5. REFERENCES
[1] Caro, Y., Venkatachalam, M., Lebeau, J., Fouillaud, M., &
Dufossé, L., 2017. Pigments and colorants from filamentous fungi. Fungal
Metab., 2017, 499–568.
[2] Yusuf, M., Shabbir, M., Mohammad, F., 2017. Natural Colorants:
Historical, Processing and Sustainable Prospects. Nat. Products
Bioprospect., 2017, 7 , 123–145.
[3] Narsing Rao, M.P., Xiao, M., Li, W.J., 2017. Fungal and
bacterial pigments: Secondary metabolites with wide applications. Front.
Microbiol., 2017, 8 , 1–13.
[4] Ogbonna, C.N., 2016. Production of food colourants by
filamentous fungi. African J. Microbiol. Res., 2016, 10 ,
960–971.
[5] Freire, A.K.L., dos Santos Bentes, A., de Lima Sampaio, I.,
Matsuura, A.B.J., et al., 2012. Molecular characterisation of the
causative agents of Cryptococcosis in patients of a tertiary healthcare
facility in the state of Amazonas-Brazil. Mycoses, 2012, 55 .
[6] Pankaj, V.P., Kumar, R., 2016. 4. Microbial pigment as a
potential natural colorant for contributing to mankind. Res. Signpost
India Res. Trends Mol. Biol., 2016, 37661 , 85–98.
[7] Venkatachalam, M., Magalon, H., Dufossé, L., Fouillaud, M.,
2018. Journal of Food Composition and Analysis Production of pigments
from the tropical marine-derived fungi Talaromyces albobiverticillius :
New resources for natural red-colored metabolites. J. Food Compos.
Anal., 2018, 70 , 35–48.
[8] Sigurdson, G.T., Tang, P., Giusti, M.M., 2017. Natural
Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci.
Technol., 2017, 8 , 261–280.
[9] Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S.A.S.,
Sutthiwong, N., 2014. Filamentous fungi are large-scale producers of
pigments and colorants for the food industry. Curr. Opin. Biotechnol.,
2014, 26 , 56–61.
[10] Dufossé, L., 2018. Red colourants from filamentous fungi: Are
they ready for the food industry? J. Food Compos. Anal., 2018,69 , 156–161.
[11] Kalra, R., Conlan, X.A., Goel, M., 2020. Fungi as a Potential
Source of Pigments: Harnessing Filamentous Fungi. Front. Chem., 2020,8 , 1–23.
[12] Souza, Patrícia Nirlane da Costa; Grigoletto, T.L.B., Moraes,
L.A.B., Abreu, L.M.., Guimarães, C.S., et al., 2016. Production and
chemical characterization of pigments in filamentous fungi.
Microbiology, 2016, 162 , 12–22.
[13] Akilandeswari, P., Pradeep, B. V., 2016. Exploration of
industrially important pigments from soil fungi. Appl. Microbiol.
Biotechnol., 2016, 100 , 1631–1643.
[14] Anugraha, A.C; Thomas, T., 2021. A review on pigment producing
soil fungi and its applications 2021, 4 , 89–112.
[15] Celestino, J.D.R., Carvalho, L.E. De, Lima, M.D.P., Lima, A.M.,
et al., 2014. Bioprospecting of Amazon soil fungi with the potential for
pigment production. Process Biochem., 2014, 49 , 569–575.
[16] Osmanova, N., Schultze, W., Ayoub, N., 2010. Azaphilones: a
class of fungal metabolites with diverse biological activities.
Phytochem. Rev., 2010, 9 , 315–342.
[17] Teixeira, M.F.S., Martins, M.S., da Silva, J.C., Kirsch, L.S.,
et al., 2012. Amazonian biodiversity: Pigments from Aspergillus and
Penicillium-characterizations, antibacterial activities and their
Toxicities. Curr. Trends Biotechnol. Pharm., 2012, 6 , 300–311.
[18] CLARK, F., 1965. Actinomyces .
[19] Riddell, R.W., 1950. Permanent Stained Mycological Preparations
Obtained by Slide Culture. Mycologia, 1950, 42 , 265–270.
[20] Ferrer, C., Colom, F., Frase, S., Mulet, E., et al., 2001.
Detection and Identification of Fungal Pathogens by PCR and by ITS2 and
5 . 8S Ribosomal DNA Typing in Ocular Infections. J. Clin. Microbiol.,
2001, 39 , 2873–2879.
[21] White, T.J., T. Bruns, S. Lee, and J.W.T., 1990. In: Innis,
M.A., Gelfand, D.H., Sninsky J.J, WTJ (Ed.), PCR Protoc. A Guid.
to Methods Appl. , Academic in Press, New York, pp. 315–322.
[22] Velmurugan, P., Hur, H., Balachandar, V., Kamala-kannan, S., et
al., 2011. Monascus pigment production by solid-state fermentation with
corn cob substrate. JBIOSC, 2011, 112 , 590–594.
[23] CLSI, 2010. Reference Method for Broth Dilution Antifungal
Susceptibility Testing of Yeasts ; Approved Standard — Third
Edition.vol. 28.
[24] Cruz, K.S., Lima, E.S., Silva, M.D.J.A.D., Souza, E.S.D., et
al., 2019. Screening and antifungal activity of a β-carboline derivative
against cryptococcus neoformans and C. gattii. Int. J. Microbiol., 2019,2019 .
[25] Sharma, D., Gupta, C., Aggarwal, S., Nagpal, N., 2012. Pigment
extraction from fungus for textile dyeing 2012, 37 , 68–73.
[26] Kramar, A., Ilic-Tomic, T., Petkovic, M., Radulović, N., et
al., 2014. Crude bacterial extracts of two new Streptomyces sp. isolates
as bio-colorants for textile dyeing. World J. Microbiol. Biotechnol.,
2014, 30 , 2231–2240.
[27] Leonardi, G.R., Gaspar, L.R., Maia Campos, P.M.B.G., 2002.
Study of pH variation on the skin using cosmetic formulation s with and
without vitamins A, E or ceramide: By a non-invasive method. An. Bras.
Dermatol., 2002, 77 , 563–569.
[28] Libório, J.F.D.A., 2016. CARACTERIZAÇÃO FÍSICO-QUÍMICA DO
EXTRATO SECO DAS SEMENTES DE MYRCIARIA DUBIA (KUNTH) MCVAUGH E
DESENVOLVIMENTO DE FORMULAÇÃO SEMISSÓLIDA. 2016.
[29] Peres, E.G; Souza, M.P; Sousa, T.F; Silva, C.V.A; Barros, A.L;
Silva, F.M.A; Costa, E.V; Medeiros, L.S; Forim, MR; Souza, A.D.L; Paz,
W.H.P; Silva, G.F; Souza, A.Q.L; Koolen, H.H.., 2023. Dereplication of
Sclerotiorin-Like Azaphilones Produced by. J. Braz. Chem. Soc., 2023,00 , 1–15.
[30] Vansteelandt, M., Blanchet, E., Egorov, M., Petit, F., et al.,
2013. Ligerin, an antiproliferative chlorinated sesquiterpenoid from a
marine-derived penicillium strain. J. Nat. Prod., 2013, 76 ,
297–301.
[31] Guimarães, F.S., Bueno, G.T., De Sena Oliveira Mendes, D., Do
Nascimento, N.R., et al., 2018. Vegetation dynamics and landscape
evolution in the contact between campinarana and campina on spodosols -
Demini River basin-AM (Brazil). Rev. Bras. Geomorfol., 2018,19 , 587–600.
[32] Narendrababu, B., Shishupala, S., 2017. Spectrophotometric
detection of Pigments from Aspergillus and Penicillium isolates. J.
Appl. Biol. Biotechnol., 2017, 5 , 053–058.
[33] Darwesh, O.M., Matter, I.A., Almoallim, H.S., Alharbi, S.A.,
Oh, Y.K., 2020. Isolation and optimization of Monascus ruber OMNRC45 for
red pigment production and evaluation of the pigment as a food colorant.
Appl. Sci., 2020, 10 , 1–15.
[34] Surendirakumar, K., Pandey, R.R., Muthukumar, T.,
Sathiyaseelan, A., et al., 2022. Characterization and biological
activities of melanin pigment from root endophytic fungus, Phoma sp.
RDSE17. Arch. Microbiol., 2022, 204 , 1–15.
[35] Lucas, E.M.F., De Castro, M.C.M., Takahashi, J.A., 2007.
Antimicrobial properties of sclerotiorin, isochromophilone VI and
pencolide, metabolites from a Brazilian cerrado isolate of Penicillium
sclerotiorum Van Beyma. Brazilian J. Microbiol., 2007, 38 ,
785–789.
[36] Anelli, P., Peterson, S.W., Haidukowski, M., Logrieco, A.F., et
al., 2018. Penicillium gravinicasei, a new species isolated from cave
cheese in Apulia, Italy. Int. J. Food Microbiol., 2018, 282 ,
66–70.
[37] Han, P., Zhang, X., Xu, D., Zhang, B., et al., 2020.
Metabolites from clonostachys fungi and their biological activities. J.
Fungi, 2020, 6 , 1–30.
[38] Chidananda, C., Rao, L.J.M., Sattur, A.P., 2006. Sclerotiorin,
from Penicillium frequentans, a potent inhibitor of aldose reductase.
Biotechnol. Lett., 2006, 28 , 1633–1636.
[39] O. dos Santos, P., Ferraz, C.G., Ribeiro, P.R., Miranda, F.M.,
et al., 2019. Antioxidant and antibacterial activities of the chlorine
pigment sclerotiorin from Penicillium mallochii and its chemotaxonomic
significance. Biochem. Syst. Ecol., 2019, 86 , 103915.
[40] Falade, A.O., Adewole, K.E., Ekundayo, T.C., 2021. Therapeutic
potentials of endophytes for healthcare sustainability. Egypt. J. Basic
Appl. Sci., 2021, 8 , 117–135.
[41] Frisvad, J.C., 2018. A critical review of producers of small
lactone mycotoxins: Patulin, penicillic acid and moniliformin. World
Mycotoxin J., 2018, 11 , 73–100.
[42] Bouhri, Y., Askun, T., Tunca, B., Deniz, G., et al., 2020. The
orange-red pigment from Penicillium mallochii: Pigment production,
optimization, and pigment efficacy against Glioblastoma cell lines.
Biocatal. Agric. Biotechnol., 2020, 23 .
[43] Zhai, M.M., Qi, F.M., Li, J., Jiang, C.X., et al., 2016.
Isolation of Secondary Metabolites from the Soil-Derived Fungus
Clonostachys rosea YRS-06, a Biological Control Agent, and Evaluation of
Antibacterial Activity. J. Agric. Food Chem., 2016, 64 ,
2298–2306.
[44] Ayyolath, A., Kallingal, A., Thachan Kundil, V., Variyar, E.J.,
2020. Studies on the bioactive properties of Penicillium mallochi ARA-1
pigment isolated from coffee plantation. Biocatal. Agric. Biotechnol.,
2020, 30 , 101841.
[45] Jin, H.J., Zhang, X., Cao, H., Niu, Y.J., et al., 2018.
Chemical Composition, Security and Bioactivity of the Red Pigment from
Penicillium purpurogenum Li-3. Chem. Biodivers., 2018, 15 .
[46] Kallingal, A., Ayyolath, A., Thachan Kundil, V., Joseph, T.M.,
et al., 2021. Extraction and optimization of Penicillium sclerotiorum
strain AK-1 pigment for fabric dyeing. J. Basic Microbiol., 2021.
[47] Hernández, V.A., Machuca, Á., Saavedra, I., Chavez, D., et al.,
2019. Talaromyces australis and Penicillium murcianum pigment production
in optimized liquid cultures and evaluation of their cytotoxicity in
textile applications. World J. Microbiol. Biotechnol., 2019,35 , 1–9.
[48] Sudha, Gupta, C., Aggarwal, S., 2016. Dyeing wet blue goat
nappa skin with a microbial colorant obtained from Penicillium
minioluteum. J. Clean. Prod., 2016, 127 , 585–590.
[49] Koli, S.H., Suryawanshi, R.K., Mohite, B. V., Patil, S. V.,
2019. Prospective of Monascus Pigments as an Additive to Commercial
Sunscreens. Nat. Prod. Commun., 2019, 14 .