References

Allam, A. A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Rupert, N., and Ross, Z. E. (2017). Ten-kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves: Tectonophysics, v. 721, p. 56-69.
Allen, W. K., Ridgway, K. D., Benowitz, J. A., Waldien, T. S., Roeske, S. M., Fitzgerald, P. G. and Gillis, R. J. (2022). Neogene sedimentary record of the evolution of a translated strike-slip basin along the Denali fault system: Implications for timing of displacement, composite basin development, and regional tectonics of southern Alaska. Geosphere, 18(2), p. 585-615.
Arkle, J. C., Armstrong, P. A., Haeussler, P. J., Prior, M. G., Hartman, S., Sendziak, K. L. and Brush, J. A. (2013). Focused exhumation in the syntaxis of the western Chugach Mountains and Prince William Sound, Alaska. Bulletin, 125(5-6), p. 776-793.
Austermann, J., Bird P., Heidbach O., Schubert G., and Stock J. M. (2011). Quantifying the forces needed for the rapid change of Pacific plate motion at 6 Ma. Earth and Planetary Science Letters 307, no. 3-4, p. 289-297.
Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E., and Toy, V. G. (2013). Slip localization on the southern Alpine fault, New Zealand: Tectonics, v. 32, p. 620-640.
Bankey, V., Cuevas, A., Daniels, D., Finn, C. A., Hernandez, I., Hill, P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W., Rystrom, V., Shearer, S., Snyder, S., Sweeney, R. E., Velez, J., Phillips, J. D., Ravat, D. K. A. (2002). Digital data grids for the magnetic anomaly map of North America: U.S. Geological Survey Open-File Report 2002-414
Batt, G. E., Baldwin, S. L., Cottam, M. A., Fitzgerald, P. G., Brandon, M. T., & Spell, T. L. (2004). Cenozoic plate boundary evolution in the South Island of New Zealand: New thermochronological constraints.Tectonics , 23 (4).
Beamud, E, Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garcés, M., Cabrera, L., Metcalf J. R. (2011). Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Res 23, p. 309-331.
Bemis, S. P., Weldon, R. J., and Carver, G. A. (2015). Slip partitioning along a continuously curved fault: Quaternary geologic controls on Denali fault system slip partitioning, growth of the
Alaska Range, and the tectonics of south-central Alaska: Lithosphere, v. 7, no. 3, p. 235-246.
Bennett, S. E., Oskin, M. E., Iriondo, A. and Kunk, M. J. (2016). Slip history of the La Cruz fault: Development of a late Miocene transform in response to increased rift obliquity in the northern Gulf of California.Tectonophysics , 693 , p. 409-435.
Benowitz, J. A., Roeske, S. M., Regan, S. P., Waldien, T. S., Elliott, J. L. and O’Sullivan, P. B. (2022a). Large-scale, crustal-block vertical extrusion between the Hines Creek and Denali faults coeval with slip localization on the Denali fault since ca. 45 Ma, Hayes Range, Alaska, USA. Geosphere.
Benowitz, J. A., Layer, P. W. and Vanlaningham, S. (2014). Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology. Geological Society, London, Special Publications, 378(1), p.225-243.
Benowitz, J. A., Haeussler, P. J., Layer, P. W., O’Sullivan, P. B., Wallace, W. K. and Gillis, R. J.
(2012). Cenozoic tectono‐thermal history of the Tordrillo Mountains, Alaska: Paleocene‐Eocene ridge subduction, decreasing relief, and late Neogene faulting. Geochemistry, Geophysics, Geosystems, 13(4).
Benowitz, J. A., Davis, K. and Roeske, S. (2019). A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range. Geosphere, 15(3), p. 682-701.
Benowitz, J.A., Layer, P. W., Armstrong, P., Perry, S.E., Haeussler, P.J., Fitzgerald, P.G. and VanLaningham, S. (2011). Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range. Geosphere, 7(2), p. 455-467.
Berkelhammer, S. E., Brueseke, M.E., Benowitz, J.A., Trop, J.M., Davis, K., Layer, P.W. and Weber, M. (2019). Geochemical and geochronological records of tectonic changes along a flat-slab arc-transform junction: Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc, Alaska. Geosphere, 15(5), p.1508-1538.
Berger, A., Egli, D., Glotzbach, C., Valla, P.G., Pettke, T., Herwegh, M. (2022). Apatite low temperature chronometry and microstructures across a hydrothermally active fault zone, Chemical Geology 588
Betka, P.M., Gillis, R.J., and Benowitz, J.A., Cenozoic sinistral transpression and polyphase slip within the Bruin Bay fault system, Iniskin-Tuxedni region, Cook Inlet, Alaska: Geosphere, v. 13, no. 6, p. 1806-1833, doi:10.1130/GES01464.1.
Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chemical Geology, Volume 205, Issues 1-2, 2004, p. 115-140.
Blanquat, M. D. S., Tikoff, B., Teyssier, C., Virgneresse, J.L. (1998). Transpressional kinematics and magmatic arcs, In: Holdsworth, R. E., Strachan, R. A., Dewzy, J. E (eds) (1998). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, p. 327-340.
Blythe, A. E., House, M. A., Spotila, J. A. and Barth, A. (2002). Low temperature thermochronology of the San Gabriel and San Bernardino Mountains, southern California: Constraining structural evolution. Special Papers Geological Society of America, p. 231-250.
Box, S. E., Karl, S. M., Jones, J. V., III, Bradley, D. C., Haeussler, P. J., & O’Sullivan, P. B. (2019). Detrital zircon geochronology along a structural transect across the Kahiltna assemblage in the western Alaska Range: Implications for emplacement of the Alexander-Wrangellia- Peninsular terrane against North America. Geosphere, 15(6), p. 1774-1808. https://doi.org/10.1130/GES02060.1.
Brennan, P., Gilbert, H., Ridgway, K. D. (2011). Crustal structure across the central Alaska Range: Anatomy of a Mesozoic collisional zone. Geochemistry Geophysics Geosystems, 12(4).
-
Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K. N., Berkelhammer, S. E., Layer, P. W. and Morter, B. K. (2019). The Alaska Wrangell Arc: ~ 30 Ma of subduction‐related magmatism along a still active arc‐transform junction. Terra Nova, 31(1), p. 59-66.
Brueseke, M. E., Benowitz, J. A., Bearden, A. T., Mann, M. E., Miggins, D. P. (2023). Subduction Disruption, Slab Tears: ca. 1 Ma true collision of a ~30-km thick oceanic plateau segment recorded by Yakutat slab nascent tear magmatism, Terra Nova.
Bruhn, R. L., Sauber, J., Cotton, M. M., Pavlis, T. L., Burgess, E., Ruppert, N., & Forster, R. R. (2012). Plate margin deformation and active tectonics along the northern edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska, and Yukon, Canada. Geosphere, 8(6), 1384-1407.
Bruhn, R. L., Pavlis, T. L., Plafker, G., & Serpa, L. (2004). Deformation during terrane accretion in the Saint Elias orogen, Alaska. Geological Society of America Bulletin, 116(7-8), 771-787.
Burkett, C. A., Bemis, S. P., and Benowitz, J. A. (2016). Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska: Tectonophysics, v. 693, p. 489-506.
Buscher, J. T. and Spotila, J. A. (2007). Near‐field response to transpression along the southern San Andreas fault, based on exhumation of the northern San Gabriel Mountains, southern California.Tectonics , 26 (5).
Choi, M., Eaton, D. W. and Enkelmann, E. (2021). Is the Eastern Denali fault still active?. Geology, 49(6), p. 662-666.
Churkin, M., Foster, H. L., Chapman, R. M., Weber, F. R. (1982). Terranes and Suture Zones in East Central Alaska, Journal of Geophysical Research, Vol. 87, B5, p. 3718-3730
Cobbett, R., Israel, S., Mortensen, J., Joyce, N., and Crowley, J., (2016). Structure and kinematic evolution of the Duke River fault, southwestern Yukon: Canadian Journal of Earth Sciences,
v. 54, p. 322-344.
Cole, R. B. and Ridgway, K. D. (1993). The influence of volcanism on fluvial depositional systems in a Cenozoic strike-slip basin, Denali fault system, Yukon Territory, Canada. Journal of Sedimentary Research, 63(1), p. 152-166.
Cole, R. B., Ridgway, K. D., Layer, P. W. and Drake, J. (1999). Kinematics of basin development during the transition from terrane accretion to strike‐slip tectonics. Late Cretaceous‐early Tertiary Cantwell Formation, south central Alaska. Tectonics, 18(6), p.1224-1244.
Collett, C. M., Duvall, A. R., Flowers, R. M., Tucker, G. E. and Upton, P. (2019). The timing and style of oblique deformation within New Zealand’s Kaikōura Ranges and Marlborough fault System based on low‐temperature thermochronology. Tectonics, 38(4), p. 1250-1272.
Coney, P. J., Jones, D. L., Monger, J. W. H., 1980. Cordilleran suspect terranes. Nature, 288 (5789): 329-333.
Cooke, M. L. and Madden, E. H. (2014). Is the Earth lazy? A review of work minimization in fault evolution. Journal of Structural Geology, 66, p. 334-346.
Christie-Blick, N. and Biddle, K. T. (1985). Deformation and basin formation along strike-slip faults, Basin Formation and Sedimentation, SEPM Special Publication No. 37 p. 1-34
Denton, G.H. and Armstrong, R.L. (1969). Miocene-Pliocene glaciations in southern Alaska. American Journal of Science, 267(10), p. 1121-1142.
Donelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49-94.
Doser, D.I. (2014). Seismicity of Southwestern Yukon, Canada, and its relation to slip transfer between the Fairweather and Denali fault systems. Tectonophysics, 611, p. 121-129.
Doubrovine, P. V., and Tarduno, J. A. (2008). A revised kinematic model for the relative motion
between Pacific oceanic plates and North America since the Late Cretaceous: Journal of
Geophysical Research: Solid Earth, v. 113, p. 1-20.
Dusel-Bacon, C., Day, W. C., and Aleinikoff, J. N. (2013). Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: Implications for the evolution of the westernmost part of the Yukon-Tanana terrane: Canadian Journal of Earth Sciences, v. 50, no. 8, p. 826-846, https:// doi .org /10 .1139 /cjes -2013 -0004.
Duvall, A. R., Harbert, S. A., Upton, P., Tucker, G. E., Flowers, R. M. and Collett, C. (2020). River patterns reveal two stages of landscape evolution at an oblique convergent margin, Marlborough fault System, New Zealand. Earth Surface Dynamics, 8(1), p. 177-194.
Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A. and Crone, A. J. (2003). The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300, 1113.
Ebherhart-Phillips, D., Christensen, D. H., Brocher, T. M., Hansen, R., Rupert, N. A., Haeussler, P. J., Abers, G. A. (2006). Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data, Journal of Geophysical Research, Vol. 111
Eisbacher, G. H. (1976). Sedimentology of the Dezadeash flysch and its implications for strike-slip faulting along the Denali fault, Yukon Territory and Alaska. Canadian Journal of Earth Sciences, 13(11), p. 1495-1513. https://doi.org/10.1139/e76-157
Elliott, J. L., Larsen, C. F., Freymueller, J. T., and Motyka, R. J. (2010). Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements, J. Geophys. Res.,115, B09407, doi:10.1029/2009JB007139.
Elliott, J., Freymueller, J. T. (2020). A Block Model of Present-Day Kinematics of Alaska and Western Canada, J. Geophysical Research, Solid Earth, doi: 10.1029/2019JB018378
Engebretson, D. C., Cox, A., and Gordon, R. G., (1985). Relative Motions Between Oceanic and
Continental Plates in the Pacific Basin: Geological Society of America Special Paper 206,
p. 59, https:// doi .org /10 .1130 /SPE206 -p1.
Enkelmann, E., Piestrzeniewicz, A., Falkowski, S., Stübner, K. and Ehlers, T. A. (2017). Thermochronology in southeast Alaska and southwest Yukon: Implications for North American Plate response to terrane accretion. Earth and Planetary Science Letters, 457, p. 348-358.
Eyles C. H., Eyles, N. (1989). The uper Cenozoic White River “Tillites” of southern Alaska: Subaerial slope and fan-delta deposits in a strike-slip setting, Geological Society of America Bulletin, v. 101, p. 1091-1102
-Farley, K. A. (2002). (U-Th)/He dating: Techniques, calibrations, and aplications: Reviews in
Mineralogy and Geochemistry, v. 47, p. 819-844, https:// doi .org /10 .2138 /rmg .2002 .47 .18.
Ferris, A., Abers, G.A., Christensen, D.H. and Veenstra, E., 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50-150 km depth. Earth and Planetary Science Letters ,214 (3-4), pp.575-588.
Finzel, E. S., Ridgway, K. D. and Trop, J. M. (2015). Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading-ridge and flat-slab subduction processes, Cenozoic forearc basins, Alaska. Geosphere, 11(3), p. 823-849.
Fiorillo, A. R., Adams, T. L. and Kobayashi, Y. (2012). New sedimentological, palaeobotanical, and dinosaur ichnological data on the palaeoecology of an unnamed Late Cretaceous rock unit in Wrangell-St. Elias National Park and Preserve, Alaska, USA. Cretaceous Research, 37, p. 291-299.
Fitzgerald, P. G., Baldwin, S. L., Webb, L. and O’Sullivan P. (2006), Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land, Chemical geology , 225 (1-2), p. 91-120
Fitzgerald, P. G., Malusa, M. G., Munoz, J. A. (2019). Detrital thermochronology using Conglomerates and Cobbles, in. M. G. Malusà and P. G. Fitzgerald (eds.), Fission-Track Thermochronology and its Aplication to Geology, Springer Textbooks in Earth Sciences, Geography and Environment, p. 295-314.
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F. and Stump, E. (1995). Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. Journal of Geophysical Research: Solid Earth, 100(B10), p. 20175-20191.
Fitzgerald, P. G., Stump, E. and Redfield, T. F. (1993). Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. Science, 259(5094), p.497-499.
Fitzgerald, P. G., Roeske, S. M., Benowitz, J. A., Riccio, S. J., Perry, S. E., and Armstrong, P. A. (2014), Alternating asymmetric topography of the Alaska range along the strike‐slip Denali fault:
Strain partitioning and lithospheric control across a terrane suture zone: Tectonics, v. 33,
p. 1519-1533, https:// doi .org /10 .1002 /2013TC003432.
Flowers, R. M., Zeitler, P. K., Danišík, M., Reiners, P. W., Gautheron, C., Ketcham, R. A., and Brown, R. W. (2023a). (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting. Bulletin, 135(1-2), 104-136.
Flowers, R. M., Ketcham, R. A., Enkelmann, E., Gautheron, C., Reiners, P. W., Metcalf, J. R., and Brown, R. W. (2023b). (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data. Bulletin, 135(1-2), 137-161.
Forbes, R. B., Smith, T. E., & Turner, D. L. (1974). Comparative petrology and structure of the Maclaren, Ruby Range, and Coast Range belts: Implications for offset along the Denali fault system. Geological Society of America Abstracts with Programs. 6, 177.
Gallagher K., Brown R., Johnson C. (1998). Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Sci 26:519-572.
Gleadow, A.J.W., 1981, Fission-­‐Track dating methods: What are the real alternates? Nuclear Tracks, v. 5, no. 1/2, p. 3-14.
Gleadow, A. J. W., Duddy, I. R., Lovering, J. F. (1983). Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Aust Pet Explor Assoc J 23:92-102
Gleadow A. J. W., Duddy I. R., Green P. F., Lovering J.F. (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Miner Petrol 94, p. 405-415
Gleadow A. J. W., Fitzgerald P. G. (1987). Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82, p. 1-14
Gulick, S. P. S., Reece, R. S., Christeson, G. L., Van Avendonk, H., Worthington, L. L. and Pavlis, T. L. (2013). Seismic images of the Transition fault and the unstable Yakutat-Pacific-North American triple junction. Geology, 41(5), p. 571-574.
Haeussler, P. J., Matmon, A., Schwartz, D. P., and Seitz, G. G. (2017). Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system: Geosphere, v. 13, p. 1445-1463
Haeussler, P. J., O’sullivan, P., Berger, A. L. and Spotila, J. A. (2008). Neogene exhumation of the Tordrillo Mountains, Alaska, and correlations with Denali (Mount McKinley). Washington DC American Geophysical Union Geophysical Monograph Series, 179, p. 269-285.
Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D., Lienkaemper, J. J., Sherrod, B., Cinti, F. R., Montone, P., Craw, P. A., Crone, A. J., Personius, S. F. (2004). Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M7.9 Earthquake, Alaska, Bulletin Seismology Society of America, v. 94, p. 23-52
Hiess, J., Condon, D. J., Mclean, N., and Noble, S. R. (2012). U-238/U-235 Systematics in Terrestrial Uranium-Bearing Minerals: Science, v. 335, p. 1610-1614
Huntington, K. W., Blythe, A. E., Hodges, K. V. (2006). Climate change and late Pliocene acceleration of erosion in the Himalaya, Earth and Planetary science letteres, V. 252 p 107-118
Hurford, A.J., Green, P.F., 1983, The zeta calibration of fission track dating. Isotope geoscience, 1, p. 285-317
Jicha, B. R., Garcia, M. O., & Wessel, P. (2018). Mid-Cenozoic Pacific plate motion change: Implications for the northwest Hawaiian Ridge and circum-Pacific. Geology46 (11), 939-942.
Johnson, J. E., Flowers, R. M., Baird, G. B. and Mahan, K. H. (2017). “Inverted” zircon and apatite (U-Th)/He dates from the Front Range, Colorado: high-damage zircon as a low-temperature (< 50° C) thermochronometer. Earth and Planetary Science Letters, 466, p. 80-90.
Jones, D., Siberling, N., Gilbert, W., and Coney, P. (1982). Character, distribution, and tectonic significance of accretionary terranes in the central Alaska Range: Journal of Geophysical Research: Solid Earth, v. 87, p. 3709-3717
Jones III, J. V., Todd, E., Box, S. E., Haeussler, P. J., Holm-Denoma, C. S., Karl, S. M., Graham, G. E., Bradley, D. C., Kylander-Clark, A. R., Friedman, R. M. and Layer, P. W. (2021). Cretaceous to Oligocene magmatic and tectonic evolution of the western Alaska Range: Insights from U-Pb and 40Ar/39Ar geochronology. Geosphere, 17(1), p. 118-153.
Jones, J., Caine, J., Holm-Denoma, C., Ryan, J., Benowitz, J., and Drenth, B. (2017). Unraveling the boundary between the Yukon-Tanana terrane and the parautochthonous North America in
eastern Alaska: Geological Society of America Abstracts with Programs, v. 49, no. 6
Kaufman, D.S., Young, N.E., Briner, J.P. and Manley, W.F. (2011). Alaska palaeo-glacier atlas In Developments in Quaternary Sciences (Vol. 15, pp. 427-445). Elsevier.
Kellogg, K. S., Minor, S. A. (2005). Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the “Big Bend” of the San Andreas fault: An example from Lockwood Valley, southern California. Tectonics, 24(1).
Ketcham, R. A., (2003). Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. American Mineralogist, 88(5-6), p. 817-829.
Ketcham, R. A., (2005). Forward and Inverse Modeling of Low Temperature Thermochronometry Data, Reviews in Mineralogy and Geochemistry, Vol. 58, p 278-314
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. and Hurford, A. J. (2007). Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5-6), p. 799-810.
Ketcham, R. A., Gautheron, C., & Tassan-Got, L. (2011). Accounting for long alpha-particle stoping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochmica et Cosmochimica Acta, 75(24), p. 7779-7791. http://doi.org/10.1016/j.gca.2011.10.011
Lahr, J. C., & Plafker, G. (1980). Holocene Pacific–North American plate interaction in southern Alaska: Implications for the Yakataga seismic gap. Geology, 8(10), 483-486.
Lease, R.O., Haeussler, P.J., and O’Sullivan, P., (2016). Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and
geochronology: Tectonics, v. 35, p. 934-955
Lease, R. O., Haeussler, P. J., Witter, R. C., Stockli, D. F., Bender, A. M., Kelsey, H. M., O’Sullivan, P.B. (2021). Extreme Quaternary plate boundary exhumation and strike-slip localized along the southern Fairweather fault, Alaska, USA. Geology, 49(5), p. 602-606.
Lowey, G. W. (2019). Provenance analysis of the Dezadeash Formation (Jurassic-Cretaceous), Yukon, Canada: Implications regarding a linkage between the Wrangellia composite terrane and the western margin of Laurasia. Canadian Journal of Earth Sciences, 56(1), p. 77-100. https://doi.org/10.1139/cjes-2017-0244
Lozos, J. C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. Science advances, 2(3), p.e1500621.
Ludwig, K. R. (1998). On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta, 62(4), p.665-676.
MacKevettt, E. M. (1978). Geologic Map of the McCarthy Quadrangle, Alaska: U.S. Geological Survey Miscellaneous Investigation Series I-1032, scale 1:250,000.
Mann, M. E., Abers, G. A., Daly, K., Christensen, D. H. (2022). Subduction of an Oceanic Plateau Across Southcentral Alaska: Scattered‐Wave Imaging. Journal of Geophysical Research: Solid Earth: e2021JB022697.
Manselle, P., Brueseke, M. E., Trop, J. M., Benowitz, J. A., Snyder, D. C., and Hart, W. K. (2020). Geochemical and stratigraphic analysis of the Chisana Formation, Wrangellia terrane, eastern Alaska: Insights into Early Cretaceous magmatism and tectonics along the northern Cordilleran margin: Tectonics, v. 39, no. e2020TC006131.
Marechal, A., Ritz, J. F., Ferry, M., Mazzotti, S., Blard, P. H., Braucher, R. and Saint-Carlier, D. (2018). Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River faults. Earth and Planetary Science Letters, 482, p.71-80.
Marincovich, L. and Gladenkov, A. Y. (1999). Evidence for an early opening of the Bering Strait. Nature, 397 (6715), p. 149-151.
Matmon, A., Schwartz, D. P., Haeussler, P. J., Finkel, R., Lienkaemper, J. J., Stenner, H. D. and Dawson, T. E. (2006). Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska. Geology, 34(8), p. 645-648.
McAleer, R. J., Spotila, J. A., Enkelmann, E. and Berger, A. L. (2009). Exhumation along the Fairweather fault, southeastern Alaska, based on low‐temperature thermochronometry. Tectonics, 28(1).
McBeck, J., Cooke, M. and Madden, E. (2017). Work optimization predicts the evolution of extensional step overs within anisotropic host rock: Implications for the San Pablo Bay, CA. Tectonics, 36(11), p.2630-2646.
McCaffrey, R., Zwick, P. C., Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., Puntodewo, S. S. O., Subarya, C. (2000). Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling, Journal of Geophysical Research, Vol. 105, No. B12, p 363-376
McDermott, R. G., Ault, A. K., Caine, J. S. and Thomson, S. N. (2019). Thermotectonic history of the Kluane Ranges and evolution of the eastern Denali fault zone in southwestern Yukon, Canada. Tectonics, 38(8), p. 2983-3010.
McDermott, R. G, Ault, A. K., Caine, J. S. (2021). Dating fault damage along the eastern Denali fault zone with hematite (U-Th)/He thermochronometry, Earth and Planetary science Letters 563
McGeary, S., Nur, A., & Ben-Avraham, Z. (1985). Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus. Tectonophysics, 119(1-4), p. 195-221.
Milde, E. R. (2014), Using Low-Temperature Thermochronology to Constrain the Role of the Totschunda fault in Southeastern Alaskan Tectonics [M.S. thesis]: Syracuse, New York,
Syracuse University, 127 p.
Miller, M. L., Bradley, D. C., Bundtzen, T. K., and McClelland, W. (2002) Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska: The Journal of Geology, v. 110, p. 247-270
Mukasa, S. B., Andronikov, A. V. and Hall, C. M. (2007). The 40Ar/39Ar chronology and eruption rates of Cenozoic volcanism in the eastern Bering Sea Volcanic Province, Alaska. Journal of Geophysical Research: Solid Earth, 112(B6).
Nabelek, P. I., Hofmeister, A. M., & Whittington, A. G. (2012). The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth and Planetary Science Letters, 317, 157-164.
Najman, Y., Sobel, E. R., Millar, I., Luan, X., Zapata, S., Garzanti, E., Parra, M., Vezzoli, G., Zhang, P., Wa Aung, D. and Paw, S. M. T. L. (2022). The timing of collision between Asia and the West Burma Terrane, and the development of the Indo‐Burman Ranges. Tectonics, 41(7), p.e2021TC007057.
Nokleberg, W. J., Jones, D. L., & Silberling, N. J. (1985). Origin and tectonic evolution of the Maclaren and Wrangellia terranes, eastern Alaska Range, Alaska. The Geological Society of America Bulletin, 96(10), p. 1251-1270
Nokleberg, W. J., & Richter, D. H. (2007). Origin of narrow terranes and adjacent major terranes occurring along the Denali fault in the Eastern and Central Alaska Range, Alaska. In K. D. Ridgway, J. M. Trop, J. M. G. Glen, & J. M. O’Neill (Eds.), Special Paper 431: Tectonic
growth of a collisional continental margin: Crustal evolution of southern Alaska, Vol. 431, p. 129-154
Oglesby, D.D., Dreger, D.S., Harris, R.A., Ratchkovski, N. and Hansen, R. (2004). Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), pp.S214-S233
Passchier, C.W. and Platt, J.P. (2017). Shear zone junctions: Of zipers and freeways. Journal of Structural Geology, 95, p. 188-202.
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., and Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction, Geochem. Geophys. Geosyst., 11
Powell, R.E. (1993). ”Chapter 1: Balanced palinspastic reconstruction of pre-late Cenozoic paleogeology, southern California: Geologic and kinematic constraints on evolution of the San Andreas fault system”, The San Andreas fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, Robert E. Powell, R. J. Weldon, II, Jonathan C. Matti
Pavlis, G. L., Bauer, M. A., Elliot, J. L., Koons, P., Pavlis, T. L., Ruppert, N., Ward, K. M., Worthington, L. L. (2019). A unified three-dimensional model of the lithospheric structure at the subduction corner in southeast Alaska: Summary results from STEEP, Geosphere, v. 15., p. 382-406.https://doi.org/10.1130/GES01488.1
Raymo, M. E. (1994). The initiation of Northern Hemisphere glaciation. Annual Review of Earth and Planetary Sciences, 22(1), p. 353-383.
Redfield, T. and Fitzgerald, P. (1993). Denali fault system of southern Alaska: an interior strike-slip structure responding to dextral and sinistral shear coupling. Tectonics 12, p. 1195-1208.
Reece, R. S., Gulick, S. P., Christeson, G. L., Horton, B. K., van Avendonk, H., Barth, G. (2013). The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska. Journal of Geophysical Research: Solid Earth, 118(5), p. 1862-1872.
Regan, S. P., Benowitz, J. A., Waldien, T. S., Holland, M. E., Roeske, S. M., O’Sullivan, P., Layer, P. (2021). Long distance plutonic relationships demonstrate 33 million years of strain partitioning along the Denali fault. Terra Nova, 33(6), p. 630-640.
Regan, S. P., Benowitz, J. A., and Holland, M. E. (2020). A plutonic brother from another magma
mother: Disproving the Eocene Foraker-McGonagall pluton piercing point and implications for
long‐term slip on the Denali fault: Terra Nova, v. 32, p. 66-74
Riccio, S. J., Fitzgerald, P. G., Benowitz, J. A., and Roeske, S. M. (2014). The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier thrust fault region of the intracontinental strike‐slip Denali fault system: Tectonics, v. 33, p. 2195-2217, https://doi.org/10.1002/2014TC003646.
Richter, D.H. and Matson Jr, N.A. (1971). Quaternary faulting in the eastern Alaska Range. Geological Society of America Bulletin, 82(6), p. 1529-1540.
Richter, D. H., (1976). Geologic Map of the Nabesna Quadrangle: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-932, scale 1:250,000.
Richter, D. H., Smith, J. G., Lanphere, M. A., Dalrymple, G. B., Reed, B. L., Shew, N. (1990). Age and progression of volcanism, Wrangell volcanic field, Alaska: Bulletin of Volcanology, v. 53, p. 29-44
Ridgway, K. D., Decelles, P. G. (1993). Stream‐dominated alluvial fan and lacustrine depositional systems in Cenozoic strike‐slip basins, Denali fault system, Yukon Territory, Canada. Sedimentology, 40(4), p. 645-666.
Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M. and Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. Geological Society of America Bulletin ,114 (12), p. 1480-1504.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K. (2011). A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine: Earth and Planetary Science Letters, v. 311, no. 3-4, p. 420-426
Rosenthal, J., Betka, P., Nadin, E., Gillis, R., and Benowitz, J. (2018), Vein formation during progressive Paleogene faulting and folding within the lower Cook Inlet basin, Alaska: Geosphere, v. 14, no. 1, p. 23-49, http://doi.org/10.1130/GES01435.1.
Rossi, G., Abers, G. A., Rondenay, S. and Christensen, D. H. (2006). Unusual mantle Poisson’s ratio, subduction, and crustal structure in central Alaska. Journal of Geophysical Research: Solid Earth ,111 (B9).
-
Schwartz, D. P., Haeussler, P. J., Seitz, G. G., Dawson, T. E. (2012). Why the 2002 Denali fault rupture propagated onto the Totschunda fault: Implications for fault branching and seismic hazards. Journal of Geophysical Research: Solid Earth, 117(B11).
Skulski, T., Francis, D., & Ludden, J. (1992). Volcanism in an arc-transform transition zone: The stratigraphy of the St. Clare Creek volcanic field, Wrangell volcanic belt, Yukon, Canada. Canadian Journal of Earth Sciences, 29, p. 446-461.
Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4), p. 581-589.
Spotila, J. A., Farley, K. A., Yule, J. D., Reiners, P. W. (2001). Near-field transpressive deformation along the San Andreas fault zone in southern California, based on exhumation constrained by (U-Th)/He dating. Journal of Geophysical Research, 106(B12): 30909.
Spotila, J. A., Niemi, N., Brady, R., House, M., Buscher, J. and Oskin, M. (2007). Long-term continental deformation associated with transpressive plate motion: The San Andreas fault. Geology, 35(11), p. 967-970.
Spotila, J. A., Berger, A. L. (2010). Exhumation at Orogenic Indentor Corners under Long-Term Glacial Conditions: Example of the St. Elias Orogen, Southern Alaska. Tectonophysics, 490, p. 241-256.
Spotila, J. A., Farley, K. A. and Sieh, K. (1998). Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics, 17(3), p. 360-378.
Storti F., Holdsworth, R. E., Salvani, F. (2003). Intraplate Strike-Slip Deformation Belts. Geological Society Special Publication, 210
Sylvester, A. G. (1988). Strike-slip faults. Geological Society of America Bulletin, 100, p. 1666-1703.
Townsend, K. F., Clark, M. K. and Niemi, N. A. (2021). Reverse faulting Within a Continental Plate Boundary Transform System. Tectonics, 40(11), e2021TC006916.
Trop, J. M., Benowitz, J. A., Kirby, C. S. and Brueseke, M. E. (2022). Geochronology of the Wrangell Arc: Spatial-temporal evolution of slab-edge magmatism along a flat-slab, subduction-transform transition, Alaska-Yukon. Geosphere, 18(1), p. 19-48.
Trop, J. M., Benowitz, J., Cole, R. B. and O’Sullivan, P. (2019). Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary. Geosphere, 15(4), p. 1066-1101.
Trop, J.M., and Ravn, R.L. (2003). Sedimentology, palynology, and petrology of the Cretaceous Matanuska Formation, south-central Alaska: Relationships between forearc basin development and accretionary tectonic events: Geological Society of America Abstracts with Programs, v. 35, no. 6, p. 559.
Trop, J.M., and Ridgway, K.D. (2007). Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective, in Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska: Geological Society of America Special Paper 431, p. 55-94
Trop, J. M., Hart, W. K., Snyder, D. and Idleman, B. (2012). Miocene basin development and volcanism along a strike-slip to flat-slab subduction transition: Stratigraphy, geochemistry, and geochronology of the central Wrangell volcanic belt, Yakutat-North America collision zone. Geosphere, 8(4), p.805-834.
Wahrhaftig, C. (1975). Late Cenozoic orogeny in the central Alaska Range (abstract), Spec. Pap. Geol. Soc. Am., 151, p. 189-190
Walcott, R. I. (1998). Modes of oblique compression: Late Cenozoic tectonics of the South Island of New Zealand. Reviews of Geophysics, 36(1), p. 1-26.
Waldien, T. S., Roeske, S. M. and Benowitz, J. A. (2021a). Tectonic Underplating and Dismemberment of the Maclaren‐Kluane Schist Records Late Cretaceous Terrane Accretion Polarity and~ 480 km of Post‐52 Ma Dextral Displacement on the Denali fault. Tectonics, 40(10)
Waldien, T. S., Roeske, S. M., Benowitz, J. A., Twelker, E., and Miller, M. S. (2021b). Oligocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structures in the Alaska Range suture zone, southern Alaska, USA: Geological Society of America Bulletin, v. 133, p. 691-716
Waldien, T. S., Roeske, S. M., Benowitz, J. A., Allen, W. K., Ridgway, K. D. and O’Sullivan, P. B. (2018). Late Miocene to Quaternary evolution of the McCallum Creek thrust system, Alaska: Insights for range-boundary thrusts in transpressional orogens. Geosphere, 14(6), p. 2379-2406.
Waldien, T. S., Lease, R. O., Roeske, S. M., Benowitz, J. A. and O’Sullivan, P. B. (2022). The role of preexisting uper plate strike-slip faults during long-lived (ca. 30 Myr) oblique flat slab subduction, southern Alaska. Earth and Planetary Science Letters, 577
White, S. H. and Green, P. F. (1986). Tectonic development of the Alpine fault zone, New Zealand: A fission-track study. Geology, 14(2), p. 124-127.
Wilson, F. H., Hults, C. P., Mull, C. G., and Karl, S. M. (2015). Geologic Map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, scale 1:1,584,000, 2 sheets
Wilson, J. T. (1968). Static or Mobile earth and the Current Scientific Revolution, Proceedings of the American Philosophical Society, Vol. 112, No. 5
Wolf, R. A., Farley, K. A. and Silver, L. T. (1996). Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21), p.4231-4240.
Worthington, L. L., Van Avendonk, H. J., Gulick, S. P., Christeson, G. L. and Pavlis, T. L. (2012). Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research: Solid Earth, 117