylation of the p53 C-terminal
domain. Cell , 90 (4), 595-606. doi:
10.1016/s0092-8674(00)80521-8.
- Hebert, A. S., Dittenhafer-Reed, K. E., Yu, W., Bailey, D. J., Selen,
E.S., Boersma, M. D., … Coon, J. J. (2013). Calorie restriction and
SIRT3 trigger global reprogramming of the mitochondrial protein
acetylome. Molecular cell , 49 (1), 186-199. doi:
10.1016/j.molcel.2012.10.024.
- Hegde, S. S., Dam, T. K., Brewer, C. F., & Blanchard, J. S. (2002).
Thermodynamics of aminoglycoside and acyl-coenzyme A binding to theSalmonella enterica AAC(6‘)-Iy aminoglycoside
N-acetyltransferase. Biochemistry , 41 (23), 7519-7527.
doi: 10.1021/bi020190l.
- Hentchel, K. L., & Escalante-Semerena, J. C. (2015). Acylation of
biomolecules in prokaryotes: a widespread strategy for the control of
biological function and metabolic stress. Microbiology and
Molecular Biology Reviews , 79 (3), 321-346. doi:
10.1128/MMBR.00020-15.
- Hernick, M., & Fierke, C. A. (2006). Catalytic mechanism and
molecular recognition of E. coliUDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase probed
by mutagenesis. Biochemistry , 45 (51), 15240-15248.
DOI: 10.1021/bi982339s.
- Heuts, D. P., Scrutton, N. S., McIntire, W. S., & Fraaije, M. W.
(2009) What’s in a covalent bond? On the role and formation of
covalently bound flavin cofactors. The FEBS
journal , 276 (13), 3405-3427. doi:
10.1111/j.1742-4658.2009.07053.x.
- Hildmann, C., Ninkovic, M., Dietrich, R., Wegener, D., Riester, D.,
Zimmermann, T., … Schwienhorst, A. (2004). A new amidohydrolase fromBordetella or Alcaligenes strain FB188 with similarities
to histone deacetylases. Journal of
bacteriology , 186 (8), 2328-2339. DOI:
https://doi.org/10.1128/jb.186.8.2328-2339.2004.
- Hildmann, C., Wegener, D., Riester, D., Hempel, R., Schober, A.,
Merana, J., … Schwienhorst, A. (2006). Substrate and inhibitor
specificity of class 1 and class 2 histone deacetylases. Journal
of biotechnology , 124 (1), 258-270.
https://doi.org/10.1016/j.jbiotec.2006.01.030.
- Hirano, S. (2012). Western blot analysis. Nanotoxicity: Methods
and Protocols , 926 ,87-97. DOI: 10.1007/978-1-62703-002-1_6.
- Houghton, J. L., Green, K. D., Pricer, R. E., Mayhoub, A. S., &
Garneau-Tsodikova, S. (2013). Unexpected N-acetylation of capreomycin
by Mycobacterial Eis enzymes. Journal of Antimicrobial
Chemotherapy , 68 , 800–805.
https://doi.org/10.1093/jac/dks497.
- Inoue, A., & Fujimoto, D. (1969). Enzymatic deacetylation of
histone. Biochemical and biophysical research
communications , 36 (1), 146-150.
https://doi.org/10.1016/0006-291X(69)90661-5.
- Jackman, J. E., Fierke, C. A., Tumey, L. N., Pirrung, M., Uchiyama,
T., Tahir, S. H., … Raetz, C. R. (2000). Antibacterial agents that
target lipid a biosynthesis in gram-negative bacteria: inhibition of
diverse UDP-3-O-(r-3-hydroxymyristoyl)-N-acetylglucosamine
deacetylases by substrate analogs containing zinc binding
motifs. Journal of Biological Chemistry , 275 (15),
11002-11009. doi: 10.1074/jbc.275.15.11002.
- James, A. M., Hoogewijs, K., Logan, A., Hall, A. R., Ding, S.,
Fearnley, I. M., & Murphy, M.P. (2017). Non-enzymatic N-acetylation
of lysine residues by acetylCoA often occurs via a proximal
S-acetylated thiol intermediate sensitive to glyoxalase II. Cell
reports , 18 (9), 2105-2112. doi:
10.1016/j.celrep.2017.02.018.
- Jiang, Q., Chen, W., Qin, Y., Huang, L., Xu, X., Zhao, L., & Yan, Q.
(2017). AcuC, a histone deacetylase, contributes to the pathogenicity
of Aeromonas
hydrophila . Microbiologyopen , 6 (4), e00468.
https://doi.org/10.1002/mbo3.468.
- Khoury, G., Baliban, R., & Floudas, C. (2011). Proteome-wide
post-translational modification statistics: frequency analysis and
curation of the swiss-prot database. Scientific reports ,1 (1), 90. https://doi.org/10.1038/srep00090.
- Kim, D., Yu, B. J., Kim, J. A., Lee, Y. J., Choi, S. G., Kang, S., &
Pan, J. G. (2013). The acetylproteome of Gram‐positive model bacteriumBacillus subtilis . Proteomics , 13 (10-11),
1726-1736. doi: 10.1002/pmic.201200001.
- Kim, K. H., An, D. R., Song, J., Yoon, J. Y., Kim, H. S., Yoon, H. J.,
& Suh, S. W. (2012). Mycobacterium tuberculosis Eis protein
initiates suppression of host immune responses by acetylation of
DUSP16/MKP-7. Proceedings of the National Academy of
Sciences , 109 (20), 7729-7734. doi: 10.1073/pnas.1120251109.
- Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., … Zhao,
Y. (2006). Substrate and functional diversity of lysine acetylation
revealed by a proteomics survey. Molecular Cell , 23 ,
607–618. https://doi.org/10.1016/j.molcel.2006.06.026.
- Komatsu, Y., Iwabata, H., & Yoshida, M. Nova science publishers, inc
(Eds.) (2005). Anti-acetyllysine antibody: a useful tool for listening
to posttranslational language. Trends in monoclonal antibody research.
37–57 p.
- Kosono, S., Tamura, M., Suzuki, S., Kawamura, Y., Yoshida, A.,
Nishiyama, M., & Yoshida, M. (2015). Changes in the acetylome and
succinylome of Bacillus subtilis in response to carbon
source. PloS one , 10 (6), e0131169.
https://doi.org/10.1371/journal.pone.0131169.
- Krämer, A., Wagner, T., Yildiz, O., & Meyer-Almes, F.J. (2016).
Crystal structure of a histone deacetylase homologue fromPseudomonas aeruginosa . Biochemistry , 55 (49),
6858-6868. doi: 10.1021/acs.biochem.6b00613.
- Kremling, A., Geiselmann, J., Ropers, D., & de Jong, H. (2015).
Understanding carbon catabolite repression in Escherichia coliusing quantitative models. Trends in microbiology,23 (2), 99-109. doi: 10.1016/j.tim.2014.11.002.
- Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of
bacterial pH sensing and homeostasis. Nature Reviews
Microbiology , 9 (5), 330-343. doi:10.1038/nrmicro2549.
- Kuhn, M. L., Zemaitaitis, B., Hu, L. I., Sahu, A., Sorensen, D.,
Minasov, G., … Wolfe, A.J. (2014). Structural, kinetic and proteomic
characterization of acetyl phosphate-dependent bacterial protein
acetylation. PloS one , 9 (4), e94816.
https://doi.org/10.1371/journal.pone.0094816.
- Lammers, M. (2021). Post-translational lysine ac(et)ylation in
bacteria: a biochemical, structural, and synthetic biological
perspective. Frontiers in Microbiology , 12 ,
757179. doi: 10.3389/fmicb.2021.757179.
- Lee, K. K., & Workman, J. L. (2007). Histone acetyltransferase
complexes: one size doesn’t fit all. Nature reviews Molecular
cell biology , 8 (4), 284-295. doi:10.1038/nrm2145.
- Lee, W., VanderVen, B. C., Walker, S., & Russell, D.G. (2017). Novel
protein acetyltransferase, Rv2170, modulates carbon and energy
metabolism in Mycobacterium tuberculosis . Scientific
Reports , 7 (1), 72. doi: 10.1038/s41598-017-00067-1.
- Lei, L., Zeng, J., Wang, L., Gong, T., Zheng, X., Qiu, W., … Li, Y.
(2021). Quantitative acetylome analysis reveals involvement of
glucosyltransferase acetylation in Streptococcus mutans biofilm
formation. Environmental Microbiology Reports , 13 (2),
86-97. doi: 10.1111/1758-2229.12907.
- Li, B., Maezato, Y., Kim, S. H., Kurihara, S., Liang, J., & Michael,
A. J. (2019). Polyamine‐independent growth and biofilm formation, and
functional spermidine/spermine N‐acetyltransferases inStaphylococcus aureus and Enterococcus
faecalis . Molecular Microbiology , 111 (1), 159-175.
doi: 10.1111/mmi.14145.
- Li, Y., Xue, H., Bian, D.R., Xu, G., & Piao, C. (2020). Acetylome
analysis of lysine acetylation in the plant pathogenic bacteriumBrenneria nigrifluens . MicrobiologyOpen , 9 (1),
e00952. doi: 10.1002/mbo3.952.
- Liao, J. H., Tsai, C. H., Patel, S. G., Yang, J. T., Tu, I. F., Lo
Cicero, M., … Wu, S. H. (2017). Acetylome of Acinetobacter
baumannii SK17 reveals a highly-conserved modification of
histone-like protein HU. Frontiers in molecular
biosciences , 4 , 77.
https://doi.org/10.3389/fmolb.2017.00077.
- Limsuwun, K., & Jones, P.G. (2000). Spermidine acetyltransferase is
required to prevent spermidine toxicity at low temperatures inEscherichia coli . Journal of
bacteriology , 182 (19), 5373-5380. doi:
10.1128/jb.182.19.5373-5380.2000.
- Lin, Y., Fletcher, C. M., Zhou, J., Allis, C. D., & Wagner, G.
(1999). Solution structure of the catalytic domain of GCN5 histone
acetyltransferase bound to coenzyme A. Nature ,400 :86–89. doi: 10.1038/21922.
- Lindemann, C., Thomanek, N., Hundt, F., Lerari, T., Meyer, H. E.,
Wolters, D., & Marcus, K. (2017). Strategies in relative and absolute
quantitative mass spectrometry based proteomics. Biological
chemistry , 398 (5-6), 687-699. doi: 10.1515/hsz-2017-0104.
- Liu, L., Wang, G., Song, L., Lv, B., & Liang, W. (2016). Acetylome
analysis reveals the involvement of lysine acetylation in biosynthesis
of antibiotics in Bacillus amyloliquefaciens . Scientific
reports , 6 (1), 1-11. DOI:10.1038/srep20108.
- Liu, M., Guo, L., Fu, Y., Huo, M., Qi, Q., & Zhao, G. (2021).
Bacterial protein acetylation and its role in cellular physiology and
metabolic regulation. Biotechnology Advances , 53 ,
107842. doi: 10.1016/j.biotechadv.2021.107842.
- Liu, X., Wang, L., Zhao, K., Thompson, P. R., Hwang, Y., Marmorstein,
R., & Cole, P.A. (2008). The structural basis of protein acetylation
by the p300/CBP transcriptional
coactivator. Nature, 451 :846–850. doi:
10.1038/nature06546.
- Liu, Y.T., Pan, Y., Lai, F., Yin, X.F., Ge, R., He, Q. Y. & Sun, X.
(2018). Comprehensive analysis of the lysine acetylome and its
potential regulatory roles in the virulence of Streptococcus
pneumoniae . Journal of proteomics , 176 , 46-55.
https://doi.org/10.1016/j.jprot.2018.01.014.
- Lombardi, P. M., Cole, K. E., Dowling, D. P., & Christianson, D.W.
(2011). Structure, mechanism, and inhibition of histone deacetylases
and related metalloenzymes. Current opinion in structural
biology , 21 (6), 735-743. doi: 10.1016/j.sbi.2011.08.004.
- Lu, Y. X., Liu, X. X., Liu, W. B., & Ye, B. C. (2017). Identification
and characterization of two types of amino acid-regulated
acetyltransferases in actinobacteria. Bioscience
reports , 37 (4). doi: 10.1042/BSR20170157.
- Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse,
C., & Mijakovic, I. (2019). Protein post-translational modifications
in bacteria. Nature Reviews Microbiology , 17 (11),
651-664. https://doi.org/10.1038/s41579-019-0243-0.
- Magnet, S., Lambert, T., Courvalin, P., & Blanchard, J. S. (2001).
Kinetic and mutagenic characterization of the chromosomally encodedSalmonella enterica AAC (6 ‘)-Iy aminoglycoside
N-acetyltransferase. Biochemistry , 40 (12), 3700-3709.
doi: 10.1021/bi002736e.
- Majorek, K. A., Kuhn, M. L., Chruszcz, M., Anderson, W. F., & Minor,
W. (2013). Structural, functional, and inhibition studies of a
Gcn5-related N-acetyltransferase (GNAT) superfamily protein PA4794: a
new C-terminal lysine protein acetyltransferase from Pseudomonas
aeruginosa . Journal of Biological Chemistry , 288 (42),
30223-30235. https://doi.org/10.1074/jbc.M113.501353.
- Majorek, K. A., Osinski, T., Tran, D. T., Revilla, A., Anderson, W.
F., Minor, W., & Kuhn, M. L. (2017). Insight into the 3D structure
and substrate specificity of previously uncharacterized GNAT
superfamily acetyltransferases from pathogenic
bacteria. Biochimica et Biophysica Acta (BBA)-Proteins and
Proteomics , 1865 (1), 55-64.
https://doi.org/10.1016/j.bbapap.2016.10.011.
- Mann, M., & Jensen, O. N. (2003). Proteomic analysis of
post-translational modifications. Nature
biotechnology , 21 (3), 255-261. doi: 10.1038/nbt0303-255.
- Martini, C., Michaux, C., Bugli, F., Arcovito, A., Iavarone, F.,
Cacaci, M., … Giard, J. C. (2015). The polyamine
N-acetyltransferase-like enzyme PmvE plays a role in the virulence ofEnterococcus faecalis . Infection and
Immunity , 83 (1), 364-371. doi: 10.1128/IAI.02585-14.
- Meng, Q., Liu, P., Wang, J., Wang, Y., Hou, L., Gu, W., & Wang, W.
(2016). Systematic analysis of the lysine acetylome of the pathogenic
bacterium Spiroplasma eriocheiris reveals acetylated proteins
related to metabolism and helical structure. Journal of
proteomics , 148 , 159-169. doi: 10.1016/j.jprot.2016.08.001.
- Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: insights into
their biological function. Biochemical
Journal , 404 (1), 1-13. doi: 10.1042/BJ20070140.
- Mischerikow, N., & Heck, A. J. (2011). Targeted large‐scale analysis
of protein acetylation. Proteomics , 11 (4), 571-589.
doi: 10.1002/pmic.201000397.
- Miyagi, M. (2017). Site-specific quantification of lysine acetylation
using isotopic labeling. In Methods in Enzymology ,586 , 85-95. https://doi.org/10.1016/bs.mie.2016.09.029.
- Mizuno, Y., Nagano‐Shoji, M., Kubo, S., Kawamura, Y., Yoshida, A.,
Kawasaki, H., … Kosono, S. (2016). Altered acetylation and
succinylation profiles in Corynebacterium glutamicum in
response to conditions inducing glutamate
overproduction. Microbiologyopen , 5 (1), 152-173. doi:
10.1002/mbo3.320.
- Mo, R., Yang, M., Chen, Z., Cheng, Z., Yi, X., Li, C., … & Ge, F.
(2015). Acetylome analysis reveals the involvement of lysine
acetylation in photosynthesis and carbon metabolism in the model
cyanobacterium Synechocystis sp. PCC 6803. Journal of
proteome research , 14 (2), 1275-1286. doi: 10.1021/pr501275a.
- Mochalkin, I., Knafels, J. D., & Lightle, S. (2008). Crystal
structure of LpxC from Pseudomonas aeruginosa complexed with the
potent BB‐78485 inhibitor. Protein Science , 17 (3),
450-457. https://doi.org/10.1110/ps.073324108.
- Nagano‐Shoji, M., Hamamoto, Y., Mizuno, Y., Yamada, A., Kikuchi, M.,
Shirouzu, M., … Kosono, S. (2017). Characterization of lysine
acetylation of a phosphoenolpyruvate carboxylase involved in glutamate
overproduction in Corynebacterium glutamicum . Molecular
Microbiology , 104 (4), 677-689. oi.org/10.1111/mmi.13658.
- Nakayasu, E. S., Burnet, M. C., Walukiewicz, H. E., Wilkins, C. S.,
Shukla, A. K., Brooks, S., … Payne, S. H. (2017). Ancient regulatory
role of lysine acetylation in central
metabolism. MBio , 8 (6), e01894-17. DOI:
https://doi.org/10.1128/mbio.01894-17.
- Nielsen, T. K., Hildmann, C., Dickmanns, A., Schwienhorst, A., &
Ficner, R. (2005). Crystal structure of a bacterial class 2 histone
deacetylase homologue. Journal of molecular
biology , 354 (1), 107-120. doi: 10.1016/j.jmb.2005.09.065.
- North, B. J., & Verdin, E. (2004). Sirtuins: Sir2-related
NAD-dependent protein deacetylases. Genome
biology , 5 (5), 1-12. doi: 10.1186/gb-2004-5-5-224.
- Novak, K., Flöckner, L., Erian, A. M., Freitag, P., Herwig, C., &
Pflügl, S. (2018). Characterizing the effect of expression of an
acetyl-CoA synthetase insensitive to acetylation on co-utilization of
glucose and acetate in batch and continuous cultures of E. coliW. Microbial Cell Factories , 17 (1), 1-15.
DOI:10.1186/s12934-018-0955-2.
- Oliveira, A. P., & Sauer, U. (2012). The importance of
post-translational modifications in regulating Saccharomyces
cerevisiae metabolism. FEMS yeast research , 12 (2),
104-117. doi: 10.1111/j.1567-1364.2011.00765.x.
- Paik, W. K., Pearson, D., Lee, H. W., & Kim, S. (1970). Nonenzymatic
acetylation of histones with acetyl-CoA. Biochimica et
Biophysica Acta (BBA)-Nucleic Acids and Protein
Synthesis , 213 (2), 513-522.
https://doi.org/10.1016/0005-2787(70)90058-4.
- Pan, J., Ye, Z., Cheng, Z., Peng, X., Wen, L., & Zhao, F. (2014).
Systematic analysis of the lysine acetylome in Vibrio
parahemolyticus . Journal of proteome research , 13 (7),
3294-3302. doi: 10.1021/pr500133t.
- Pang, H., Li, W., Zhang, W., Zhou, S., Hoare, R., Monaghan, S. J., …
Lin, X. (2020). Acetylome profiling of Vibrio alginolyticusreveals its role in bacterial virulence. Journal of
Proteomics , 211 , 103543. doi: 10.1016/j.jprot.2019.103543.
- Peebo, K., Valgepea, K., Nahku, R., Riis, G., Oun, M., Adamberg, K.,
& Vilu, R. (2014). Coordinated activation of PTA-ACS and TCA cycles
strongly reduces overflow metabolism of acetate in Escherichia
coli. Applied microbiology and biotechnology , 98 , 5131-5143.
doi: 10.1007/s00253-014-5613-y.
- Phillips, D. M. P. (1963). The presence of acetyl groups in
histones. Biochemical Journal , 87 (2), 258. doi:
10.1042/bj0870258.
- Piovesan, A., Antonaros, F., Vitale, L., Strippoli, P., Pelleri, M.C.
& Caracausi, M. (2019). Human protein-coding genes and gene feature
statistics in 2019. BMC research notes , 12 :315. doi:
10.1186/s13104-019-4343-8.
- Post, D. M., Schilling, B., Reinders, L. M., D’Souza, A. K., Ketterer,
M. R., Kiel, S. J., … Gibson, B. W. (2017). Identification and
characterization of AckA-dependent protein acetylation inNeisseria gonorrhoeae . PLoS One , 12 (6),
e0179621. https://doi.org/10.1371/journal.pone.0179621.
- Ramazi, S., & Zahiri J. (2021). Post-translational modifications in
proteins: resources, tools and prediction methods, Database ,
2021, 2021 . https://doi.org/10.1093/database/baab012.
- Reverdy, A., Chen, Y., Hunter, E., Gozzi, K. & Chai, Y. (2018).
Protein lysine acetylation plays a regulatory role in Bacillus
subtilis multicellularity. PLoS One , 13 (9), e0204687.
doi: 10.1371/journal.pone.0204687.
- Richards, C. L., Lawrence, K. A., Su, H., Yang, Y., Yang, X. F.,
Dulebohn, D. P., … Gherardini, F. C. (2015). Acetyl-phosphate
is not a global regulatory bridge between virulence and central
metabolism in Borrelia burgdorferi . PLoS
One 10:e0144472. doi: 10.1371/journal.pone.0144472.
- Rojas, J. R., Trievel, R. C., Zhou, J., Mo, Y., Li, X., Berger, S.L.,
… Marmorstein, R. (1999). Structure of Tetrahymena GCN5 bound
to coenzyme A and a histone H3 peptide. Nature ,401 :93–98. https://doi.org/10.1038/43487.
- Ruijter, A. J. D., Gennip, A. H. V., Caron, H. N., Kemp, S., &
Kuilenburg, A.B.V. (2003). Histone deacetylases (HDACs):
characterization of the classical HDAC family. Biochemical
Journal , 370 (3), 737-749.
https://doi.org/10.1042/bj20021321.
- Salah Ud-Din, A. I. M., Tikhomirova, A., & Roujeinikova, A. (2016).
Structure and functional diversity of GCN5-related
N-acetyltransferases (GNAT). International journal of molecular
sciences , 17 (7), 1018. ttps://doi.org/10.3390/ijms17071018.
- Sanders, B. D., Jackson, B., & Marmorstein, R. (2010). Structural
basis for sirtuin function: what we know and what we
don’t. Biochimica et Biophysica Acta (BBA)-Proteins and
Proteomics , 1804 (8), 1604-1616. doi:
10.1016/j.bbapap.2009.09.009.
- Sauve, A. A., Wolberger, C., Schramm, V. L., & Boeke, J. D. (2006).
The biochemistry of sirtuins. Annual Review of Biochemistry,75 , 435-465.
https://doi.org/10.1146/annurev.biochem.74.082803.133500.
- Schastnaya, E., Doubleday, P. F., Maurer, L., & Sauer, U. (2023).
Non-enzymatic acetylation inhibits glycolytic enzymes inEscherichia coli . Cell Reports , 42 (1), 111950.
doi: 10.1016/j.celrep.2022.111950.
- Schilling, B., Basisty, N., Christensen, D. G., Sorensen, D., Orr, J.
S., Wolfe, A. J., & Rao, C.V. (2019). Global lysine acetylation inEscherichia coli results from growth conditions that favor
acetate fermentation. Journal of bacteriology , 201 (9),
e00768-18. DOI: https://doi.org/10.1128/jb.00768-18.
- Schilling, B., Christensen, D., Davis, R., Sahu, A. K., Hu, L. I.,
Walker‐Peddakotla, A., … Wolfe, A. J. (2015). Protein acetylation
dynamics in response to carbon overflow in Escherichia
coli . Molecular microbiology , 98 (5), 847-863. doi:
10.1111/mmi.13161.
- Schmidt, M. J., & Summerer, D. (2014). Genetic code expansion as a
tool to study regulatory processes of transcription. Frontiers
in chemistry , 2 , 7.
https://doi.org/10.3389/fchem.2014.00007.
- Shirai, T., Fujimura, K., Furusawa, C., Nagahisa, K., Shioya, S., &
Shimizu, H. (2007). Study on roles of anaplerotic pathways in
glutamate overproduction of Corynebacterium glutamicum by
metabolic flux analysis. Microbial cell factories , 6 ,
1-11. doi:10.1186/1475-2859-6-19.
- Slonczewski, J. L., Fujisawa, M., Dopson, M., & Krulwich, T. A.
(2009). Cytoplasmic pH measurement and homeostasis in bacteria and
archaea. Advances in microbial physiology , 55 , 1-317.
doi: 10.1016/S0065-2911(09)05501-5.
- Somoza, J. R., Skene, R. J., Katz, B. A., Mol, C., Ho, J. D.,
Jennings, A. J., … Tari, L. W. (2004). Structural snapshots of human
HDAC8 provide insights into the class I histone deacetylases.Structure , 12 (7), 1325-1334. doi:
10.1016/j.str.2004.04.012.
- Starai, V. J. & Escalante-Semerena, J. C. (2004). Identification of
the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA
synthetase in Salmonella enterica . Journal of molecular
biology , 340 (5), 1005-1012.
https://doi.org/10.1016/j.jmb.2004.05.010.
- Starai, V. J., & Escalante-Semerena, J. C. (2004) Acetyl-coenzyme A
synthetase (AMP forming). Cellular and molecular life sciences
CMLS , 61 , 2020-2030.
https://doi.org/10.1007/s00018-004-3448-x.
- Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D., &
Escalante-Semerena J. C. (2002). Sir2-dependent activation of
acetyl-CoA synthetase by deacetylation of active
lysine. Science, 298 (5602):2390–2392. doi:
10.1126/science.1077650.
- Starai, V. J., Gardner, J. G., & Escalante-Semerena, J. C. (2005).
Residue Leu-641 of acetyl-CoA synthetase is critical for the
acetylation of residue Lys-609 by the protein acetyltransferase enzyme
of Salmonella enterica . Journal of Biological
Chemistry , 280 (28), 26200-26205.
DOI:https://doi.org/10.1074/jbc.M504863200.
- Sun, L., Yao, Z., Guo, Z., Zhang, L., Wang, Y., Mao, R., … Lin, X.
(2019). Comprehensive analysis of the lysine acetylome inAeromonas hydrophila reveals cross-talk between lysine
acetylation and succinylation in LuxS. Emerging microbes &
infections , 8 (1), 1229-1239. doi:
10.1080/22221751.2019.1656549.
- Sun, X. L., Yang, Y. H., Zhu, L., Liu, F. Y., Xu, J. P., Huang, X. W.,
… Zhang, K. Q. (2018). The lysine acetylome of the nematocidal
bacterium Bacillus nematocida and impact of nematode on the
acetylome. Journal of proteomics , 177 , 31-39. doi:
10.1016/j.jprot.2018.02.005.
- Tarazona, O. A., & Pourquié, O. (2020). Exploring the influence of
cell metabolism on cell fate through protein post-translational
modifications. Developmental Cell , 54 (2), 282-292.
doi: 10.1016/j.devcel.2020.06.035.
- Tercero, J. C., Riles, L. E., & Wickner, R. B. (1992). Localized
mutagenesis and evidence for post-transcriptional regulation of MAK3.
A putative N-acetyltransferase required for double-stranded RNA virus
propagation in Saccharomyces cerevisiae . Journal of
Biological Chemistry , 267 (28), 20270-20276.
https://doi.org/10.1016/S0021-9258(19)88696-9.
- Tsimbalyuk, S., Shornikov, A., Kuhn, M. L., & Forwood, J.,K. (2020).
SpeG polyamine acetyltransferase enzyme from Bacillus
thuringiensis forms a dodecameric structure and exhibits high
catalytic efficiency. Journal of structural
biology , 210 (3), 107506. doi: 10.1016/j.jsb.2020.107506.
- VanDrisse, C. M., & Escalante-Semerena, J. C. (2019). Protein
acetylation in bacteria. Annual review of
microbiology , 73 , 111-132. DOI:
10.1146/annurev-micro-020518-115526.
- Vannini, A., Volpari, C., Filocamo, G., Casavola, E. C., Brunetti, M.,
Renzoni, D., … Di Marco, S. (2004). Crystal structure of a
eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed
with a hydroxamic acid inhibitor. Proceedings of the National
Academy of Sciences , 101 (42), 15064-15069.
https://doi.org/10.1073/pnas.040460310.
- Venkat, S., Chen, H., McGuire, P., Stahman, A., Gan, Q. & Fan, C.
(2019). Characterizing lysine acetylation of Escherichia colitype II citrate synthase. The FEBS Journal , 286 (14),
2799-2808. doi: 10.1111/febs.14845.
- Venkat, S., Chen, H., Stahman, A., Hudson, D., McGuire, P., Gan, Q.,
& Fan, C. (2018). Characterizing lysine acetylation of isocitrate
dehydrogenase in Escherichia coli . Journal of molecular
biology , 430 (13), 1901-1911.
https://doi.org/10.1016/j.jmb.2018.04.031.
- Venkat, S., Gregory, C., Sturges, J., Gan, Q., & Fan, C. (2017).
Studying the lysine acetylation of malate dehydrogenase. Journal
of molecular biology , 429 (9), 1396-1405. doi:
10.1016/j.jmb.2017.03.027.
- Vetting, M. W., de Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet,
S., Roderick, S. L., & Blanchard, J. S. (2005). Structure and
functions of the GNAT superfamily of
acetyltransferases. Archives of biochemistry and
biophysics, 433 , 212–226. 10.1016/j.abb.2004.09.003.
- Vetting, M. W., Roderick, S. L., Yu, M., & Blanchard, J. S. (2003).
Crystal structure of mycothiol synthase (Rv0819) fromMycobacterium tuberculosis shows structural homology to the
GNAT family of N‐acetyltransferases. Protein
science , 12 (9), 1954-1959. doi: 10.1110/ps.03153703.
- Vinuselvi, P., Kim, M. K., Lee, S. K., & Ghim, C. M. (2012). Rewiring
carbon catabolite repression for microbial cell factory. BMB
Reports , 45 , 59–70. doi: 10.5483/BMBRep.2012.45.2.59.
- Wagner, F. F., Weїwer, M., Lewis, M. C.,
& Holson, E. B. (2013). Small
molecule inhibitors of zinc-dependent histone
deacetylases. Neurotherapeutics , 10 (4), 589-604. doi:
10.1007/s13311-013-0226-1.
- Wagner, G. R., & Payne, R. M. (2013). Widespread and
enzyme-independent nϵ-acetylation and nϵ-succinylation of proteins in
the chemical conditions of the mitochondrial matrix*♦. Journal
of Biological Chemistry , 288 (40), 29036-29045.
https://doi.org/10.1074/jbc.M113.486753.
- Wang, L., Tang, Y., Cole, P.A., & Marmorstein, R. (2008). Structure
and chemistry of the p300/CBP and Rtt109 histone acetyltransferases:
implications for histone acetyltransferase evolution and function.Current opinion in structural biology , 18 :741–747.
10.1016/j.sbi.2008.09.004.
- Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., …
Zhao, G.P. (2010). Acetylation of metabolic enzymes coordinates carbon
source utilization and metabolic flux. Science ,327 (5968), 1004-1007. doi: 10.1126/science.1179687.
- Wang, Y., Wang, F., Bao, X., & Fu, L. (2019). Systematic analysis of
lysine acetylome reveals potential functions of lysine acetylation inShewanella baltica , the specific spoilage organism of aquatic
products. Journal of proteomics , 205 , 103419. doi:
10.1016/j.jprot.2019.103419.
- Wei, L., Meyer, J. G., & Schilling, B. (2018). Quantification of
site-specific protein lysine acetylation and succinylation
stoichiometry using data-independent acquisition mass spectrometry.Journal of Visualized Experiments, 4 (134),57209. doi:
10.3791/57209.
- Weinert, B. T., Iesmantavicius, V., Moustafa, T., Scholz, C., Wagner,
S. A., Magnes, C., … Choudhary, C. (2014) Acetylation dynamics
and stoichiometry in Saccharomyces cerevisiae . Molecular
systems biology , 10 (1), 716. doi: 10.1002/msb.134766.
- Weinert, B. T., Iesmantavicius, V., Wagner, S. A., Schölz, C.,
Gummesson, B., Beli, P., … Choudhary, C. (2013). Acetyl-phosphate is
a critical determinant of lysine acetylation in E.
coli . Molecular cell , 51 (2), 265-272.
10.1016/j.molcel.2013.06.003.
- Weinert, B. T., Satpathy, S., Hansen, B. K., Lyon, D., Jensen, L. J.,
& Choudhary, C. (2017). Accurate quantification of site-specific
acetylation stoichiometry reveals the impact of sirtuin deacetylase
CobB on the E. coli acetylome. Molecular & Cellular
Proteomics , 16 (5), 759-769. doi: 10.1074/mcp.M117.067587.
- Whittington, D. A., Rusche, K. M., Shin, H., Fierke, C. A., &
Christianson, D. W. (2003). Crystal structure of LpxC, a
zinc-dependent deacetylase essential for endotoxin
biosynthesis. Proceedings of the National Academy of
Sciences , 100 (14), 8146-8150. doi: 10.1073/pnas.
- Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., & Burley,
S. K. (1998). Crystal structure of a
GCN5-related N -acetyltransferase: Serratia marcescensaminoglycoside 3-N-acetyltransferase. Cell, 94 , 439–449.
doi: 10.1016/s0092-8674(00)81585-8.
- Woolridge, D. P., Martinez, J. D., Stringer, D. E., & Gerner, E. W.
(1999). Characterization of a novel spermidine/spermine
acetyltransferase, BltD, from Bacillus
subtilis . Biochemical Journal , 340 (3), 753-758.
- Wright, G. D., & Ladak, P. (1997). Overexpression and
characterization of the chromosomal aminoglycoside
6’-N-acetyltransferase from Enterococcus
faecium . Antimicrobial agents and
chemotherapy , 41 (5), 956-960. doi: 10.1128/AAC.41.5.956.
- Wybenga-Groot, L. E., Draker, K., Wright, G. D., & Berghuis, A. M.
(1999). Crystal structure of an aminoglycoside 6´-N-acetyltransferase:
defining the GCN5-related N-acetyltransferase superfamily fold.Structure , 7 (5), 497–507. doi:
10.1016/s0969-2126(99)80066-5.
- Xie, L., Zeng, J., Luo, H., Pan, W., & Xie, J. (2014). The roles of
bacterial GCN5-related N-acetyltransferases. Critical Reviews™
in Eukaryotic Gene Expression , 24 (1), 77-87. doi:
10.1615/critreveukaryotgeneexpr.2014007988.
- Xiong, Y., & Guan, K. L. (2012). Mechanistic insights into the
regulation of metabolic enzymes by acetylation. Journal of Cell
Biology , 198 (2), 155-164. doi: 10.1083/jcb.201202056.
- Xiong, Y., & Guan, K. L. (2012). Mechanistic insights into the
regulation of metabolic enzymes by acetylation. Journal of Cell
Biology , 198 (2), 155-164. doi: 10.1083/jcb.201202056.
- Xu, H., Hegde, S. S., & Blanchard, J. S. (2011). Reversible
acetylation and inactivation of Mycobacterium tuberculosisacetyl-CoA synthetase is dependent on
cAMP. Biochemistry , 50 (26), 5883-5892. doi:
10.1021/bi200156t.
- Xu, J. Y., Xu, Z., Liu, X., Tan, M., & Ye, B. C. (2018). Protein
acetylation and butyrylation regulate the phenotype and metabolic
shifts of the endospore-forming Clostridium
acetobutylicum . Molecular & Cellular
Proteomics , 17 (6), 1156-1169. doi: 10.1074/mcp.RA117.000372.
- Yan, Y., Harper, S., Speicher, D. W., & Marmorstein, R. (2002). The
catalytic mechanism of the ESA1 histone acetyltransferase involves a
self-acetylated intermediate. Nature structural
biology , 9 (11), 862-869. doi: 10.1038/nsb849.
- Yang, X. J., & Seto, E. (2008). The Rpd3/Hda1 family of lysine
deacetylases: from bacteria and yeast to mice and men. Nature
reviews Molecular cell biology , 9 (3), 206-218. doi:
10.1038/nrm2346.
- You, D., Yao, L. L., Huang, D., Escalante-Semerena, J. C., & Ye, B.
C. (2014). Acetyl coenzyme A synthetase is acetylated on multiple
lysine residues by a protein acetyltransferase with a single Gcn5-type
N-acetyltransferase (GNAT) domain in Saccharopolyspora
erythraea . Journal of bacteriology , 196 (17),
3169-3178. doi: 10.1128/JB.01961-14.
- Yu, B. J., Kim, J., Moon, J. H., Ryu, S. E., & Pan, J. G. (2008). The
diversity of lysine-acetylated proteins in Escherichia
coli . Journal of microbiology and
biotechnology , 18 (9), 1529-1536.
- Yuan, H., & Marmorstein, R. (2012). Structural basis for sirtuin
activity and inhibition. Journal of Biological
Chemistry , 287 (51), 42428-42435. doi:
10.1074/jbc.R112.372300.
- Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., &
Posey, J. E. (2009). Overexpression of the chromosomally encoded
aminoglycoside acetyltransferase eis confers kanamycin resistance inMycobacterium tuberculosis . Proceedings of the National
Academy of Sciences , 106 (47), 20004-20009.
https://doi.org/10 .1073/pnas.0907925106. 102.
- Zhang, K., Zheng, S., Yang, J. S., Chen, Y., & Cheng, Z. (2013).
Comprehensive profiling of protein lysine acetylation inEscherichia coli . Journal of proteome
research , 12 (2), 844-851. doi: 10.1021/pr300912q.
- Zhang, L., & Elias, J. E. (2017). Relative protein quantification
using tandem mass tag mass spectrometry. In: Comai, L., Katz, J.,
Mallick, P. (eds) Proteomics. Methods in Molecular Biology.1550 . Humana Press, New York, NY.
https://doi.org/10.1007/978-1-4939-6747-6_14.
- Zhang, X., Ouyang, S., Kong, X., Liang, Z., Lu, J., Zhu, K., … Luo,
C. (2014). Catalytic mechanism of histone acetyltransferase p300: from
the proton transfer to acetylation reaction. The Journal of
Physical Chemistry B , 118 (8), 2009-2019. doi:
10.1021/jp409778e.
- Zhao, K., Chai, X., & Marmorstein, R. (2004). Structure and substrate
binding properties of cobB, a Sir2 homolog protein deacetylase fromEscherichia coli . Journal of molecular
biology , 337 (3), 731-741. doi: 10.1016/j.jmb.2004.01.060.
- Zhu, W., Smith, J. W., & Huang, C. M. (2009). Mass spectrometry-based
label-free quantitative proteomics. Journal of Biomedicine and
Biotechnology , 2010 , 840518. doi: 10.1155/2010/840518.