References
Allouche, O., Tsoar, A. & Kadmon, R. (2010) Assessing the accuracy of
species distribution models: prevalence, kappa and the true skill
statistic (TSS). Journal of Applied Ecology 43, 1223-1232.https://doi.org/10.1111/j.1365-2664.2006.01214.x
Andréfouët, S., Van Wynsberge, S., Fauvelot, C., Bruckner, A. &
Remoissenet, G. (2014) Significance of new records of Tridacna
squamosa Lamarck, 1819, in the Tuamotu and Gambier Archipelagos (French
Polynesia). Molluscan Research 34, 277-284.https://doi.org/10.1080/13235818.2014.940662
Andréfouët, S., Van Wynsberge, S., Gaertner-Mazouni, N., Menkes, C.,
Gilbert, A. & Remoissenet, G. (2013) Climate variability and massive
mortalities challenge giant clam conservation and management efforts in
French Polynesia atolls. Biological Conservation 160, 190-199.https://doi.org/10.1016/j.biocon.2013.01.017
Anibaba, Q.A., Dyderski, M.K. & Jagodziński, A.M. (2022) Predicted
range shifts of invasive giant hogweed (Heracleum mantegazzianum )
in Europe. Sci Total Environ 825, 154053.https://doi.org/10.1016/j.scitotenv.2022.154053
Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann,
C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B.,
O’Hara, R.B., Zimmermann, N.E. & Rahbek, C. (2019) Standards for
distribution models in biodiversity assessments. Science Advances 5,
eaat4858.https://doi.org/10.1126/sciadv.aat4858
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A. & De
Clerck, O. (2018) Bio-ORACLE v2.0: Extending marine data layers for
bioclimatic modelling. Global Ecology and Biogeography 27, 277-284.https://doi.org/10.1111/geb.12693
Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012)
Selecting pseudo-absences for species distribution models: how, where
and how many? Methods in Ecology and Evolution 3, 327-338.https://doi.org/10.1111/j.2041-210X.2011.00172.x
Benito Garzón, M., Robson, T.M. & Hampe, A. (2019) ΔTraitSDMs: species
distribution models that account for local adaptation and phenotypic
plasticity. New Phytologist 222, 1757-1765.https://doi.org/10.1111/nph.15716
Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. (2014) bioclim:
the first species distribution modelling package, its early applications
and relevance to most current MaxEnt studies. Diversity and
Distributions 20, 1-9.https://doi.org/10.1111/ddi.12144
Brito-Morales, I., Schoeman, D.S., Everett, J.D., Klein, C.J., Dunn,
D.C., García Molinos, J., Burrows, M.T., Buenafe, K.C.V., Dominguez,
R.M., Possingham, H.P. & Richardson, A.J. (2022) Towards climate-smart,
three-dimensional protected areas for biodiversity conservation in the
high seas. Nature Climate Change 12, 402-407.https://doi.org/10.1038/s41558-022-01323-7
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G.
(2010) Uncertainty in ensemble forecasting of species distribution. Glob
Chang Biol 16, 1145-1157.https://doi.org/10.1111/j.1365-2486.2009.02000.x
Cabaitan, P.C., Gomez, E.D. & Aliño, P.M. (2008) Effects of coral
transplantation and giant clam restocking on the structure of fish
communities on degraded patch reefs. Journal of Experimental Marine
Biology and Ecology 357, 85-98.https://doi.org/10.1016/j.jembe.2008.01.001
Capinha, C., Leung, B. & Anastácio, P. (2011) Predicting worldwide
invasiveness for four major problematic decapods: an evaluation of using
different calibration sets. Ecography 34, 448-459.https://doi.org/10.1111/j.1600-0587.2010.06369.x
Carvalho, J.C. & Cardoso, P. (2020) Decomposing the Causes for Niche
Differentiation Between Species Using Hypervolumes. Frontiers in Ecology
and Evolution 8.https://doi.org/10.3389/fevo.2020.00243
Chardon, N.I., Pironon, S., Peterson, M.L. & Doak, D.F. (2020)
Incorporating intraspecific variation into species distribution models
improves distribution predictions, but cannot predict species traits for
a wide-spread plant species. Ecography 43, 60-74.https://doi.org/10.1111/ecog.04630
Chen, Y., Ge, D., Ericson, P.G.P., Song, G., Wen, Z., Luo, X., Yang, Q.,
Lei, F. & Qu, Y. (2023) Alpine burrow-sharing mammals and birds show
similar population-level climate change risks. Nature Climate Change.https://doi.org/10.1038/s41558-023-01772-8
Cheung, W.W., Watson, R. & Pauly, D. (2013) Signature of ocean warming
in global fisheries catch. Nature 497, 365-368.https://doi.org/10.1038/nature12156
Collart, F., Hedenäs, L., Broennimann, O., Guisan, A. & Vanderpoorten,
A. (2021) Intraspecific differentiation: Implications for niche and
distribution modelling. Journal of Biogeography 48, 415-426.https://doi.org/10.1111/jbi.14009
Dewiyanti, I., Mulyadi, M., Ulfa, M., Haridhi, H.A.J.I.C.S.E. &
Science, E. (2021) Biodiversity of megabenthos and coral reef condition
in Tuan Island, Aceh Besar.https://doi.org/10.1088/1755-1315/869/1/012041
Duncan, M.I., Micheli, F., Boag, T.H., Marquez, J.A., Deres, H.,
Deutsch, C.A. & Sperling, E.A. (2023) Oxygen availability and body mass
modulate ectotherm responses to ocean warming. Nat Commun 14, 3811.https://doi.org/10.1038/s41467-023-39438-w
Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling
range-shifting species. Methods in Ecology and Evolution 1, 330-342.https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elith, J. & Leathwick, J.R. (2009) Species Distribution Models:
Ecological Explanation and Prediction Across Space and Time. Annual
Review of Ecology, Evolution, and Systematics 40, 677-697.https://doi.org/10.1146/annurev.ecolsys.110308.120159
Faleiro, F.V., Nemésio, A. & Loyola, R. (2018) Climate change likely to
reduce orchid bee abundance even in climatic suitable sites. Glob Chang
Biol 24, 2272-2283.https://doi.org/10.1111/gcb.14112
Fan, H., Huang, M., Chen, Y., Zhou, W., Hu, Y. & Wei, F. (2023)
Conservation priorities for global marine biodiversity across multiple
dimensions. Natl Sci Rev 10, nwac241.https://doi.org/10.1093/nsr/nwac241
Fu, J., Zhao, L., Liu, C. & Sun, B. (2021) Estimating the impact of
climate change on the potential distribution of Indo-Pacific humpback
dolphins with species distribution model. PeerJ 9, e12001.https://doi.org/10.7717/peerj.12001
Gilbert, A., Planes, S., Andréfouët, S., Friedman, K. & Remoissenet, G.
(2007) First observation of the giant clam Tridacna squamosa in French
Polynesia: a species range extension. Coral Reefs 26, 229-229.https://doi.org/10.1007/s00338-007-0218-x
Grorud-Colvert, K., Sullivan-Stack, J., Roberts, C., Constant, V.,
Horta, E.C.B., Pike, E.P., Kingston, N., Laffoley, D., Sala, E.,
Claudet, J., Friedlander, A.M., Gill, D.A., Lester, S.E., Day, J.C.,
Gonçalves, E.J., Ahmadia, G.N., Rand, M., Villagomez, A., Ban, N.C.,
Gurney, G.G., Spalding, A.K., Bennett, N.J., Briggs, J., Morgan, L.E.,
Moffitt, R., Deguignet, M., Pikitch, E.K., Darling, E.S., Jessen, S.,
Hameed, S.O., Di Carlo, G., Guidetti, P., Harris, J.M., Torre, J.,
Kizilkaya, Z., Agardy, T., Cury, P., Shah, N.J., Sack, K., Cao, L.,
Fernandez, M. & Lubchenco, J. (2021) The MPA Guide: A framework to
achieve global goals for the ocean. Science 373, eabf0861.https://doi.org/10.1126/science.abf0861
Guisan, A. & Thuiller, W. (2005) Predicting species distribution:
offering more than simple habitat models. Ecology Letters 8, 993-1009.https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017) Habitat Suitability
and Distribution Models: With Applications in R. Cambridge University
Press, Cambridge.
Hällfors, M.H., Aikio, S., Fronzek, S., Hellmann, J.J., Ryttäri, T. &
Heikkinen, R.K. (2016) Assessing the need and potential of assisted
migration using species distribution models. Biological Conservation
196, 60-68.https://doi.org/10.1016/j.biocon.2016.01.031
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F.,
D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita,
R., Heinemann, D., Lenihan, H.S., Madin, E.M., Perry, M.T., Selig, E.R.,
Spalding, M., Steneck, R. & Watson, R. (2008) A global map of human
impact on marine ecosystems. Science 319, 948-952.https://doi.org/10.1126/science.1149345
Hoeksema, B.W., (2007) Delineation of the Indo-Malayan centre of maximum
marine biodiversity: the Coral Triangle, Biogeography, time, and place:
distributions, barriers, and islands. Springer, pp. 117-178.
Hu, W., Zheng, X., Li, Y., Du, J., Lv, Y., Su, S., Xiao, B., Ye, X.,
Jiang, Q., Tan, H., Liao, B. & Chen, B. (2022) High vulnerability and a
big conservation gap: Mapping the vulnerability of coastal scleractinian
corals in South China. Sci Total Environ 847, 157363.https://doi.org/10.1016/j.scitotenv.2022.157363
Hu, Z.-M., Zhang, Q.-S., Zhang, J., Kass, J.M., Mammola, S., Fresia, P.,
Draisma, S.G.A., Assis, J., Jueterbock, A., Yokota, M. & Zhang, Z.
(2021) Intraspecific genetic variation matters when predicting seagrass
distribution under climate change. Molecular Ecology 30, 3840-3855.https://doi.org/10.1111/mec.15996
Huelsken, T., Keyse, J., Liggins, L., Penny, S., Treml, E.A. & Riginos,
C. (2013) A novel widespread cryptic species and phylogeographic
patterns within several giant clam species (Cardiidae: Tridacna )
from the Indo-Pacific Ocean. PLoS One 8, e80858.https://doi.org/10.1371/journal.pone.0080858
Hui, M., Kraemer, W.E., Seidel, C., Nuryanto, A., Joshi, A. & Kochzius,
M. (2016) Comparative genetic population structure of three endangered
giant clams (Cardiidae:Tridacna species) throughout the Indo-West
Pacific: implications for divergence, connectivity and conservation.
Journal of Molluscan Studies 82, 403-414.https://doi.org/10.1093/mollus/eyw001
Ip, Y.K., Loong, A.M., Hiong, K.C., Wong, W.P., Chew, S.F., Reddy, K.,
Sivaloganathan, B. & Ballantyne, J.S. (2006) Light induces an increase
in the pH of and a decrease in the ammonia concentration in the
extrapallial fluid of the giant clam Tridacna squamosa. Physiol Biochem
Zool 79, 656-664.https://doi.org/10.1086/501061
Jantzen, C., Wild, C., El-Zibdah, M., Roa-Quiaoit, H.A., Haacke, C. &
Richter, C. (2008) Photosynthetic performance of giant clams, Tridacna
maxima and T. squamosa, Red Sea. Marine Biology 155, 211-221.https://doi.org/10.1007/s00227-008-1019-7
Killam, D., Thompson, D., Morgan, K. & Russell, M. (2023) Giant clams
as open-source, scalable reef environmental biomonitors. PLoS One 18,
e0278752.https://doi.org/10.1371/journal.pone.0278752
Klumpp, D.W., Bayne, B.L. & Hawkins, A.J.S. (1992) Nutrition of the
giant clam Tridacna gigas (L.) I. Contribution of filter feeding
and photosynthates to respiration and growth. Journal of Experimental
Marine Biology and Ecology 155, 105-122.https://doi.org/10.1016/0022-0981(92)90030-E
Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R Package for
Multivariate Analysis. Journal of Statistical Software 25, 1 - 18.https://doi.org/10.18637/jss.v025.i01
Lee, L.K., Neo, M.L., Lim, Z.F., Hii, K.S., Lim, H.C., Chan, A.A., Gu,
H.F., Lim, P.T. & Leaw, C.P. (2022) Population status and genetic
diversity of two endangered giant clams (Tridacna squamosa andTridacna maxima ) on the fringing reefs of Perhentian Islands,
Malaysia. AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS 32,
1005-1021.https://doi.org/10.1002/aqc.3807
Li, L., Zhao, L., Fu, J., Sun, B. & Liu, C. (2022) Predicting the
habitat suitability for populations of Pacific cod under different
climate change scenarios considering intraspecific genetic variation.
Ecological Indicators 142.https://doi.org/10.1016/j.ecolind.2022.109248
Liu, C., Liu, X., Wang, H., Wang, A. & Gu, Z. (2018) Effects of light
intensity and spectra on metabolism of ammonia, active phosphates, and
oxygen consumption in Tridacna Crocea . Oceanologia et Limnologia
Sinica 49, 313-318.http://doi.org/10.11693/hyhz20170700183
Liu, C., White, M., Newell, G. & Pearson, R. (2013) Selecting
thresholds for the prediction of species occurrence with presence‐only
data. Journal of Biogeography 40, 778-789.https://doi.org/10.1111/jbi.12058
Liu, E., He, Y., Gu, Z., Shi, Y., Wang, A. & Liu, C. (2021) Effect of
light intensity on the change in mantle color of the boring giant clamTridacna crocea . Marine Sciences 45, 70-75.https://doi.org/10.11759/hykx20200424002
Lucas, J.S. (2014) Giant clams. Curr Biol 24, R183-184.https://doi.org/10.1016/j.cub.2013.11.062
Lumpkin, R., Baringer, M., Bif, M.B., Boyer, T., Bushinsky, S.M.,
Carter, B.R., Cetinić, I., Chambers, D.P., Cheng, L., Chiba, S., Dai,
M., Domingues, C.M., Dong, S., Fassbender, A.J., Feely, R.A.,
Frajka-Williams, E., Franz, B.A., Gilson, J., Goni, G., Hamlington,
B.D., Hu, Z.-Z., Huang, B., Ishii, M., Jevrejeva, S., Johns, W.E.,
Johnson, G.C., Johnson, K.S., Kennedy, J., Kersalé, M., Killick, R.E.,
Landschützer, P., Lankhorst, M., Lee, T., Leuliette, E., Li, F.,
Lindstrom, E., Locarnini, R., Lozier, S., Lyman, J.M., Marra, J.J.,
Meinen, C.S., Merrifield, M.A., Mitchum, G.T., Moat, B., Monselesan, D.,
Nerem, R.S., Perez, R.C., Purkey, S.G., Rayner, D., Reagan, J., Rome,
N., Sanchez-Franks, A., Schmid, C., Scott, J.P., Send, U., Siegel, D.A.,
Smeed, D.A., Speich, S., Stackhouse, P.W., Sweet, W., Takeshita, Y.,
Thompson, P.R., Triñanes, J.A., Visbeck, M., Volkov, D.L., Wanninkhof,
R., Weller, R.A., Westberry, T.K., Widlansky, M.J., Wijffels, S.E.,
Wilber, A.C., Yu, L., Yu, W. & Zhang, H.-M. (2020) Global Oceans.
Bulletin of the American Meteorological Society 101, S129-S184.https://doi.org/10.1175/bams-d-20-0105.1
Lyons, M.B., Roelfsema, C.M., Kennedy, E.V., Kovacs, E.M.,
Borrego-Acevedo, R., Markey, K., Roe, M., Yuwono, D.M., Harris, D.L.,
Phinn, S.R., Asner, G.P., Li, J.W., Knapp, D.E., Fabina, N.S., Larsen,
K., Traganos, D. & Murray, N.J. (2020) Mapping the world’s coral reefs
using a global multiscale earth observation framework. REMOTE SENSING IN
ECOLOGY AND CONSERVATION 6, 557-568.https://doi.org/10.1002/rse2.157
Mammola, S. & Cardoso, P. (2020) Functional diversity metrics using
kernel density n-dimensional hypervolumes. Methods in Ecology and
Evolution 11, 986-995.https://doi.org/10.1111/2041-210X.13424
Mei, Luo, Hao, Wang, Zhi & Lyu (2017) Evaluating the performance of
species distribution models Biomod2 and MaxEnt using the giant panda
distribution data. The Journal of Applied Ecology.https://doi.org/10.13287/j.1001-9332.201712.011
Monllor-Hurtado, A., Pennino, M.G. & Sanchez-Lizaso, J.L. (2017) Shift
in tuna catches due to ocean warming. PLoS One 12, e0178196.https://doi.org/10.1371/journal.pone.0178196
Morato, T., González-Irusta, J.M., Dominguez-Carrió, C., Wei, C.L.,
Davies, A., Sweetman, A.K., Taranto, G.H., Beazley, L., García-Alegre,
A., Grehan, A., Laffargue, P., Murillo, F.J., Sacau, M., Vaz, S.,
Kenchington, E., Arnaud-Haond, S., Callery, O., Chimienti, G., Cordes,
E., Egilsdottir, H., Freiwald, A., Gasbarro, R., Gutiérrez-Zárate, C.,
Gianni, M., Gilkinson, K., Wareham Hayes, V.E., Hebbeln, D., Hedges, K.,
Henry, L.A., Johnson, D., Koen-Alonso, M., Lirette, C., Mastrototaro,
F., Menot, L., Molodtsova, T., Durán Muñoz, P., Orejas, C., Pennino,
M.G., Puerta, P., Ragnarsson, S., Ramiro-Sánchez, B., Rice, J., Rivera,
J., Roberts, J.M., Ross, S.W., Rueda, J.L., Sampaio, Í., Snelgrove, P.,
Stirling, D., Treble, M.A., Urra, J., Vad, J., van Oevelen, D., Watling,
L., Walkusz, W., Wienberg, C., Woillez, M., Levin, L.A. &
Carreiro-Silva, M. (2020) Climate-induced changes in the suitable
habitat of cold-water corals and commercially important deep-sea fishes
in the North Atlantic. Glob Chang Biol 26, 2181-2202.https://doi.org/10.1111/gcb.14996
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van
Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl,
G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J.,
Stouffer, R.J., Thomson, A.M., Weyant, J.P. & Wilbanks, T.J. (2010) The
next generation of scenarios for climate change research and assessment.
Nature 463, 747-756.https://doi.org/10.1038/nature08823
Neo, M.L., Eckman, W., Vicentuan, K., Teo, S.L.M. & Todd, P.A. (2015)
The ecological significance of giant clams in coral reef ecosystems.
Biological Conservation 181, 111-123.https://doi.org/10.1016/j.biocon.2014.11.004
Nielsen, E.S., Henriques, R., Beger, M. & von der Heyden, S. (2021)
Distinct interspecific and intraspecific vulnerability of coastal
species to global change. Glob Chang Biol 27, 3415-3431.https://doi.org/10.1111/gcb.15651
Norton, J.H., Shepherd, M.A., Long, H.M. & Fitt, W.K. (1992) The
Zooxanthellal Tubular System in the Giant Clam. Biol Bull 183, 503-506.https://doi.org/10.2307/1542028
Nuryanto, A. & Kochzius, M. (2009) Highly restricted gene flow and deep
evolutionary lineages in the giant clam Tridacna maxima . Coral
Reefs 28, 607-619.https://doi.org/10.1007/s00338-009-0483-y
Pack, K.E., Mieszkowska, N. & Rius, M. (2022) Rapid niche shifts as
drivers for the spread of a non-indigenous species under novel
environmental conditions. Diversity and Distributions 28, 596-610.https://doi.org/10.1111/ddi.13471
Palialexis, A., Georgakarakos, S., Karakassis, I., Lika, K. &
Valavanis, V.D. (2011) Prediction of marine species distribution from
presence–absence acoustic data: comparing the fitting efficiency and
the predictive capacity of conventional and novel distribution models.
Hydrobiologia 670, 241-266.https://doi.org/10.1007/s10750-011-0673-9
Penn, J.L. & Deutsch, C. (2022) Avoiding ocean mass extinction from
climate warming. Science 376, 524-526.https://doi.org/10.1126/science.abe9039
Razgour, O., Forester, B., Taggart, J.B., Bekaert, M., Juste, J.,
Ibáñez, C., Puechmaille, S.J., Novella-Fernandez, R., Alberdi, A. &
Manel, S. (2019) Considering adaptive genetic variation in climate
change vulnerability assessment reduces species range loss projections.
Proceedings of the National Academy of Sciences 116, 10418-10423.https://doi.org/10.1073/pnas.1820663116
Rossbach, S., Saderne, V., Anton, A. & Duarte, C.M. (2019)
Light-dependent calcification in Red Sea giant clam Tridacna
maxima . BIOGEOSCIENCES 16, 2635-2650.https://doi.org/10.5194/bg-16-2635-2019
Sala, E. & Giakoumi, S.J.I.J.o.M.S. (2018) No-take marine reserves are
the most effective protected areas in the ocean. 75, 1166-1168.https://doi.org/10.1093/icesjms/fsx059
Song, W.H. & Li, J.J. (2023) The effects of intraspecific variation on
forecasts of species range shifts under climate change. Sci Total
Environ 857, 159513.https://doi.org/10.1016/j.scitotenv.2022.159513
Sorte, C.J.B., Williams, S.L. & Carlton, J.T. (2010a) Marine range
shifts and species introductions: comparative spread rates and community
impacts. Global Ecology and Biogeography 19, 303-316.https://doi.org/10.1111/j.1466-8238.2009.00519.x
Sorte, C.J.B., Williams, S.L. & Zerebecki, R.A. (2010b) Ocean warming
increases threat of invasive species in a marine fouling community.
Ecology 91, 2198-2204.https://doi.org/10.1890/10-0238.1
Strahl, J., Rocker, M.M. & Fabricius, K.E. (2019) Contrasting responses
of the coral Acropora tenuis to moderate and strong light limitation in
coastal waters. Mar Environ Res 147, 80-89.https://doi.org/10.1016/j.marenvres.2019.04.003
Stuart-Smith, R.D., Edgar, G.J. & Bates, A.E. (2017) Thermal limits to
the geographic distributions of shallow-water marine species. Nature
Ecology & Evolution 1, 1846-1852.https://doi.org/10.1038/s41559-017-0353-x
Thuiller, W., Georges, D. & R., E. (2020) Biomod2: ensemble platform
for species distribution modeling. R Package Version 3 (4), 6.https://doi.org/10.1111/j.1600-0587.2008.05742.x
Thuiller, W., Guéguen, M., Renaud, J., Karger, D.N. & Zimmermann, N.E.
(2019) Uncertainty in ensembles of global biodiversity scenarios. Nat
Commun 10, 1446.https://doi.org/10.1038/s41467-019-09519-w
Todd, P.A., Lee, J.H. & Chou, L.M. (2009) Polymorphism and crypsis in
the boring giant clam (Tridacna crocea ): potential strategies
against visual predators. Hydrobiologia 635, 37-43.https://doi.org/10.1007/s10750-009-9859-9
Wang, Z., Zeng, C. & Cao, L. (2023) Mapping the biodiversity
conservation gaps in the East China sea. J Environ Manage 336, 117667.https://doi.org/10.1016/j.jenvman.2023.117667
Yonge, C.M. (1975) Giant clams. Sci Am 232, 96-105.https://doi.org/10.1038/scientificamerican0475-96
Zhang, Z., Capinha, C., Weterings, R., McLay, C.L., Xi, D., Lü, H. &
Yu, L. (2019) Ensemble forecasting of the global potential distribution
of the invasive Chinese mitten crab, Eriocheir sinensis. Hydrobiologia
826, 367-377.https://doi.org/10.1007/s10750-018-3749-y
Zhang, Z., Kass, J.M., Mammola, S., Koizumi, I., Li, X., Tanaka, K.,
Ikeda, K., Suzuki, T., Yokota, M., Usio, N. & Real, R. (2021)
Lineage‐level distribution models lead to more realistic climate change
predictions for a threatened crayfish. Diversity and Distributions 27,
684-695.https://doi.org/10.1111/ddi.13225
Zhao, L., Gao, R., Liu, J., Liu, L., Li, R., Men, L. & Zhang, Z. (2023)
Effects of Environmental Factors on the Spatial Distribution Pattern and
Diversity of Insect Communities along Altitude Gradients in Guandi
Mountain, China. Insects 14, 224.https://doi.org/10.3390/insects14030224
Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010) A protocol for data
exploration to avoid common statistical problems. Methods in Ecology and
Evolution 1, 3-14.https://doi.org/10.1111/j.2041-210X.2009.00001.x