References:
1. Northrop BH, Frayne SH, Choudhary U. Thiol–maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polymer Chemistry. 2015;6(18):3415-3430.
2. Nair DP, Podgorski M, Chatani S, et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry.Chemistry of Materials. 2014;26(1):724-744.
3. Kolb HC, Finn M, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition. 2001;40(11):2004-2021.
4. Ravasco JM, Faustino H, Trindade A, Gois PM. Bioconjugation with maleimides: A useful tool for chemical biology. Chemistry–A European Journal. 2019;25(1):43-59.
5. Hermanson G. Chapter 3-The Reactions of Bioconjugation. in (ed. Hermanson, GTBT-BT (Third E.) 229–258. In: Academic Press; 2013.
6. Dong L, Li C, Locuson C, Chen S, Qian MG. A two-step immunocapture LC/MS/MS assay for plasma stability and payload migration assessment of cysteine–maleimide-based antibody drug conjugates. Analytical chemistry. 2018;90(10):5989-5994.
7. Baldwin AD, Kiick KL. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjugate chemistry.2011;22(10):1946-1953.
8. Shen B-Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates.Nature biotechnology. 2012;30(2):184-189.
9. Tumey LN, Charati M, He T, et al. Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjugate chemistry. 2014;25(10):1871-1880.
10. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV. Long-term stabilization of maleimide–thiol conjugates. Bioconjugate chemistry. 2015;26(1):145-152.
11. Christie RJ, Fleming R, Bezabeh B, et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides.Immunome Research. 2016;12(S2):29.
12. Ponte JF, Sun X, Yoder NC, et al. Understanding how the stability of the thiol-maleimide linkage impacts the pharmacokinetics of lysine-linked antibody–maytansinoid conjugates. Bioconjugate chemistry. 2016;27(7):1588-1598.
13. Szijj PA, Bahou C, Chudasama V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discovery Today: Technologies. 2018;30:27-34.
14. Lahnsteiner M, Kastner A, Mayr J, Roller A, Keppler BK, Kowol CR. Improving the stability of maleimide–thiol conjugation for drug targeting. Chemistry–A European Journal.2020;26(68):15867-15870.
15. Gober IN, Riemen AJ, Villain M. Sequence sensitivity and pH dependence of maleimide conjugated N‐terminal cysteine peptides to thiazine rearrangement. Journal of Peptide Science.2021;27(7):e3323.
16. Boyatzis AE, Bringans SD, Piggott MJ, Duong MN, Lipscombe RJ, Arthur PG. Limiting the hydrolysis and oxidation of maleimide–peptide adducts improves detection of protein thiol oxidation. Journal of proteome research. 2017;16(5):2004-2015.
17. Rodriguez Mallon A, Javier Gonzalez L, Encinosa Guzman PE, et al. Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen Based on the P0 Peptide Conjugated to Bm86 Protein. Pathogens.2020;9(6).
18. González LJ, Encinosa Guzmán PE, Machado W, et al. Synthesis, LC-MS/MS analysis, and biological evaluation of two vaccine candidates against ticks based on the antigenic P0 peptide from R. sanguineus linked to the p64K carrier protein from Neisseria meningitidis.Analytical and Bioanalytical Chemistry. 2021;413(23):5885-5900.
19. Kühn-Hölsken E, Lenz C, Dickmanns A, et al. Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry. Nucleic acids research. 2010;38(16):5581-5593.
20. Warren CM, Kobayashi T, Solaro RJ. Sites of intra-and intermolecular cross-linking of the N-terminal extension of troponin I in human cardiac whole troponin complex. Journal of Biological Chemistry.2009;284(21):14258-14266.
21. Bonner J, Talbert LE, Akkawi N, Julian RR. Simplified identification of disulfide, trisulfide, and thioether pairs with 213 nm UVPD.Analyst. 2018;143(21):5176-5184.
22. Talbert LE, Julian RR. Directed-backbone dissociation following bond-specific carbon-sulfur UVPD at 213 nm. Journal of The American Society for Mass Spectrometry. 2018;29(9):1760-1767.