REFERENCE
Addo-Akoto,
R., Han, J., & Han, J. (2019). Influence of aspect ratio on wing-wake
interaction for flapping wing in hover. Experiments in Fluids ,
60(11).
Bergou, A., Xu, S., & Wang, Z.J. (2007). Passive wing pitch reversal in
insect flight. Journal of Fluid Mechanics , 591, 321–337.
Cao, C., Burgess, S., & Conn,
A.T. (2019). Toward a dielectric elastomer resonator driven flapping
wing micro air vehicle. Frontiers in Robotics and AI , 5, 137.
Chen, L., Wu, J., & Cheng, B. (2020). Leading-edge vortex formation and
transient lift generation on a revolving wing at low Reynolds number.Aerospace Science and Technology , 97, 105589.
Chen, Y.H., & Skote, M. (2015). Study of lift enhancing mechanisms via
comparison of two distinct flapping patterns in the dragonfly Sympetrum
flaveolum. Physics of Fluids , 27(3), 033604.
Chen, Y.H., & Skote, M. (2016). Gliding performance of 3-D corrugated
dragonfly wing with spanwise variation. Journal of Fluids and
Structures , 62, 1–13.
Chitsaz, N., Siddiqui, K., & Marian, R. (2021). An experimental study
of the aerodynamics of micro corrugated wings at low Reynolds number.Experimental Thermal and Fluid Science , 121, 110286.
Deng, S., Wang, J., & Liu, H. (2019). Experimental study of a
bio-inspired flapping wing MAV by means of force and PIV measurements.Aerospace Science and Technology , 94, 105382.
Engels, T., Wehmann, H-N., & Lehmann, F-O. (2020). Three-dimensional
wing structure attenuates aerodynamic efficiency in flapping fly wings.Journal of The Royal Society Interface , 17(164), 20190804.
Eshghi, S., Nabati, F., &
Shafaghi, S. (2022). An image based application in Matlab for automated
modelling and morphological analysis of insect wings. Scientific
Reports , 12.
Fairuz, Z.M., Abdullah, M.Z., & Zubair, M. (2016). Effect of Wing
Deformation on the Aerodynamic Performance of Flapping Wings:
Fluid-Structure Interaction Approach. Journal of Aerospace
Engineering , 29(4), 04016006.
Flint, T.J., Jermy, M.C., & New, T.H. (2017). Computational study of a
pitching bio-inspired corrugated airfoil. International Journal of
Heat and Fluid Flow , 65, 328–341.
Gong, C.L., Han, J.K., & Yuan, Z.J. (2019). Numerical investigation of
the effects of different parameters on the thrust performance of three
dimensional flapping wings. Aerospace Science and Technology , 84,
431-445.
Hedrick, T. L., Combes, S. A., & Miller, L.A. (2015). Recent
developments in the study of insect flight. Canadian Journal of
Zoology , 93(12), 925-943.
Hou, D., Yin, Y.J., & Zhao, H.X. (2015). Effects of blood in veins of
dragonfly wing on the vibration characteristics. Computers in
Biology and Medicine , 58, 14-19.
Hou, D., & Zhong, Z. (2022). Comparative analysis of deformation
behaviors of dragonfly wing under aerodynamic and inertial forces.Computers in Biology and Medicine , 145, 105421.
Hu, H., & Tamai, M. (2008). Bioinspired corrugated airfoil at low
Reynolds numbers. Journal of Aircraft , 45(6), 2068-2077.
Hussein, A.A., Seleit, A.E., & Taha, H.E. (2019). Optimal transition of
flapping wing micro-air vehicles from hovering to forward flight.Aerospace Science and Technology , 90, 246-263.
Jeffries, D.L., Chapman, J., & Roy, H.E. (2013). Characteristics and
Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking
Entomological Radar. PLoS ONE , 8(12), e82278.
Jongerius, S.R., & Lentink, D. (2010). Structural Analysis of a
Dragonfly Wing. Experimental Mechanics , 50(9), 1323-1334.
Kim, W., Ko, J., Park, H., & Byun, D. (2009). Effects of corrugation of
the dragonfly wing on gliding performance. Journal of Theoretical
Biology , 260, 523–530.
Kesel, A.B. (2000). Aerodynamic characteristics of dragonfly wing
sections compared with technical aerofoils. Journal of
Experimental Biology , 203(20), 3125-3135.
Krishna, S., Cho, M., & Wehmann,
H. (2020). Wing Design in Flies: Properties and Aerodynamic Function.Insects , 11, 466.
Le, T.Q., Truong, T.V., & Tran, H.T. (2013). Two- and Three-Dimensional
Simulations of Beetle Hind Wing Flapping during Free Forward Flight.Journal of Bionic Engineering , 10(3), 316–328.
Li, Q., Ji, A., & Shen, H. (2022). The forewing of a black cicada
Cryptotympana atrata (Hemiptera, Homoptera: Cicadidae): Microscopic
structures and mechanical properties. Microscopy Research and
Technique , 85(9), 3153-3164.
Lian, Y., Broering, T., & Hord, K. (2014). The characterization of
tandem and corrugated wings. Progress in Aerospace Sciences , 65,
41–69.
Lian, Y., Wei, S., & Viieru, D. (2003). Membrane wing aerodynamics for
micro air vehicles. Progress in Aerospace Sciences , 39, 425-465.
Liu, C., Du, R., & Li, F. (2022). Bioinspiration of the vein structure
of dragonfly wings on its flight characteristics. Microscopy
Research and Technique , 85(3), 829-839.
Liu, P., Sane, S.P., & Mongeau, J. (2019). Flies land upside down on a
ceiling using rapid visually mediated rotational maneuvers.Science Advances , 5(10), eaax1877.
Meng, X.G., Xu, L., & Sun, M. (2011). Aerodynamic effects of
corrugation in flapping insect wings in hovering flight. Journal
of Experimental Biology , 214(3), 432-444.
Nguyen, K., Au, L., & Phan, H.
(2021). Effects of wing kinematics, corrugation, and clap-and-fling on
aerodynamic efficiency of a hovering insect-inspired flapping-wing micro
air vehicle. Aerospace Science and Technology , 118, 106990.
Nian, P., Song, B., & Xuan, J. (2019). A wind tunnel experimental study
on the flexible flapping wing with an attached airfoil to the root.IEEE Access , 7, 47891–47903.
Shahzad, A., Hamdani, H.R., & Aizaz, A. (2017). Investigation of
corrugated wing in unsteady motion. Journal of Applied Fluid
Mechanics , 10(3), 833-845.
Mukherjee, P., Pawar, A., &
Ranjan, K. (2021). Corrugation Assisted Enhancement of Aerodynamic
Characteristics of Delta Wing for Micro Aerial Vehicle. Journal of
Aircraft , 58, 300-309.
Mukherjee, S., & Ganguli, R. (2012). A comparative study of dragonfly
inspired flapping wings actuated by single crystal piezoceramic.Smart Structures and Systems , 10(1), 67-87.
Sun, J.Y., Liu, C., & Bhushan, B. (2019). A review of beetle hindwings:
Structure, mechanical properties, mechanism and bioinspiration.Journal of The Mechanical
Behavior of Biomedical Materials , 94, 63-73.
Sunada, S., Yasuda, T., & Yasuda, K. (2002). Comparison of wing
characteristics at ultralow Reynolds number. Journal of Aircraft ,
39(2), 331–338.
Van Truong, T., Le, T.Q., & Byun, D. (2012). Flexible Wing Kinematics
of a Free-Flying Beetle (Rhinoceros Beetle Trypoxylus Dichotomus).Journal of Bionic Engineering , 9(3), 314-314.
Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2012). Operation of the
alula as an indicator of gear change in hoverflies. Journal of The
Royal Society Interface , 9(71), 1194–1207.
Willmott, A.P. The mechanics of
Hawk moth flight. Thesis. Cambridge University, Cambridge. 1995.
Xue, D., Song, B., & Song, W. (2019). Computational simulation and free
flight validation of body vibration of flapping-wing MAV in forward
flight. Aerospace Science and Technology , 95, 105491.
Yang, L., Kapri, N., & Waikhom, R. (2021). Fabrication, Aerodynamic
Measurement and Performance Evaluation of Corrugated Flapping Wings.Journal of Aeronautics Astronautics and Aviation , 53, 83-93.
Yang, W., Song, B., & Wang, L.
(2015). Dynamic fluid-structure coupling method of flexible flapping
wing for MAV. Journal of Aerospace Engineering , 28(6), 04015006.
Zhang, Z. J., Sun, X. W., & Du, P.Y. (2018). Design of a
hydraulically-driven bionic folding wing. Journal of The
Mechanical Behavior of Biomedical Materials , 82, 120-125.