References
Allouche, O., Tsoar, A. & Kadmon, R. (2010) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232.https://doi.org/10.1111/j.1365-2664.2006.01214.x
Andréfouët, S., Van Wynsberge, S., Fauvelot, C., Bruckner, A. & Remoissenet, G. (2014) Significance of new records of Tridacna squamosa Lamarck, 1819, in the Tuamotu and Gambier Archipelagos (French Polynesia). Molluscan Research 34, 277-284.https://doi.org/10.1080/13235818.2014.940662
Andréfouët, S., Van Wynsberge, S., Gaertner-Mazouni, N., Menkes, C., Gilbert, A. & Remoissenet, G. (2013) Climate variability and massive mortalities challenge giant clam conservation and management efforts in French Polynesia atolls. Biological Conservation 160, 190-199.https://doi.org/10.1016/j.biocon.2013.01.017
Anibaba, Q.A., Dyderski, M.K. & Jagodziński, A.M. (2022) Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum ) in Europe. Sci Total Environ 825, 154053.https://doi.org/10.1016/j.scitotenv.2022.154053
Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E. & Rahbek, C. (2019) Standards for distribution models in biodiversity assessments. Science Advances 5, eaat4858.https://doi.org/10.1126/sciadv.aat4858
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A. & De Clerck, O. (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27, 277-284.https://doi.org/10.1111/geb.12693
Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3, 327-338.https://doi.org/10.1111/j.2041-210X.2011.00172.x
Benito Garzón, M., Robson, T.M. & Hampe, A. (2019) ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytologist 222, 1757-1765.https://doi.org/10.1111/nph.15716
Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. (2014) bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20, 1-9.https://doi.org/10.1111/ddi.12144
Brito-Morales, I., Schoeman, D.S., Everett, J.D., Klein, C.J., Dunn, D.C., García Molinos, J., Burrows, M.T., Buenafe, K.C.V., Dominguez, R.M., Possingham, H.P. & Richardson, A.J. (2022) Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nature Climate Change 12, 402-407.https://doi.org/10.1038/s41558-022-01323-7
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16, 1145-1157.https://doi.org/10.1111/j.1365-2486.2009.02000.x
Cabaitan, P.C., Gomez, E.D. & Aliño, P.M. (2008) Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. Journal of Experimental Marine Biology and Ecology 357, 85-98.https://doi.org/10.1016/j.jembe.2008.01.001
Capinha, C., Leung, B. & Anastácio, P. (2011) Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34, 448-459.https://doi.org/10.1111/j.1600-0587.2010.06369.x
Carvalho, J.C. & Cardoso, P. (2020) Decomposing the Causes for Niche Differentiation Between Species Using Hypervolumes. Frontiers in Ecology and Evolution 8.https://doi.org/10.3389/fevo.2020.00243
Chardon, N.I., Pironon, S., Peterson, M.L. & Doak, D.F. (2020) Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60-74.https://doi.org/10.1111/ecog.04630
Chen, Y., Ge, D., Ericson, P.G.P., Song, G., Wen, Z., Luo, X., Yang, Q., Lei, F. & Qu, Y. (2023) Alpine burrow-sharing mammals and birds show similar population-level climate change risks. Nature Climate Change.https://doi.org/10.1038/s41558-023-01772-8
Cheung, W.W., Watson, R. & Pauly, D. (2013) Signature of ocean warming in global fisheries catch. Nature 497, 365-368.https://doi.org/10.1038/nature12156
Collart, F., Hedenäs, L., Broennimann, O., Guisan, A. & Vanderpoorten, A. (2021) Intraspecific differentiation: Implications for niche and distribution modelling. Journal of Biogeography 48, 415-426.https://doi.org/10.1111/jbi.14009
Dewiyanti, I., Mulyadi, M., Ulfa, M., Haridhi, H.A.J.I.C.S.E. & Science, E. (2021) Biodiversity of megabenthos and coral reef condition in Tuan Island, Aceh Besar.https://doi.org/10.1088/1755-1315/869/1/012041
Duncan, M.I., Micheli, F., Boag, T.H., Marquez, J.A., Deres, H., Deutsch, C.A. & Sperling, E.A. (2023) Oxygen availability and body mass modulate ectotherm responses to ocean warming. Nat Commun 14, 3811.https://doi.org/10.1038/s41467-023-39438-w
Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1, 330-342.https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elith, J. & Leathwick, J.R. (2009) Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697.https://doi.org/10.1146/annurev.ecolsys.110308.120159
Faleiro, F.V., Nemésio, A. & Loyola, R. (2018) Climate change likely to reduce orchid bee abundance even in climatic suitable sites. Glob Chang Biol 24, 2272-2283.https://doi.org/10.1111/gcb.14112
Fan, H., Huang, M., Chen, Y., Zhou, W., Hu, Y. & Wei, F. (2023) Conservation priorities for global marine biodiversity across multiple dimensions. Natl Sci Rev 10, nwac241.https://doi.org/10.1093/nsr/nwac241
Fu, J., Zhao, L., Liu, C. & Sun, B. (2021) Estimating the impact of climate change on the potential distribution of Indo-Pacific humpback dolphins with species distribution model. PeerJ 9, e12001.https://doi.org/10.7717/peerj.12001
Gilbert, A., Planes, S., Andréfouët, S., Friedman, K. & Remoissenet, G. (2007) First observation of the giant clam Tridacna squamosa in French Polynesia: a species range extension. Coral Reefs 26, 229-229.https://doi.org/10.1007/s00338-007-0218-x
Grorud-Colvert, K., Sullivan-Stack, J., Roberts, C., Constant, V., Horta, E.C.B., Pike, E.P., Kingston, N., Laffoley, D., Sala, E., Claudet, J., Friedlander, A.M., Gill, D.A., Lester, S.E., Day, J.C., Gonçalves, E.J., Ahmadia, G.N., Rand, M., Villagomez, A., Ban, N.C., Gurney, G.G., Spalding, A.K., Bennett, N.J., Briggs, J., Morgan, L.E., Moffitt, R., Deguignet, M., Pikitch, E.K., Darling, E.S., Jessen, S., Hameed, S.O., Di Carlo, G., Guidetti, P., Harris, J.M., Torre, J., Kizilkaya, Z., Agardy, T., Cury, P., Shah, N.J., Sack, K., Cao, L., Fernandez, M. & Lubchenco, J. (2021) The MPA Guide: A framework to achieve global goals for the ocean. Science 373, eabf0861.https://doi.org/10.1126/science.abf0861
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009.https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017) Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press, Cambridge.
Hällfors, M.H., Aikio, S., Fronzek, S., Hellmann, J.J., Ryttäri, T. & Heikkinen, R.K. (2016) Assessing the need and potential of assisted migration using species distribution models. Biological Conservation 196, 60-68.https://doi.org/10.1016/j.biocon.2016.01.031
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R. & Watson, R. (2008) A global map of human impact on marine ecosystems. Science 319, 948-952.https://doi.org/10.1126/science.1149345
Hoeksema, B.W., (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle, Biogeography, time, and place: distributions, barriers, and islands. Springer, pp. 117-178.
Hu, W., Zheng, X., Li, Y., Du, J., Lv, Y., Su, S., Xiao, B., Ye, X., Jiang, Q., Tan, H., Liao, B. & Chen, B. (2022) High vulnerability and a big conservation gap: Mapping the vulnerability of coastal scleractinian corals in South China. Sci Total Environ 847, 157363.https://doi.org/10.1016/j.scitotenv.2022.157363
Hu, Z.-M., Zhang, Q.-S., Zhang, J., Kass, J.M., Mammola, S., Fresia, P., Draisma, S.G.A., Assis, J., Jueterbock, A., Yokota, M. & Zhang, Z. (2021) Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Molecular Ecology 30, 3840-3855.https://doi.org/10.1111/mec.15996
Huelsken, T., Keyse, J., Liggins, L., Penny, S., Treml, E.A. & Riginos, C. (2013) A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna ) from the Indo-Pacific Ocean. PLoS One 8, e80858.https://doi.org/10.1371/journal.pone.0080858
Hui, M., Kraemer, W.E., Seidel, C., Nuryanto, A., Joshi, A. & Kochzius, M. (2016) Comparative genetic population structure of three endangered giant clams (Cardiidae:Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. Journal of Molluscan Studies 82, 403-414.https://doi.org/10.1093/mollus/eyw001
Ip, Y.K., Loong, A.M., Hiong, K.C., Wong, W.P., Chew, S.F., Reddy, K., Sivaloganathan, B. & Ballantyne, J.S. (2006) Light induces an increase in the pH of and a decrease in the ammonia concentration in the extrapallial fluid of the giant clam Tridacna squamosa. Physiol Biochem Zool 79, 656-664.https://doi.org/10.1086/501061
Jantzen, C., Wild, C., El-Zibdah, M., Roa-Quiaoit, H.A., Haacke, C. & Richter, C. (2008) Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea. Marine Biology 155, 211-221.https://doi.org/10.1007/s00227-008-1019-7
Killam, D., Thompson, D., Morgan, K. & Russell, M. (2023) Giant clams as open-source, scalable reef environmental biomonitors. PLoS One 18, e0278752.https://doi.org/10.1371/journal.pone.0278752
Klumpp, D.W., Bayne, B.L. & Hawkins, A.J.S. (1992) Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. Journal of Experimental Marine Biology and Ecology 155, 105-122.https://doi.org/10.1016/0022-0981(92)90030-E
Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25, 1 - 18.https://doi.org/10.18637/jss.v025.i01
Lee, L.K., Neo, M.L., Lim, Z.F., Hii, K.S., Lim, H.C., Chan, A.A., Gu, H.F., Lim, P.T. & Leaw, C.P. (2022) Population status and genetic diversity of two endangered giant clams (Tridacna squamosa andTridacna maxima ) on the fringing reefs of Perhentian Islands, Malaysia. AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS 32, 1005-1021.https://doi.org/10.1002/aqc.3807
Li, L., Zhao, L., Fu, J., Sun, B. & Liu, C. (2022) Predicting the habitat suitability for populations of Pacific cod under different climate change scenarios considering intraspecific genetic variation. Ecological Indicators 142.https://doi.org/10.1016/j.ecolind.2022.109248
Liu, C., Liu, X., Wang, H., Wang, A. & Gu, Z. (2018) Effects of light intensity and spectra on metabolism of ammonia, active phosphates, and oxygen consumption in Tridacna Crocea . Oceanologia et Limnologia Sinica 49, 313-318.http://doi.org/10.11693/hyhz20170700183
Liu, C., White, M., Newell, G. & Pearson, R. (2013) Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography 40, 778-789.https://doi.org/10.1111/jbi.12058
Liu, E., He, Y., Gu, Z., Shi, Y., Wang, A. & Liu, C. (2021) Effect of light intensity on the change in mantle color of the boring giant clamTridacna crocea . Marine Sciences 45, 70-75.https://doi.org/10.11759/hykx20200424002
Lucas, J.S. (2014) Giant clams. Curr Biol 24, R183-184.https://doi.org/10.1016/j.cub.2013.11.062
Lumpkin, R., Baringer, M., Bif, M.B., Boyer, T., Bushinsky, S.M., Carter, B.R., Cetinić, I., Chambers, D.P., Cheng, L., Chiba, S., Dai, M., Domingues, C.M., Dong, S., Fassbender, A.J., Feely, R.A., Frajka-Williams, E., Franz, B.A., Gilson, J., Goni, G., Hamlington, B.D., Hu, Z.-Z., Huang, B., Ishii, M., Jevrejeva, S., Johns, W.E., Johnson, G.C., Johnson, K.S., Kennedy, J., Kersalé, M., Killick, R.E., Landschützer, P., Lankhorst, M., Lee, T., Leuliette, E., Li, F., Lindstrom, E., Locarnini, R., Lozier, S., Lyman, J.M., Marra, J.J., Meinen, C.S., Merrifield, M.A., Mitchum, G.T., Moat, B., Monselesan, D., Nerem, R.S., Perez, R.C., Purkey, S.G., Rayner, D., Reagan, J., Rome, N., Sanchez-Franks, A., Schmid, C., Scott, J.P., Send, U., Siegel, D.A., Smeed, D.A., Speich, S., Stackhouse, P.W., Sweet, W., Takeshita, Y., Thompson, P.R., Triñanes, J.A., Visbeck, M., Volkov, D.L., Wanninkhof, R., Weller, R.A., Westberry, T.K., Widlansky, M.J., Wijffels, S.E., Wilber, A.C., Yu, L., Yu, W. & Zhang, H.-M. (2020) Global Oceans. Bulletin of the American Meteorological Society 101, S129-S184.https://doi.org/10.1175/bams-d-20-0105.1
Lyons, M.B., Roelfsema, C.M., Kennedy, E.V., Kovacs, E.M., Borrego-Acevedo, R., Markey, K., Roe, M., Yuwono, D.M., Harris, D.L., Phinn, S.R., Asner, G.P., Li, J.W., Knapp, D.E., Fabina, N.S., Larsen, K., Traganos, D. & Murray, N.J. (2020) Mapping the world’s coral reefs using a global multiscale earth observation framework. REMOTE SENSING IN ECOLOGY AND CONSERVATION 6, 557-568.https://doi.org/10.1002/rse2.157
Mammola, S. & Cardoso, P. (2020) Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods in Ecology and Evolution 11, 986-995.https://doi.org/10.1111/2041-210X.13424
Mei, Luo, Hao, Wang, Zhi & Lyu (2017) Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. The Journal of Applied Ecology.https://doi.org/10.13287/j.1001-9332.201712.011
Monllor-Hurtado, A., Pennino, M.G. & Sanchez-Lizaso, J.L. (2017) Shift in tuna catches due to ocean warming. PLoS One 12, e0178196.https://doi.org/10.1371/journal.pone.0178196
Morato, T., González-Irusta, J.M., Dominguez-Carrió, C., Wei, C.L., Davies, A., Sweetman, A.K., Taranto, G.H., Beazley, L., García-Alegre, A., Grehan, A., Laffargue, P., Murillo, F.J., Sacau, M., Vaz, S., Kenchington, E., Arnaud-Haond, S., Callery, O., Chimienti, G., Cordes, E., Egilsdottir, H., Freiwald, A., Gasbarro, R., Gutiérrez-Zárate, C., Gianni, M., Gilkinson, K., Wareham Hayes, V.E., Hebbeln, D., Hedges, K., Henry, L.A., Johnson, D., Koen-Alonso, M., Lirette, C., Mastrototaro, F., Menot, L., Molodtsova, T., Durán Muñoz, P., Orejas, C., Pennino, M.G., Puerta, P., Ragnarsson, S., Ramiro-Sánchez, B., Rice, J., Rivera, J., Roberts, J.M., Ross, S.W., Rueda, J.L., Sampaio, Í., Snelgrove, P., Stirling, D., Treble, M.A., Urra, J., Vad, J., van Oevelen, D., Watling, L., Walkusz, W., Wienberg, C., Woillez, M., Levin, L.A. & Carreiro-Silva, M. (2020) Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob Chang Biol 26, 2181-2202.https://doi.org/10.1111/gcb.14996
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P. & Wilbanks, T.J. (2010) The next generation of scenarios for climate change research and assessment. Nature 463, 747-756.https://doi.org/10.1038/nature08823
Neo, M.L., Eckman, W., Vicentuan, K., Teo, S.L.M. & Todd, P.A. (2015) The ecological significance of giant clams in coral reef ecosystems. Biological Conservation 181, 111-123.https://doi.org/10.1016/j.biocon.2014.11.004
Nielsen, E.S., Henriques, R., Beger, M. & von der Heyden, S. (2021) Distinct interspecific and intraspecific vulnerability of coastal species to global change. Glob Chang Biol 27, 3415-3431.https://doi.org/10.1111/gcb.15651
Norton, J.H., Shepherd, M.A., Long, H.M. & Fitt, W.K. (1992) The Zooxanthellal Tubular System in the Giant Clam. Biol Bull 183, 503-506.https://doi.org/10.2307/1542028
Nuryanto, A. & Kochzius, M. (2009) Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima . Coral Reefs 28, 607-619.https://doi.org/10.1007/s00338-009-0483-y
Pack, K.E., Mieszkowska, N. & Rius, M. (2022) Rapid niche shifts as drivers for the spread of a non-indigenous species under novel environmental conditions. Diversity and Distributions 28, 596-610.https://doi.org/10.1111/ddi.13471
Palialexis, A., Georgakarakos, S., Karakassis, I., Lika, K. & Valavanis, V.D. (2011) Prediction of marine species distribution from presence–absence acoustic data: comparing the fitting efficiency and the predictive capacity of conventional and novel distribution models. Hydrobiologia 670, 241-266.https://doi.org/10.1007/s10750-011-0673-9
Penn, J.L. & Deutsch, C. (2022) Avoiding ocean mass extinction from climate warming. Science 376, 524-526.https://doi.org/10.1126/science.abe9039
Razgour, O., Forester, B., Taggart, J.B., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S.J., Novella-Fernandez, R., Alberdi, A. & Manel, S. (2019) Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences 116, 10418-10423.https://doi.org/10.1073/pnas.1820663116
Rossbach, S., Saderne, V., Anton, A. & Duarte, C.M. (2019) Light-dependent calcification in Red Sea giant clam Tridacna maxima . BIOGEOSCIENCES 16, 2635-2650.https://doi.org/10.5194/bg-16-2635-2019
Sala, E. & Giakoumi, S.J.I.J.o.M.S. (2018) No-take marine reserves are the most effective protected areas in the ocean. 75, 1166-1168.https://doi.org/10.1093/icesjms/fsx059
Song, W.H. & Li, J.J. (2023) The effects of intraspecific variation on forecasts of species range shifts under climate change. Sci Total Environ 857, 159513.https://doi.org/10.1016/j.scitotenv.2022.159513
Sorte, C.J.B., Williams, S.L. & Carlton, J.T. (2010a) Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19, 303-316.https://doi.org/10.1111/j.1466-8238.2009.00519.x
Sorte, C.J.B., Williams, S.L. & Zerebecki, R.A. (2010b) Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91, 2198-2204.https://doi.org/10.1890/10-0238.1
Strahl, J., Rocker, M.M. & Fabricius, K.E. (2019) Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. Mar Environ Res 147, 80-89.https://doi.org/10.1016/j.marenvres.2019.04.003
Stuart-Smith, R.D., Edgar, G.J. & Bates, A.E. (2017) Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology & Evolution 1, 1846-1852.https://doi.org/10.1038/s41559-017-0353-x
Thuiller, W., Georges, D. & R., E. (2020) Biomod2: ensemble platform for species distribution modeling. R Package Version 3 (4), 6.https://doi.org/10.1111/j.1600-0587.2008.05742.x
Thuiller, W., Guéguen, M., Renaud, J., Karger, D.N. & Zimmermann, N.E. (2019) Uncertainty in ensembles of global biodiversity scenarios. Nat Commun 10, 1446.https://doi.org/10.1038/s41467-019-09519-w
Todd, P.A., Lee, J.H. & Chou, L.M. (2009) Polymorphism and crypsis in the boring giant clam (Tridacna crocea ): potential strategies against visual predators. Hydrobiologia 635, 37-43.https://doi.org/10.1007/s10750-009-9859-9
Wang, Z., Zeng, C. & Cao, L. (2023) Mapping the biodiversity conservation gaps in the East China sea. J Environ Manage 336, 117667.https://doi.org/10.1016/j.jenvman.2023.117667
Yonge, C.M. (1975) Giant clams. Sci Am 232, 96-105.https://doi.org/10.1038/scientificamerican0475-96
Zhang, Z., Capinha, C., Weterings, R., McLay, C.L., Xi, D., Lü, H. & Yu, L. (2019) Ensemble forecasting of the global potential distribution of the invasive Chinese mitten crab, Eriocheir sinensis. Hydrobiologia 826, 367-377.https://doi.org/10.1007/s10750-018-3749-y
Zhang, Z., Kass, J.M., Mammola, S., Koizumi, I., Li, X., Tanaka, K., Ikeda, K., Suzuki, T., Yokota, M., Usio, N. & Real, R. (2021) Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity and Distributions 27, 684-695.https://doi.org/10.1111/ddi.13225
Zhao, L., Gao, R., Liu, J., Liu, L., Li, R., Men, L. & Zhang, Z. (2023) Effects of Environmental Factors on the Spatial Distribution Pattern and Diversity of Insect Communities along Altitude Gradients in Guandi Mountain, China. Insects 14, 224.https://doi.org/10.3390/insects14030224
Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3-14.https://doi.org/10.1111/j.2041-210X.2009.00001.x