References
Allam, A. A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Rupert, N.,
and Ross, Z. E. (2017). Ten-kilometer vertical Moho offset and shallow
velocity contrast along the Denali fault zone from double-difference
tomography, receiver functions, and fault zone head waves:
Tectonophysics, v. 721, p. 56-69.
Allen, W. K., Ridgway, K. D., Benowitz, J. A., Waldien, T. S., Roeske,
S. M., Fitzgerald, P. G. and Gillis, R. J. (2022). Neogene sedimentary
record of the evolution of a translated strike-slip basin along the
Denali fault system: Implications for timing of displacement, composite
basin development, and regional tectonics of southern Alaska. Geosphere,
18(2), p. 585-615.
Arkle, J. C., Armstrong, P. A., Haeussler, P. J., Prior, M. G., Hartman,
S., Sendziak, K. L. and Brush, J. A. (2013). Focused exhumation in the
syntaxis of the western Chugach Mountains and Prince William Sound,
Alaska. Bulletin, 125(5-6), p. 776-793.
Austermann, J., Bird P., Heidbach O., Schubert G., and Stock J. M.
(2011). Quantifying the forces needed for the rapid change of Pacific
plate motion at 6 Ma. Earth and Planetary Science Letters 307, no. 3-4,
p. 289-297.
Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E., and Toy, V. G.
(2013). Slip localization on the southern Alpine fault, New Zealand:
Tectonics, v. 32, p. 620-640.
Bankey, V., Cuevas, A., Daniels, D., Finn, C. A., Hernandez, I., Hill,
P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W.,
Rystrom, V., Shearer, S., Snyder, S., Sweeney, R. E., Velez, J.,
Phillips, J. D., Ravat, D. K. A. (2002). Digital data grids for the
magnetic anomaly map of North America: U.S. Geological Survey Open-File
Report 2002-414
Batt, G. E., Baldwin, S. L., Cottam, M. A., Fitzgerald, P. G., Brandon,
M. T., & Spell, T. L. (2004). Cenozoic plate boundary evolution in the
South Island of New Zealand: New thermochronological constraints.Tectonics , 23 (4).
Beamud, E, Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garcés, M.,
Cabrera, L., Metcalf J. R. (2011). Magnetostratigraphy and detrital
apatite fission track thermochronology in syntectonic conglomerates:
constraints on the exhumation of the South-Central Pyrenees. Basin Res
23, p. 309-331.
Bemis, S. P., Weldon, R. J., and Carver, G. A. (2015). Slip partitioning
along a continuously curved fault: Quaternary geologic controls on
Denali fault system slip partitioning, growth of the
Alaska Range, and the tectonics of south-central Alaska: Lithosphere, v.
7, no. 3, p. 235-246.
Bennett, S. E., Oskin, M. E., Iriondo, A. and Kunk, M. J. (2016). Slip
history of the La Cruz fault: Development of a late Miocene transform in
response to increased rift obliquity in the northern Gulf of California.Tectonophysics , 693 , p. 409-435.
Benowitz, J. A., Roeske, S. M., Regan, S. P., Waldien, T. S., Elliott,
J. L. and O’Sullivan, P. B. (2022a). Large-scale, crustal-block vertical
extrusion between the Hines Creek and Denali faults coeval with slip
localization on the Denali fault since ca. 45 Ma, Hayes Range, Alaska,
USA. Geosphere.
Benowitz, J. A., Layer, P. W. and Vanlaningham, S. (2014). Persistent
long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained
by stacked thermochronology. Geological Society, London, Special
Publications, 378(1), p.225-243.
Benowitz, J. A., Haeussler, P. J., Layer, P. W., O’Sullivan, P. B.,
Wallace, W. K. and Gillis, R. J.
(2012). Cenozoic tectono‐thermal history of the Tordrillo Mountains,
Alaska: Paleocene‐Eocene ridge subduction, decreasing relief, and late
Neogene faulting. Geochemistry, Geophysics, Geosystems, 13(4).
Benowitz, J. A., Davis, K. and Roeske, S. (2019). A river runs through
it both ways across time: 40Ar/39Ar detrital and bedrock muscovite
geochronology constraints on the Neogene paleodrainage history of the
Nenana River system, Alaska Range. Geosphere, 15(3), p. 682-701.
Benowitz, J.A., Layer, P. W., Armstrong, P., Perry, S.E., Haeussler,
P.J., Fitzgerald, P.G. and VanLaningham, S. (2011). Spatial variations
in focused exhumation along a continental-scale strike-slip fault: The
Denali fault of the eastern Alaska Range. Geosphere, 7(2), p. 455-467.
Berkelhammer, S. E., Brueseke, M.E., Benowitz, J.A., Trop, J.M., Davis,
K., Layer, P.W. and Weber, M. (2019). Geochemical and geochronological
records of tectonic changes along a flat-slab arc-transform junction:
Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc,
Alaska. Geosphere, 15(5), p.1508-1538.
Berger, A., Egli, D., Glotzbach, C., Valla, P.G., Pettke, T., Herwegh,
M. (2022). Apatite low temperature chronometry and microstructures
across a hydrothermally active fault zone, Chemical Geology 588
Betka, P.M., Gillis, R.J., and Benowitz, J.A., Cenozoic sinistral
transpression and polyphase slip within the Bruin Bay fault system,
Iniskin-Tuxedni region, Cook Inlet, Alaska: Geosphere, v. 13, no. 6, p.
1806-1833, doi:10.1130/GES01464.1.
Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N.,
Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S.,
Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by
the monitoring of a trace-element-related matrix effect; SHRIMP,
ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of
zircon standards, Chemical Geology, Volume 205, Issues 1-2, 2004, p.
115-140.
Blanquat, M. D. S., Tikoff, B., Teyssier, C., Virgneresse, J.L. (1998).
Transpressional kinematics and magmatic arcs, In: Holdsworth, R. E.,
Strachan, R. A., Dewzy, J. E (eds) (1998). Continental Transpressional
and Transtensional Tectonics. Geological Society, London, Special
Publications, 135, p. 327-340.
Blythe, A. E., House, M. A., Spotila, J. A. and Barth, A. (2002). Low
temperature thermochronology of the San Gabriel and San Bernardino
Mountains, southern California: Constraining structural evolution.
Special Papers Geological Society of America, p. 231-250.
Box, S. E., Karl, S. M., Jones, J. V., III, Bradley, D. C., Haeussler,
P. J., & O’Sullivan, P. B. (2019). Detrital zircon geochronology along
a structural transect across the Kahiltna assemblage in the western
Alaska Range: Implications for emplacement of the Alexander-Wrangellia-
Peninsular terrane against North America. Geosphere, 15(6), p.
1774-1808. https://doi.org/10.1130/GES02060.1.
Brennan, P., Gilbert, H., Ridgway, K. D. (2011). Crustal structure
across the central Alaska Range: Anatomy of a Mesozoic collisional zone.
Geochemistry Geophysics Geosystems, 12(4).
-
Brueseke, M. E., Benowitz, J. A., Trop, J. M., Davis, K. N.,
Berkelhammer, S. E., Layer, P. W. and Morter, B. K. (2019). The Alaska
Wrangell Arc: ~ 30 Ma of subduction‐related magmatism
along a still active arc‐transform junction. Terra Nova, 31(1), p.
59-66.
Brueseke, M. E., Benowitz, J. A., Bearden, A. T., Mann, M. E., Miggins,
D. P. (2023). Subduction Disruption, Slab Tears: ca. 1 Ma true collision
of a ~30-km thick oceanic plateau segment recorded by
Yakutat slab nascent tear magmatism, Terra Nova.
Bruhn, R. L., Sauber, J., Cotton, M. M., Pavlis, T. L., Burgess, E.,
Ruppert, N., & Forster, R. R. (2012). Plate margin deformation and
active tectonics along the northern edge of the Yakutat Terrane in the
Saint Elias Orogen, Alaska, and Yukon, Canada. Geosphere, 8(6),
1384-1407.
Bruhn, R. L., Pavlis, T. L., Plafker, G., & Serpa, L. (2004).
Deformation during terrane accretion in the Saint Elias orogen, Alaska.
Geological Society of America Bulletin, 116(7-8), 771-787.
Burkett, C. A., Bemis, S. P., and Benowitz, J. A. (2016). Along-fault
migration of the Mount McKinley restraining bend of the Denali fault
defined by late Quaternary fault patterns and seismicity, Denali
National Park & Preserve, Alaska: Tectonophysics, v. 693, p. 489-506.
Buscher, J. T. and Spotila, J. A. (2007). Near‐field response to
transpression along the southern San Andreas fault, based on exhumation
of the northern San Gabriel Mountains, southern California.Tectonics , 26 (5).
Choi, M., Eaton, D. W. and Enkelmann, E. (2021). Is the Eastern Denali
fault still active?. Geology, 49(6), p. 662-666.
Churkin, M., Foster, H. L., Chapman, R. M., Weber, F. R. (1982).
Terranes and Suture Zones in East Central Alaska, Journal of Geophysical
Research, Vol. 87, B5, p. 3718-3730
Cobbett, R., Israel, S., Mortensen, J., Joyce, N., and Crowley, J.,
(2016). Structure and kinematic evolution of the Duke River fault,
southwestern Yukon: Canadian Journal of Earth Sciences,
v. 54, p. 322-344.
Cole, R. B. and Ridgway, K. D. (1993). The influence of volcanism on
fluvial depositional systems in a Cenozoic strike-slip basin, Denali
fault system, Yukon Territory, Canada. Journal of Sedimentary Research,
63(1), p. 152-166.
Cole, R. B., Ridgway, K. D., Layer, P. W. and Drake, J. (1999).
Kinematics of basin development during the transition from terrane
accretion to strike‐slip tectonics. Late Cretaceous‐early Tertiary
Cantwell Formation, south central Alaska. Tectonics, 18(6), p.1224-1244.
Collett, C. M., Duvall, A. R., Flowers, R. M., Tucker, G. E. and Upton,
P. (2019). The timing and style of oblique deformation within New
Zealand’s Kaikōura Ranges and Marlborough fault System based on
low‐temperature thermochronology. Tectonics, 38(4), p. 1250-1272.
Coney, P. J., Jones, D. L., Monger, J. W. H., 1980. Cordilleran suspect
terranes. Nature, 288 (5789): 329-333.
Cooke, M. L. and Madden, E. H. (2014). Is the Earth lazy? A review of
work minimization in fault evolution. Journal of Structural Geology, 66,
p. 334-346.
Christie-Blick, N. and Biddle, K. T. (1985). Deformation and basin
formation along strike-slip faults, Basin Formation and Sedimentation,
SEPM Special Publication No. 37 p. 1-34
Denton, G.H. and Armstrong, R.L. (1969). Miocene-Pliocene glaciations in
southern Alaska. American Journal of Science, 267(10), p. 1121-1142.
Donelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. (2005). Apatite
fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1),
49-94.
Doser, D.I. (2014). Seismicity of Southwestern Yukon, Canada, and its
relation to slip transfer between the Fairweather and Denali fault
systems. Tectonophysics, 611, p. 121-129.
Doubrovine, P. V., and Tarduno, J. A. (2008). A revised kinematic model
for the relative motion
between Pacific oceanic plates and North America since the Late
Cretaceous: Journal of
Geophysical Research: Solid Earth, v. 113, p. 1-20.
Dusel-Bacon, C., Day, W. C., and Aleinikoff, J. N. (2013). Geochemistry,
petrography, and zircon U-Pb geochronology of Paleozoic metaigneous
rocks in the Mount Veta area of east-central Alaska: Implications for
the evolution of the westernmost part of the Yukon-Tanana terrane:
Canadian Journal of Earth Sciences, v. 50, no. 8, p. 826-846, https://
doi .org /10 .1139 /cjes -2013 -0004.
Duvall, A. R., Harbert, S. A., Upton, P., Tucker, G. E., Flowers, R. M.
and Collett, C. (2020). River patterns reveal two stages of landscape
evolution at an oblique convergent margin, Marlborough fault System, New
Zealand. Earth Surface Dynamics, 8(1), p. 177-194.
Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A.
D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G.
A. and Crone, A. J. (2003). The 2002 Denali fault earthquake, Alaska: a
large magnitude, slip-partitioned event. Science 300, 1113.
Ebherhart-Phillips, D., Christensen, D. H., Brocher, T. M., Hansen, R.,
Rupert, N. A., Haeussler, P. J., Abers, G. A. (2006). Imaging the
transition from Aleutian subduction to Yakutat collision in central
Alaska, with local earthquakes and active source data, Journal of
Geophysical Research, Vol. 111
Eisbacher, G. H. (1976). Sedimentology of the Dezadeash flysch and its
implications for strike-slip faulting along the Denali fault, Yukon
Territory and Alaska. Canadian Journal of Earth Sciences, 13(11), p.
1495-1513. https://doi.org/10.1139/e76-157
Elliott, J. L., Larsen, C. F., Freymueller, J. T., and Motyka, R. J.
(2010). Tectonic block motion and glacial isostatic adjustment in
southeast Alaska and adjacent Canada constrained by GPS measurements, J.
Geophys. Res.,115, B09407, doi:10.1029/2009JB007139.
Elliott, J., Freymueller, J. T. (2020). A Block Model of Present-Day
Kinematics of Alaska and Western Canada, J. Geophysical Research, Solid
Earth, doi: 10.1029/2019JB018378
Engebretson, D. C., Cox, A., and Gordon, R. G., (1985). Relative Motions
Between Oceanic and
Continental Plates in the Pacific Basin: Geological Society of America
Special Paper 206,
p. 59, https:// doi .org /10 .1130 /SPE206 -p1.
Enkelmann, E., Piestrzeniewicz, A., Falkowski, S., Stübner, K. and
Ehlers, T. A. (2017). Thermochronology in southeast Alaska and southwest
Yukon: Implications for North American Plate response to terrane
accretion. Earth and Planetary Science Letters, 457, p. 348-358.
Eyles C. H., Eyles, N. (1989). The uper Cenozoic White River
“Tillites” of southern Alaska: Subaerial slope and fan-delta deposits
in a strike-slip setting, Geological Society of America Bulletin, v.
101, p. 1091-1102
-Farley, K. A. (2002). (U-Th)/He dating: Techniques, calibrations, and
aplications: Reviews in
Mineralogy and Geochemistry, v. 47, p. 819-844, https:// doi .org /10
.2138 /rmg .2002 .47 .18.
Ferris, A., Abers, G.A., Christensen, D.H. and Veenstra, E., 2003. High
resolution image of the subducted Pacific (?) plate beneath central
Alaska, 50-150 km depth. Earth and Planetary Science Letters ,214 (3-4), pp.575-588.
Finzel, E. S., Ridgway, K. D. and Trop, J. M. (2015). Provenance
signature of changing plate boundary conditions along a convergent
margin: Detrital record of spreading-ridge and flat-slab subduction
processes, Cenozoic forearc basins, Alaska. Geosphere, 11(3), p.
823-849.
Fiorillo, A. R., Adams, T. L. and Kobayashi, Y. (2012). New
sedimentological, palaeobotanical, and dinosaur ichnological data on the
palaeoecology of an unnamed Late Cretaceous rock unit in Wrangell-St.
Elias National Park and Preserve, Alaska, USA. Cretaceous Research, 37,
p. 291-299.
Fitzgerald, P. G., Baldwin, S. L., Webb, L. and O’Sullivan P. (2006),
Interpretation of (U-Th)/He single grain ages from slowly cooled crustal
terranes: A case study from the Transantarctic Mountains of southern
Victoria Land, Chemical geology , 225 (1-2), p. 91-120
Fitzgerald, P. G., Malusa, M. G., Munoz, J. A. (2019). Detrital
thermochronology using Conglomerates and Cobbles, in. M. G. Malusà and
P. G. Fitzgerald (eds.), Fission-Track Thermochronology and its
Aplication to Geology, Springer Textbooks in Earth Sciences, Geography
and Environment, p. 295-314.
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F. and Stump, E.
(1995). Uplift and denudation of the central Alaska Range: A case study
in the use of apatite fission track thermochronology to determine
absolute uplift parameters. Journal of Geophysical Research: Solid
Earth, 100(B10), p. 20175-20191.
Fitzgerald, P. G., Stump, E. and Redfield, T. F. (1993). Late Cenozoic
uplift of Denali and its relation to relative plate motion and fault
morphology. Science, 259(5094), p.497-499.
Fitzgerald, P. G., Roeske, S. M., Benowitz, J. A., Riccio, S. J., Perry,
S. E., and Armstrong, P. A. (2014), Alternating asymmetric topography of
the Alaska range along the strike‐slip Denali fault:
Strain partitioning and lithospheric control across a terrane suture
zone: Tectonics, v. 33,
p. 1519-1533, https:// doi .org /10 .1002 /2013TC003432.
Flowers, R. M., Zeitler, P. K., Danišík, M., Reiners, P. W., Gautheron,
C., Ketcham, R. A., and Brown, R. W. (2023a). (U-Th)/He chronology: Part
1. Data, uncertainty, and reporting. Bulletin, 135(1-2), 104-136.
Flowers, R. M., Ketcham, R. A., Enkelmann, E., Gautheron, C., Reiners,
P. W., Metcalf, J. R., and Brown, R. W. (2023b). (U-Th)/He chronology:
Part 2. Considerations for evaluating, integrating, and interpreting
conventional individual aliquot data. Bulletin, 135(1-2), 137-161.
Forbes, R. B., Smith, T. E., & Turner, D. L. (1974). Comparative
petrology and structure of the Maclaren, Ruby Range, and Coast Range
belts: Implications for offset along the Denali fault system. Geological
Society of America Abstracts with Programs. 6, 177.
Gallagher K., Brown R., Johnson C. (1998). Fission track analysis and
its applications to geological problems. Ann Rev Earth Planet Sci
26:519-572.
Gleadow, A.J.W., 1981, Fission-‐Track dating methods: What are the real
alternates? Nuclear Tracks, v. 5, no. 1/2, p. 3-14.
Gleadow, A. J. W., Duddy, I. R., Lovering, J. F. (1983). Fission track
analysis: a new tool for the evaluation of thermal histories and
hydrocarbon potential. Aust Pet Explor Assoc J 23:92-102
Gleadow A. J. W., Duddy I. R., Green P. F., Lovering J.F. (1986).
Confined fission track lengths in apatite: a diagnostic tool for thermal
history analysis. Contrib Miner Petrol 94, p. 405-415
Gleadow A. J. W., Fitzgerald P. G. (1987). Uplift history and structure
of the Transantarctic Mountains: new evidence from fission track dating
of basement apatites in the Dry Valleys area, southern Victoria Land.
Earth Planet Sci Lett 82, p. 1-14
Gulick, S. P. S., Reece, R. S., Christeson, G. L., Van Avendonk, H.,
Worthington, L. L. and Pavlis, T. L. (2013). Seismic images of the
Transition fault and the unstable Yakutat-Pacific-North American triple
junction. Geology, 41(5), p. 571-574.
Haeussler, P. J., Matmon, A., Schwartz, D. P., and Seitz, G. G. (2017).
Neotectonics of interior Alaska and the late Quaternary slip rate along
the Denali fault system: Geosphere, v. 13, p. 1445-1463
Haeussler, P. J., O’sullivan, P., Berger, A. L. and Spotila, J. A.
(2008). Neogene exhumation of the Tordrillo Mountains, Alaska, and
correlations with Denali (Mount McKinley). Washington DC American
Geophysical Union Geophysical Monograph Series, 179, p. 269-285.
Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D.,
Lienkaemper, J. J., Sherrod, B., Cinti, F. R., Montone, P., Craw, P. A.,
Crone, A. J., Personius, S. F. (2004). Surface rupture and slip
distribution of the Denali and Totschunda faults in the 3 November 2002
M7.9 Earthquake, Alaska, Bulletin Seismology Society of America, v. 94,
p. 23-52
Hiess, J., Condon, D. J., Mclean, N., and Noble, S. R. (2012).
U-238/U-235 Systematics in Terrestrial Uranium-Bearing Minerals:
Science, v. 335, p. 1610-1614
Huntington, K. W., Blythe, A. E., Hodges, K. V. (2006). Climate change
and late Pliocene acceleration of erosion in the Himalaya, Earth and
Planetary science letteres, V. 252 p 107-118
Hurford, A.J., Green, P.F., 1983, The zeta calibration of fission track
dating. Isotope geoscience, 1, p. 285-317
Jicha, B. R., Garcia, M. O., & Wessel, P. (2018). Mid-Cenozoic Pacific
plate motion change: Implications for the northwest Hawaiian Ridge and
circum-Pacific. Geology , 46 (11), 939-942.
Johnson, J. E., Flowers, R. M., Baird, G. B. and Mahan, K. H. (2017).
“Inverted” zircon and apatite (U-Th)/He dates from the Front Range,
Colorado: high-damage zircon as a low-temperature (< 50° C)
thermochronometer. Earth and Planetary Science Letters, 466, p. 80-90.
Jones, D., Siberling, N., Gilbert, W., and Coney, P. (1982). Character,
distribution, and tectonic significance of accretionary terranes in the
central Alaska Range: Journal of Geophysical Research: Solid Earth, v.
87, p. 3709-3717
Jones III, J. V., Todd, E., Box, S. E., Haeussler, P. J., Holm-Denoma,
C. S., Karl, S. M., Graham, G. E., Bradley, D. C., Kylander-Clark, A.
R., Friedman, R. M. and Layer, P. W. (2021). Cretaceous to Oligocene
magmatic and tectonic evolution of the western Alaska Range: Insights
from U-Pb and 40Ar/39Ar geochronology. Geosphere, 17(1), p. 118-153.
Jones, J., Caine, J., Holm-Denoma, C., Ryan, J., Benowitz, J., and
Drenth, B. (2017). Unraveling the boundary between the Yukon-Tanana
terrane and the parautochthonous North America in
eastern Alaska: Geological Society of America Abstracts with Programs,
v. 49, no. 6
Kaufman, D.S., Young, N.E., Briner, J.P. and Manley, W.F. (2011). Alaska
palaeo-glacier atlas In Developments in Quaternary Sciences (Vol. 15,
pp. 427-445). Elsevier.
Kellogg, K. S., Minor, S. A. (2005). Pliocene transpressional
modification of depositional basins by convergent thrusting adjacent to
the “Big Bend” of the San Andreas fault: An example from Lockwood
Valley, southern California. Tectonics, 24(1).
Ketcham, R. A., (2003). Observations on the relationship between
crystallographic orientation and biasing in apatite fission-track
measurements. American Mineralogist, 88(5-6), p. 817-829.
Ketcham, R. A., (2005). Forward and Inverse Modeling of Low Temperature
Thermochronometry Data, Reviews in Mineralogy and Geochemistry, Vol. 58,
p 278-314
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. and Hurford,
A. J. (2007). Improved modeling of fission-track annealing in apatite.
American Mineralogist, 92(5-6), p. 799-810.
Ketcham, R. A., Gautheron, C., & Tassan-Got, L. (2011). Accounting for
long alpha-particle stoping distances in (U-Th-Sm)/He geochronology:
Refinement of the baseline case. Geochmica et Cosmochimica Acta, 75(24),
p. 7779-7791. http://doi.org/10.1016/j.gca.2011.10.011
Lahr, J. C., & Plafker, G. (1980). Holocene Pacific–North American
plate interaction in southern Alaska: Implications for the Yakataga
seismic gap. Geology, 8(10), 483-486.
Lease, R.O., Haeussler, P.J., and O’Sullivan, P., (2016). Changing
exhumation patterns during Cenozoic growth and glaciation of the Alaska
Range: Insights from detrital thermochronology and
geochronology: Tectonics, v. 35, p. 934-955
Lease, R. O., Haeussler, P. J., Witter, R. C., Stockli, D. F., Bender,
A. M., Kelsey, H. M., O’Sullivan, P.B. (2021). Extreme Quaternary plate
boundary exhumation and strike-slip localized along the southern
Fairweather fault, Alaska, USA. Geology, 49(5), p. 602-606.
Lowey, G. W. (2019). Provenance analysis of the Dezadeash Formation
(Jurassic-Cretaceous), Yukon, Canada: Implications regarding a linkage
between the Wrangellia composite terrane and the western margin of
Laurasia. Canadian Journal of Earth Sciences, 56(1), p. 77-100.
https://doi.org/10.1139/cjes-2017-0244
Lozos, J. C. (2016). A case for historic joint rupture of the San
Andreas and San Jacinto faults. Science advances, 2(3), p.e1500621.
Ludwig, K. R. (1998). On the treatment of concordant uranium-lead ages.
Geochimica et Cosmochimica Acta, 62(4), p.665-676.
MacKevettt, E. M. (1978). Geologic Map of the McCarthy Quadrangle,
Alaska: U.S. Geological Survey Miscellaneous Investigation Series
I-1032, scale 1:250,000.
Mann, M. E., Abers, G. A., Daly, K., Christensen, D. H. (2022).
Subduction of an Oceanic Plateau Across Southcentral Alaska:
Scattered‐Wave Imaging. Journal of Geophysical Research: Solid Earth:
e2021JB022697.
Manselle, P., Brueseke, M. E., Trop, J. M., Benowitz, J. A., Snyder, D.
C., and Hart, W. K. (2020). Geochemical and stratigraphic analysis of
the Chisana Formation, Wrangellia terrane, eastern Alaska: Insights into
Early Cretaceous magmatism and tectonics along the northern Cordilleran
margin: Tectonics, v. 39, no. e2020TC006131.
Marechal, A., Ritz, J. F., Ferry, M., Mazzotti, S., Blard, P. H.,
Braucher, R. and Saint-Carlier, D. (2018). Active tectonics around the
Yakutat indentor: New geomorphological constraints on the eastern
Denali, Totschunda and Duke River faults. Earth and Planetary Science
Letters, 482, p.71-80.
Marincovich, L. and Gladenkov, A. Y. (1999). Evidence for an early
opening of the Bering Strait. Nature, 397 (6715), p. 149-151.
Matmon, A., Schwartz, D. P., Haeussler, P. J., Finkel, R., Lienkaemper,
J. J., Stenner, H. D. and Dawson, T. E. (2006). Denali fault slip rates
and Holocene-late Pleistocene kinematics of central Alaska. Geology,
34(8), p. 645-648.
McAleer, R. J., Spotila, J. A., Enkelmann, E. and Berger, A. L. (2009).
Exhumation along the Fairweather fault, southeastern Alaska, based on
low‐temperature thermochronometry. Tectonics, 28(1).
McBeck, J., Cooke, M. and Madden, E. (2017). Work optimization predicts
the evolution of extensional step overs within anisotropic host rock:
Implications for the San Pablo Bay, CA. Tectonics, 36(11), p.2630-2646.
McCaffrey, R., Zwick, P. C., Bock, Y., Prawirodirdjo, L., Genrich, J.
F., Stevens, C. W., Puntodewo, S. S. O., Subarya, C. (2000). Strain
partitioning during oblique plate convergence in northern Sumatra:
Geodetic and seismologic constraints and numerical modeling, Journal of
Geophysical Research, Vol. 105, No. B12, p 363-376
McDermott, R. G., Ault, A. K., Caine, J. S. and Thomson, S. N. (2019).
Thermotectonic history of the Kluane Ranges and evolution of the eastern
Denali fault zone in southwestern Yukon, Canada. Tectonics, 38(8), p.
2983-3010.
McDermott, R. G, Ault, A. K., Caine, J. S. (2021). Dating fault damage
along the eastern Denali fault zone with hematite (U-Th)/He
thermochronometry, Earth and Planetary science Letters 563
McGeary, S., Nur, A., & Ben-Avraham, Z. (1985). Spatial gaps in arc
volcanism: The effect of collision or subduction of oceanic plateaus.
Tectonophysics, 119(1-4), p. 195-221.
Milde, E. R. (2014), Using Low-Temperature Thermochronology to Constrain
the Role of the Totschunda fault in Southeastern Alaskan Tectonics
[M.S. thesis]: Syracuse, New York,
Syracuse University, 127 p.
Miller, M. L., Bradley, D. C., Bundtzen, T. K., and McClelland, W.
(2002) Late Cretaceous through Cenozoic strike-slip tectonics of
southwestern Alaska: The Journal of Geology, v. 110, p. 247-270
Mukasa, S. B., Andronikov, A. V. and Hall, C. M. (2007). The 40Ar/39Ar
chronology and eruption rates of Cenozoic volcanism in the eastern
Bering Sea Volcanic Province, Alaska. Journal of Geophysical Research:
Solid Earth, 112(B6).
Nabelek, P. I., Hofmeister, A. M., & Whittington, A. G. (2012). The
influence of temperature-dependent thermal diffusivity on the conductive
cooling rates of plutons and temperature-time paths in contact aureoles.
Earth and Planetary Science Letters, 317, 157-164.
Najman, Y., Sobel, E. R., Millar, I., Luan, X., Zapata, S., Garzanti,
E., Parra, M., Vezzoli, G., Zhang, P., Wa Aung, D. and Paw, S. M. T. L.
(2022). The timing of collision between Asia and the West Burma Terrane,
and the development of the Indo‐Burman Ranges. Tectonics, 41(7),
p.e2021TC007057.
Nokleberg, W. J., Jones, D. L., & Silberling, N. J. (1985). Origin and
tectonic evolution of the Maclaren and Wrangellia terranes, eastern
Alaska Range, Alaska. The Geological Society of America Bulletin,
96(10), p. 1251-1270
Nokleberg, W. J., & Richter, D. H. (2007). Origin of narrow terranes
and adjacent major terranes occurring along the Denali fault in the
Eastern and Central Alaska Range, Alaska. In K. D. Ridgway, J. M. Trop,
J. M. G. Glen, & J. M. O’Neill (Eds.), Special Paper 431: Tectonic
growth of a collisional continental margin: Crustal evolution of
southern Alaska, Vol. 431, p. 129-154
Oglesby, D.D., Dreger, D.S., Harris, R.A., Ratchkovski, N. and Hansen,
R. (2004). Inverse kinematic and forward dynamic models of the 2002
Denali fault earthquake, Alaska. Bulletin of the Seismological Society
of America, 94(6B), pp.S214-S233
Passchier, C.W. and Platt, J.P. (2017). Shear zone junctions: Of zipers
and freeways. Journal of Structural Geology, 95, p. 188-202.
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A.,
and Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology
through robust downhole fractionation correction, Geochem. Geophys.
Geosyst., 11
Powell, R.E. (1993). ”Chapter 1: Balanced palinspastic reconstruction of
pre-late Cenozoic paleogeology, southern California: Geologic and
kinematic constraints on evolution of the San Andreas fault system”, The
San Andreas fault System: Displacement, Palinspastic Reconstruction, and
Geologic Evolution, Robert E. Powell, R. J. Weldon, II, Jonathan C.
Matti
Pavlis, G. L., Bauer, M. A., Elliot, J. L., Koons, P., Pavlis, T. L.,
Ruppert, N., Ward, K. M., Worthington, L. L. (2019). A unified
three-dimensional model of the lithospheric structure at the subduction
corner in southeast Alaska: Summary results from STEEP, Geosphere, v.
15., p. 382-406.https://doi.org/10.1130/GES01488.1
Raymo, M. E. (1994). The initiation of Northern Hemisphere glaciation.
Annual Review of Earth and Planetary Sciences, 22(1), p. 353-383.
Redfield, T. and Fitzgerald, P. (1993). Denali fault system of southern
Alaska: an interior strike-slip structure responding to dextral and
sinistral shear coupling. Tectonics 12, p. 1195-1208.
Reece, R. S., Gulick, S. P., Christeson, G. L., Horton, B. K., van
Avendonk, H., Barth, G. (2013). The role of farfield tectonic stress in
oceanic intraplate deformation, Gulf of Alaska. Journal of Geophysical
Research: Solid Earth, 118(5), p. 1862-1872.
Regan, S. P., Benowitz, J. A., Waldien, T. S., Holland, M. E., Roeske,
S. M., O’Sullivan, P., Layer, P. (2021). Long distance plutonic
relationships demonstrate 33 million years of strain partitioning along
the Denali fault. Terra Nova, 33(6), p. 630-640.
Regan, S. P., Benowitz, J. A., and Holland, M. E. (2020). A plutonic
brother from another magma
mother: Disproving the Eocene Foraker-McGonagall pluton piercing point
and implications for
long‐term slip on the Denali fault: Terra Nova, v. 32, p. 66-74
Riccio, S. J., Fitzgerald, P. G., Benowitz, J. A., and Roeske, S. M.
(2014). The role of thrust faulting in the formation of the eastern
Alaska Range: Thermochronological constraints from the Susitna Glacier
thrust fault region of the intracontinental strike‐slip Denali fault
system: Tectonics, v. 33, p. 2195-2217,
https://doi.org/10.1002/2014TC003646.
Richter, D.H. and Matson Jr, N.A. (1971). Quaternary faulting in the
eastern Alaska Range. Geological Society of America Bulletin, 82(6), p.
1529-1540.
Richter, D. H., (1976). Geologic Map of the Nabesna Quadrangle: U.S.
Geological Survey Miscellaneous Geologic Investigations Map I-932, scale
1:250,000.
Richter, D. H., Smith, J. G., Lanphere, M. A., Dalrymple, G. B., Reed,
B. L., Shew, N. (1990). Age and progression of volcanism, Wrangell
volcanic field, Alaska: Bulletin of Volcanology, v. 53, p. 29-44
Ridgway, K. D., Decelles, P. G. (1993). Stream‐dominated alluvial fan
and lacustrine depositional systems in Cenozoic strike‐slip basins,
Denali fault system, Yukon Territory, Canada. Sedimentology, 40(4), p.
645-666.
Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M. and
Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern
and central Alaska Range: Progressive basin development and deformation
in a suture zone. Geological Society of America Bulletin ,114 (12), p. 1480-1504.
Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K.
(2011). A refined astronomically calibrated 40Ar/39Ar age for Fish
Canyon sanidine: Earth and Planetary Science Letters, v. 311, no. 3-4,
p. 420-426
Rosenthal, J., Betka, P., Nadin, E., Gillis, R., and Benowitz, J.
(2018), Vein formation during progressive Paleogene faulting and folding
within the lower Cook Inlet basin, Alaska: Geosphere, v. 14, no. 1, p.
23-49, http://doi.org/10.1130/GES01435.1.
Rossi, G., Abers, G. A., Rondenay, S. and Christensen, D. H. (2006).
Unusual mantle Poisson’s ratio, subduction, and crustal structure in
central Alaska. Journal of Geophysical Research: Solid Earth ,111 (B9).
-
Schwartz, D. P., Haeussler, P. J., Seitz, G. G., Dawson, T. E. (2012).
Why the 2002 Denali fault rupture propagated onto the Totschunda fault:
Implications for fault branching and seismic hazards. Journal of
Geophysical Research: Solid Earth, 117(B11).
Skulski, T., Francis, D., & Ludden, J. (1992). Volcanism in an
arc-transform transition zone: The stratigraphy of the St. Clare Creek
volcanic field, Wrangell volcanic belt, Yukon, Canada. Canadian Journal
of Earth Sciences, 29, p. 446-461.
Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies
towards statistically robust interpretations of in situ U-Pb zircon
geochronology. Geoscience Frontiers, 7(4), p. 581-589.
Spotila, J. A., Farley, K. A., Yule, J. D., Reiners, P. W. (2001).
Near-field transpressive deformation along the San Andreas fault zone in
southern California, based on exhumation constrained by (U-Th)/He
dating. Journal of Geophysical Research, 106(B12): 30909.
Spotila, J. A., Niemi, N., Brady, R., House, M., Buscher, J. and Oskin,
M. (2007). Long-term continental deformation associated with
transpressive plate motion: The San Andreas fault. Geology, 35(11), p.
967-970.
Spotila, J. A., Berger, A. L. (2010). Exhumation at Orogenic Indentor
Corners under Long-Term Glacial Conditions: Example of the St. Elias
Orogen, Southern Alaska. Tectonophysics, 490, p. 241-256.
Spotila, J. A., Farley, K. A. and Sieh, K. (1998). Uplift and erosion of
the San Bernardino Mountains associated with transpression along the San
Andreas fault, California, as constrained by radiogenic helium
thermochronometry. Tectonics, 17(3), p. 360-378.
Storti F., Holdsworth, R. E., Salvani, F. (2003). Intraplate Strike-Slip
Deformation Belts. Geological Society Special Publication, 210
Sylvester, A. G. (1988). Strike-slip faults. Geological Society of
America Bulletin, 100, p. 1666-1703.
Townsend, K. F., Clark, M. K. and Niemi, N. A. (2021). Reverse faulting
Within a Continental Plate Boundary Transform System. Tectonics, 40(11),
e2021TC006916.
Trop, J. M., Benowitz, J. A., Kirby, C. S. and Brueseke, M. E. (2022).
Geochronology of the Wrangell Arc: Spatial-temporal evolution of
slab-edge magmatism along a flat-slab, subduction-transform transition,
Alaska-Yukon. Geosphere, 18(1), p. 19-48.
Trop, J. M., Benowitz, J., Cole, R. B. and O’Sullivan, P. (2019).
Cretaceous to Miocene magmatism, sedimentation, and exhumation within
the Alaska Range suture zone: A polyphase reactivated terrane boundary.
Geosphere, 15(4), p. 1066-1101.
Trop, J.M., and Ravn, R.L. (2003). Sedimentology, palynology, and
petrology of the Cretaceous Matanuska Formation, south-central Alaska:
Relationships between forearc basin development and accretionary
tectonic events: Geological Society of America Abstracts with Programs,
v. 35, no. 6, p. 559.
Trop, J.M., and Ridgway, K.D. (2007). Mesozoic and Cenozoic tectonic
growth of southern Alaska: A sedimentary basin perspective, in Ridgway,
K.D., Trop, J.M., Glen, J.M.G., and O’Neill, J.M., eds., Tectonic Growth
of a Collisional Continental Margin: Crustal Evolution of Southern
Alaska: Geological Society of America Special Paper 431, p. 55-94
Trop, J. M., Hart, W. K., Snyder, D. and Idleman, B. (2012). Miocene
basin development and volcanism along a strike-slip to flat-slab
subduction transition: Stratigraphy, geochemistry, and geochronology of
the central Wrangell volcanic belt, Yakutat-North America collision
zone. Geosphere, 8(4), p.805-834.
Wahrhaftig, C. (1975). Late Cenozoic orogeny in the central Alaska Range
(abstract), Spec. Pap. Geol. Soc. Am., 151, p. 189-190
Walcott, R. I. (1998). Modes of oblique compression: Late Cenozoic
tectonics of the South Island of New Zealand. Reviews of Geophysics,
36(1), p. 1-26.
Waldien, T. S., Roeske, S. M. and Benowitz, J. A. (2021a). Tectonic
Underplating and Dismemberment of the Maclaren‐Kluane Schist Records
Late Cretaceous Terrane Accretion Polarity and~ 480 km
of Post‐52 Ma Dextral Displacement on the Denali fault. Tectonics,
40(10)
Waldien, T. S., Roeske, S. M., Benowitz, J. A., Twelker, E., and Miller,
M. S. (2021b). Oligocene-Neogene lithospheric-scale reactivation of
Mesozoic terrane accretionary structures in the Alaska Range suture
zone, southern Alaska, USA: Geological Society of America Bulletin, v.
133, p. 691-716
Waldien, T. S., Roeske, S. M., Benowitz, J. A., Allen, W. K., Ridgway,
K. D. and O’Sullivan, P. B. (2018). Late Miocene to Quaternary evolution
of the McCallum Creek thrust system, Alaska: Insights for range-boundary
thrusts in transpressional orogens. Geosphere, 14(6), p. 2379-2406.
Waldien, T. S., Lease, R. O., Roeske, S. M., Benowitz, J. A. and
O’Sullivan, P. B. (2022). The role of preexisting uper plate strike-slip
faults during long-lived (ca. 30 Myr) oblique flat slab subduction,
southern Alaska. Earth and Planetary Science Letters, 577
White, S. H. and Green, P. F. (1986). Tectonic development of the Alpine
fault zone, New Zealand: A fission-track study. Geology, 14(2), p.
124-127.
Wilson, F. H., Hults, C. P., Mull, C. G., and Karl, S. M. (2015).
Geologic Map of Alaska: U.S. Geological Survey Scientific Investigations
Map 3340, scale 1:1,584,000, 2 sheets
Wilson, J. T. (1968). Static or Mobile earth and the Current Scientific
Revolution, Proceedings of the American Philosophical Society, Vol. 112,
No. 5
Wolf, R. A., Farley, K. A. and Silver, L. T. (1996). Helium diffusion
and low-temperature thermochronometry of apatite. Geochimica et
Cosmochimica Acta, 60(21), p.4231-4240.
Worthington, L. L., Van Avendonk, H. J., Gulick, S. P., Christeson, G.
L. and Pavlis, T. L. (2012). Crustal structure of the Yakutat terrane
and the evolution of subduction and collision in southern Alaska.
Journal of Geophysical Research: Solid Earth, 117