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Abstract

With the inevitable environmental perturbations and complex population movements, the analysis of trouble-
some influenza is harder to proceed. Studies about the epidemic mathematical models can not only forecast the
development trend of influenza, but also have a beneficial influence on the protection of health and the econ-
omy. Motivated by this, a stochastic influenza model incorporating human mobility and the Ornstein-Uhlenbeck
process is established in this paper. Based on the existence of the unique global positive solution, we obtain suf-
ficient conditions for influenza extinction and persistence, which are related to the basic reproduction number in
the corresponding deterministic model. Notably, the analytical expression of the probability density function of
stationary distribution near the quasi-endemic equilibrium is obtained by solving the challenging Fokker–Planck
equation. Finally, numerical simulations are performed to support the theoretical conclusions, and the effect of
main parameters and environmental perturbations on influenza transmission are also investigated.

Keywords: Susceptible-Infectious-mobility model; Ornstein-Uhlenbeck process; Stationary distribution and
extinction; Probability density function.

1. Introduction

Influenza is a serious public health problem which is caused by viruses that undergo continuous antigenic
change and possess an animal reservoir [1]. Since viruses are prone to mutation, strong infectivity, widespread
susceptibility and high incidence, it has caused many explosive epidemics around the world and gained global
concern. The World Health Organization estimates that seasonal influenza causes 3 to 5 million severe cases
and 29 to 65 million global deaths each year. Spanish influenza [2, 3] is the deadliest infectious disease in
human history, infecting about 1 billion people worldwide and killing at least 25 million in 1918-1919 (the world
population was about 1.7 billion in that period). The Hong Kong influenza outbreak [4] in 1968 was the first
pandemic caused by the H3N2 influenza virus, which was derived from an antigenic transformation of the H2N2
virus that caused the ”Asian influenza” [5] pandemic in 1957-1958. About 15 percent of the local population
became infected and gradually spread to Singapore, Thailand, Japan, India and Australia in August. At the
end of the same year, it rapidly appeared in North America. These alarming statistics remind us of the urgency
of scientific theoretical analysis of influenza.

Since Kermack and Mckendrick [6] creatively constructed the classical SIR (Susceptible-Infectious-Recover)
compartment epidemic model to investigate the Black Death, plenty of mathematical models are used to describe
and analyze the transmission mechanism of troublesome epidemics. Considering the seasonality of the influenza
pandemic, J. M. Tchuenche et al. [7] formulated an SVITR epidemic model with vaccination and treatment.
They mainly focused on controlling the disease with a possible minimal cost and side effects. J. Lucchetti et
al. [8] proposed an avian influenza model to deal with several complicated situations, i.e., some low pathogenic
avian influenza viruses will become high pathogenic strains after transmission to domestic birds that can infect
humans and create potential conditions for another influenza pandemic. As more realistic factors are considered,
many novel mathematical models that fit reality are built and analyzed [9, 10, 11, 12].

Classical influenza models do not account for behavioral change. For example, the transmission rate is
supposed to be constant, which implies individuals do not adapt their contact behavior during epidemics. It
seems unreasonable because the diversification of multimedia forms makes people more sensitive to external
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information. At the same time, the acceleration of the process of world economic integration and convenient
transportation enable people to move wider and faster. The susceptible population would take appropriate
preventive measures against disease transmission when they feel threatened, such as wearing masks, keeping
social distance and reducing contact with others. These will feed back to alter epidemic dynamics, so it is
better to add human behavior effect to mathematical models. J. M. Epstein [13] et al. studied the coupled
contagion dynamics of fear and disease. In [14], A. d’Onofrio and P. Manfredi assumed that social contact
rate is a function of the available information about disease prevalence and they concluded that social behavior
change alone may trigger sustained oscillations. Wang [15] modeled adaptive behavior in influenza transmission
and proposed the following mathematical system

dS(t) =
(
Λ− µS − β̄mIS

1+hI

)
dt,

dI(t) =
(

β̄mIS
1+hI − (µ+ γ)I

)
dt,

dm(t) = m
(
b− am− αI

1+hI

)
dt,

(1.1)

where S, I and m donate the susceptible individuals, infectious individuals and human mobility, respectively,
Λ is the recruitment constant of the susceptible class, µ represents the birth and death rate, γ is the sum
of recovery and treatment rate, β̄ and b

a denote the transmission rate and the social capacity of population
mobility in the context of economics, respectively, α and h are positive constants that determine the reduction
of mobility caused by influenza. For the deterministic model (1.1), Wang mainly obtained several conclusions
as follows

• The basic reproduction number is R0 = Λβ̄b
µa(µ+γ) .

• There always exist semi-trivial equilibrium E0 = (Λµ , 0, 0) and disease-free equilibrium E1 = (Λµ , 0,
b
a ).

Furthermore, if R0 > 1, then system (1.1) has a unique endemic equilibrium E2 = (S∗, I∗,m∗).

• E1 is globally stable if R0 < 1. Let R0 > 1, then E2 is locally asymptotically stable.

In the real environment, there are many uncertainties that would critically perturb the transmission of
influenza, such as ambient temperature, control strategies, travel of populations, and so on. Therefore, adding
randomness to deterministic models is close to reality. Meanwhile, with the continuous improvement of the
stochastic differential equation [16] and other basic disciplines, it provides an effective theoretical basis for the
creation and property analysis of stochastic models. For example, Meng et al. [17] studied a stochastic eco-
epidemiological model with time delay and they got sufficient conditions of permanence in mean or extinction
for the ecological populations. Since the environment may suffer sudden shocks, Yuan and Zhao [18] dealt with
the stochastic epidemic model incorporating jump-diffusion infection force.

Environmental perturbations can be introduced to mathematical models by supposing that the parameters
change with time [19]. Under the assumption that the transmission rate β̄ is a linear function of white noise
β̄+σdB(t), Cai et al. [20] proposed the following stochastic influenza model corresponding to the deterministic
model (1.1) and focused on its dynamic behaviors

dS(t) =
(
Λ− µS − β̄mIS

1+hI

)
dt− σmIS

1+hI dB(t),

dI(t) =
(

β̄mIS
1+hI − (µ+ γ)I

)
dt+ σmIS

1+hI dB(t),

dm(t) = m
(
b− am− αI

1+hI

)
dt,

where B(t) is the standard Brownian motion defined on the complete probability space (Ω,F ,P) with a filtration
{F}t≥0 satisfying the usual conditions (i.e., it is right continuous and increasing, and F0 contains all P-null
sets), σ2 represents the intensity of the Brownian motion. However, after studying E. Allen [21] and other
scholars’ [22, 23] researches, we know that the average value of modified transmission rate over an arbitrary
time interval [0, T ] satisfies

1

T

∫ T

0

β(τ)dτ ∼ N
(
β̄,

σ2

T

)
,

in which N denotes the normal distribution. This causes a unreasonable result that the variance σ2

T → +∞
as T → 0, meaning that the modified parameter β(t) will drastically change in a short period which conflicts
with continuous environment. To deal with this shortcoming, various stochastic models adapt the assumption
that the modified parameter satisfies the mean-reversing process [24, 25, 26, 27] instead of the linear functions
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of white noise. Inspired by these brilliant ideas, in this paper, we suppose that the transmission rate β̄ is the
log-normal Ornstein-Uhlenbeck process, that is to say

dlog β(t) = θ
(
log β̄ − log β

)
dt+ σdB(t),

where θ > 0 represents the reversion speed and σ > 0 denotes the volatility intensity. What is more important,
some calculations lead to

1

T

∫ T

0

β(τ)dτ ∼ N
(
β̄,

σ2T

3
+O(T 2)

)
,

in which O(T 2) is the higher order infinitesimal of T 2. It is obvious that the variance σ2T
3 + O(T 2) → 0 as

T → 0. In this sense, we construct the following stochastic influenza model with human mobility and log-normal
Ornstein-Uhlenbeck process 

dS(t) =
[
Λ− µS − βmIS

1+hI

]
dt,

dI(t) =
[
βmIS
1+hI − (µ+ γ)I

]
dt,

dm(t) =
[
m

(
b− am− αI

1+hI

)]
dt,

dlog β(t) = θ
(
log β̄ − log β

)
dt+ σdB(t).

(1.2)

The dynamical properties of this stochastic system (1.2) are mainly discussed in the rest content.

The structure of this paper is arranged as follows. Section 2 verifies the existence and uniqueness of the
global positive solution of the stochastic model (1.2). Section 3 deals with sufficient conditions for the extinction
and persistence of influenza. With the existence of stationary distribution, we further calculate the analytic
expression of the probability density function around the quasi-endemic equilibrium in Section 4. Finally, in
Section 5, several numerical examples are provided to illustrate the theoretical counterparts.

2. Solution of stochastic system (1.2)

From the perspective of biology, because S, I and m denote the number of susceptible population, infectious
population and mobility intensity, respectively, and the transmission rate β satisfies the log-normal OU process,
they should be non-negative. Therefore, the existence of a unique positive global solution is needed before we
investigate the dynamical behavior of the stochastic influenza system (1.2). We will verify the existence and
uniqueness of a positive global solution to the stochastic system (1.2) with any initial value.

Lemma 2.1. (Itô’s formula [16]) Suppose that x(t) is an n-dimensional Itô’s process on t ≥ 0 with the stochastic
differential

dx(t) = f(t)dt+ g(t)dB(t),

where B(t) = (B1(t), · · · , Bm(t))T , f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). If V ∈ C2,1(Rn × R+;R), then
V (x(t), t) is a real-valued Itô’s process and its stochastic differential is given by

dV (x(t), t) =

[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt+ Vx(x(t), t)g(t)dB(t)

=LV (x(t), t)dt+ Vx(x(t), t)g(t)dB(t), a.s.,

in which LV (x(t), t) denotes the differential operator and

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1
, · · · , ∂V

∂xn

)
, Vxx =

(
∂2V

∂xi∂xj

)
n×n

.

Theorem 2.1. For any initial value (S(0), I(0),m(0), β(0)) ∈ R4
+, the stochastic system (1.2) has a unique

positive global solution (S(t), I(t),m(t), β(t)) (t ≥ 0) almost sure (a.s.). Furthermore, if S(0) + I(0) < Λ
µ and

m(0) < b
a , then the system (1.2) has an invariant set Ω as follows

Ω =

{
(S, I, m, β) ∈ R4

+|S + I <
Λ

µ
, m <

b

a

}
.
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Proof. The detailed proof can refer to the methods in [28]. Here, we only represent the key of these proofs, i.e.,
the construction of a non-negative Lyapunov C2-function. Define a C2-function W (S, I,m, β): R4

+ → R+ by

W (S, I,m, β) = S − 1− logS + I − 1− log I +m− 1− logm+ β − 1− log β.

The nonnegativity of W can be deduced from the inequality x − 1 ≥ log x (x > 0). Applying Itô’s formula to
the stochastic system (1.2) follows

L(− logS) =− Λ

S
+

βIm

1 + hI
+ µ, L(− log I) = − βSm

1 + hI
+ µ+ γ,

L(− logm) =am+
αI

1 + hI
− b, Lβ = β(θ log β̄ − θ log β +

1

2
σ2).

(2.1)

By (2.1) and Itô’s formula, we have

LW =Λ− µ(S + I)− γI +m

(
b− am− αI

1 + hI

)
− Λ

S
+

βmI

1 + hI
+ µ− βmS

1 + hI

+ (µ+ γ) + am+
αI

1 + hI
− b+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β)

≤Λ + 2µ+ γ + (a+ b)m+
βmI

1 + hI
+

αI

1 + hI
+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β).

(2.2)

It is obvious that
I

1 + hI
≤ 1

h
. (2.3)

From the third equation in the (1.2), it shows that

dm(t)

dt
= m

(
b− am− αI

1 + hI

)
≤ m (b− am) ,

which means

m(t) ≤

{
m(0), if m(0) ≥ b

a ,
b
a , if m(0) < b

a .
(2.4)

Let K = max
{
m(0), b

a

}
and combining (2.3), then the inequality (2.2) becomes

LW ≤Λ + 2µ+ γ + (a+ b)m+
βmI

1 + hI
+

αI

1 + hI
+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β)

≤Λ + 2µ+ γ +
α

h
+ (a+ b)K + f(β),

where

f(β) =
Kβ

h
+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β).

Notably, f(β) → −∞ as β → 0+ or β → +∞, which implies there exists supβ∈R+
f(β). Hence, we have

LW ≤Λ + 2µ+ γ +
α

h
+ (a+ b)K + f(β)

≤Λ + 2µ+ γ +
α

h
+ (a+ b)K + sup

β∈R+

f(β)

≜C,

where C is a positive constant. The proof is completed.
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Remark 2.1. Similar to the (2.4), we can also get

S(t) + I(t) ≤

{
S(0) + I(0), if S(0) + I(0) ≥ Λ

µ ,
Λ
µ , if S(0) + I(0) < Λ

µ ,

which means the stochastic system (1.2) has the invariant set Ω =
{
(S, I, m, β) ∈ R4

+|S + I < Λ
µ , m < b

a

}
with the initial value satisfying S(0) + I(0) < Λ

µ and m(0) < b
a .

From now on, unless otherwise stated, we always assume that S(0) + I(0) < Λ
µ and m(0) < b

a , then we

investigate the stochastic system (1.2) in the invariant set Ω.

3. Extinction and persistence

In this section, we will investigate the tendency of influenza transmission, and give sufficient conditions for
the extinction and persistence of the influenza. By constructing several appropriate Lyapunov functions, we
obtain two critical values

Re
0 = R0e

σ2

4θ , Rs
0 = R0

[
1− 3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
,

which are completely determined by the basic reproduction numbers R0 and environmental perturbations.

Definition 3.1. [29] (i) x(t) is said to be exponential extinct if limt→+∞
log x(t)

t < 0 a.s..

(ii) x(t) is said to be strongly persistent in the mean if lim inft→+∞
1
t

∫ t

0
x(τ)dτ > 0 a.s..

Lemma 3.1. [22, 25, 30] If β(t) satisfies the log-normal Ornstein-Uhlenbeck process

d log β(t) = θ
(
log β̄ − log β

)
dt+ σdB(t),

then β(t) is ergodic and log β(t) has the following probability density function as t → ∞

ζ(y) =

√
θ√
πσ

e
−θ

(
y−log β̄

σ

)2

.

Theorem 3.1. Assume that Re
0 < 1, then the influenza of the stochastic system (1.2) will exponentially die

out a.s.. To be specific, we have

lim sup
t→+∞

log I(t)

t
≤ (µ+ γ)(Re

0 − 1) < 0 a.s..

Proof. According to the invariant set Ω, we have

d(log I) =
βmS

1 + hI
− (µ+ γ) ≤ βmS − (µ+ γ) ≤ Λb

µa
β − (µ+ γ). (3.1)

Integrating (3.1) from 0 to t and dividing t on both sides give the following inequality

log I(t)− log I(0)

t
≤ Λb

µa

1

t

∫ t

0

β(τ)dτ − (µ+ γ). (3.2)

With the lemma 3.1, we obtain the following equation by letting t → +∞,

lim
t→+∞

1

t

∫ t

0

β(τ)dτ =

∫ +∞

−∞
ey

√
θ√
πσ

e−θ( y−log β̄
σ )2dy = β̄e

σ2

4θ a.s.. (3.3)

5



Assuming t → +∞ and substituting (3.3) into (3.2), we have

lim sup
t→+∞

log I(t)

t
≤Λb

µa
lim

t→+∞

1

t

∫ t

0

β(τ)dτ − (µ+ γ)

=
Λbβ̄

µa
e

σ2

4θ − (µ+ γ)

=(µ+ γ)(Re
0 − 1) a.s.,

(3.4)

where

Re
0 = R0e

σ2

4θ .

Obviously, if Re
0 < 1, then lim supt→+∞

log I(t)
t ≤ (µ + γ)(Re

0 − 1) < 0, this indicates that the influenza of the
stochastic system (1.2) will exponentially become extinct a.s.. The proof ends.

Theorem 3.1 gives the condition of influenza extinction. For the comprehensive study, we investigate another
concerned issue, i.e., the persistence of influenza.

Theorem 3.2. If Rs
0 > 1, then the infectious population I(t) will strongly persistent in the mean a.s.. More

precisely,

lim inf
t→+∞

1

t

∫ t

0

I(τ)dτ ≥ 2ac5(µ+ γ)(Rs
0 − 1)

bc4
a.s..

The value of c4 and c5 are determined in the later proof.

Proof. Define the C2−Lyapunov function V1: Ω → R as

V1 = − log I − c1 logS + c2I,

where c1 and c2 are determined in (3.9). Let c3 = c2(µ+γ)
h , then applying Itô’s formula to V1 reads

LV1 =− βmS

1 + hI
+ µ+ γ − c1

Λ

S
+ c1

βmI

1 + hI
+ c1µ+ c2

βmIS

1 + hI
− c2(µ+ γ)I − c2(µ+ γ)

h
+

c2(µ+ γ)

h

=− βmS

1 + hI
+ µ+ γ − c1

Λ

S
+ c1

βmI

1 + hI
+ c1µ+ c2

βmIS

1 + hI
− c3(1 + hI) + c3.

Combining the invariant set Ω, we obtain

LV1 =− βmS

1 + hI
− c1

Λ

S
− c3(1 + hI) + c1µ+ c3 + µ+ γ + c1

βmI

1 + hI
+ c2

βmIS

1 + hI

≤− 3 3
√
c1c3Λβm+ c1µ+ c3 + µ+ γ +

(
c1 +

c2Λ

µ

)
βmI

≤− 3
3

√
c1c3Λβ̄m+ c1µ+ c3 + µ+ γ +

(
c1 +

c2Λ

µ

)
βmI + 3

3

√
b

a
c1c3Λ|β

1
3 − β̄

1
3 |.

(3.5)

From the inequality

L
(
−1

b
logm

)
≤ a

b
m+

α

b
I − 1,

one can get

L
(
−1

b
logm+

α

(µ+ γ)b
I

)
≤ a

b
m+

Λα

bµ(µ+ γ)
βmI − 1. (3.6)

On the other hand, using Itô’s formula obtains

L
(

2a

3b2
m

)
=

2a

3b2

(
bm− am2 − αmI

1 + hI

)
≤ 2

3

[a
b
m

(
1− a

b
m
)]

. (3.7)
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Combining (3.6) and (3.7), we can define a C2−Lyapunov function V2: Ω → R by

V2 =
2a

3b2
m− 1

b
logm+

α

(µ+ γ)b
I,

and its differential operator satisfies the following inequality

LV2 ≤a

b
m+

2a

3b
m

(
1− a

b
m
)
+

Λα

bµ(µ+ γ)
βmI − 1

≤ 3

√
a

b
m+

Λα

bµ(µ+ γ)
βmI − 1,

(3.8)

in which the last inequality sign is deduces by x+ 2
3x(1− x) ≤ 3

√
x (x > 0). Set

c1µ =
c2(µ+ γ)

h
= c3 =

Λβ̄b

µa
, (3.9)

and define the function

V3 = V1 + 3
3

√
b

a
c1c3Λβ̄V2.

Applying Itô’s formula again, we get

LV3 ≤− 3
3

√
b

a
c1c3Λβ̄ + c1µ+ c3 + µ+ γ + c4βmI + 3

3

√
b

a
c1c3Λ|β

1
3 − β̄

1
3 |

=− Λβ̄b

µa
+ (µ+ γ) + c4βmI + 3

3

√
b

a
c1c3Λ|β

1
3 − β̄

1
3 |

=− (µ+ γ)(R0 − 1) + c4βmI + 3
3

√
b

a
c1c3Λβ̄

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

+ 3
3

√
b

a
c1c3Λ

[
|β 1

3 − β̄
1
3 | − β̄

1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
=− (µ+ γ)(Rs

0 − 1) + c4βmI +
3Λb

µa
β̄

2
3

[
|β 1

3 − β̄
1
3 | − β̄

1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
,

(3.10)

where

c4 =c1 +
c2Λ

µ
+

3Λα

bµ(µ+ γ)
3

√
b

a
c1c3Λ,

Rs
0 =R0 −

3 3

√
b
ac1c3Λβ̄

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

µ+ γ

=R0 − 3R0

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

=R0

[
1− 3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
.

(3.11)

According to the inequality x ≤ ax2 + 1
4a (a > 0), there is a positive constant c5 =

µa(µ+γ)(Rs
0−1)

2c4Λbβ̄2e
σ2
θ

such that

βmI ≤
(
c5β

2 +
1

4c5

)
mI ≤ c5Λb

µa
β2 +

1

4c5
mI

=
c5Λb

µa
β̄2e

σ2

θ +
1

4c5
mI +

c5Λb

µa

(
β2 − β̄2e

σ2

θ

)
=
(µ+ γ)(Rs

0 − 1)

2c4
+

1

4c5
mI +

c5Λb

µa

(
β2 − β̄2e

σ2

θ

)
.

(3.12)
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Substituting (3.12) into (3.10), then it is transmitted into

LV3 ≤− (µ+ γ)(Rs
0 − 1) +

(µ+ γ)(Rs
0 − 1)

2
+

c4
4c5

mI +
c4c5Λb

µa

(
β2 − β̄2e

σ2

θ

)
+

3Λb

µa
β̄

2
3

[
|β 1

3 − β̄
1
3 | − β̄

1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
=− 1

2
(µ+ γ)(Rs

0 − 1) +
c4
4c5

mI + F (β),

(3.13)

in which

F (β) =
c4c5Λb

µa

(
β2 − β̄2e

σ2

θ

)
+

3Λb

µa
β̄

2
3

[
|β 1

3 − β̄
1
3 | − β̄

1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
.

Since m < b
a , the inequality (3.13) can become

LV3 ≤ −1

2
(µ+ γ)(Rs

0 − 1) +
c4b

4c5a
I + F (β). (3.14)

Integrating (3.14) from 0 to t and dividing by t on both sides, then we have

bc4
4ac5

1

t

∫ t

0

I(τ)dτ ≥ 1

2
(µ+ γ)(Rs

0 − 1) +
V3(t)− V3(0)

t
− 1

t

∫ t

0

F (β(τ))dτ. (3.15)

From the lemma 3.1 and the Hölder’s inequality [16], we get that

lim
t→+∞

1

t

∫ t

0

β2(τ)dτ =

∫ +∞

−∞
e2y

√
θ√
πσ

e−θ( y−log β̄
σ )2dy = β̄2e

σ2

θ a.s.,

lim sup
t→+∞

1

t

∫ t

0

|β 1
3 (τ)− β̄

1
3 |dτ ≤ lim sup

t→+∞

1

t

(∫ t

0

12dτ

) 1
2
(∫ t

0

(
β

1
3 (τ)− β̄

1
3

)2

dτ

) 1
2

= lim
t→+∞

1

t

(∫ t

0

12dτ

) 1
2
(∫ t

0

(
β

1
3 (τ)− β̄

1
3

)2

dτ

) 1
2

= lim
t→∞

(
1

t

∫ t

0

(β
1
3 (τ)− β̄

1
3 )2dτ

) 1
2

=β̄
1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

a.s.,

which implies

lim
t→+∞

1

t

∫ t

0

F (β(τ))dτ =
c4c5Λb

µa
lim

t→+∞

1

t

∫ t

0

(
β2(τ)− β̄2e

σ2

θ

)
dτ

+
3Λb

µa
β̄

2
3 lim
t→+∞

1

t

∫ t

0

[
|β 1

3 (τ)− β̄
1
3 | − β̄

1
3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
dτ

≤0 a.s..

(3.16)

Because S, I, m are contained in the invariant set Ω, the following equations hold

lim sup
t→+∞

logS(t)

t
≤ 0, lim sup

t→+∞

log I(t)

t
≤ 0, lim sup

t→+∞

logm(t)

t
≤ 0, a.s., (3.17)

which means limt→+∞
V3(t)−V3(0)

t = 0. Letting t → +∞ and combining (3.16) and (3.17), the inequality (3.15)
turns into

lim inf
t→+∞

1

t

∫ t

0

I(τ)dτ ≥ 2ac5(µ+ γ)(Rs
0 − 1)

bc4
a.s..

If Rs
0 > 1, then lim inft→+∞

1
t

∫ t

0
I(τ)dτ > 0 a.s.. This completes the proof.
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Stationary distribution plays an irreplaceable role in the analysis of disease persistence. Hence, we establish
sufficient criterion for the existence of stationary distribution of the stochastic system (1.2) in Theorem 3.3. To
proceed, a necessary lemma should be illustrated.

Lemma 3.2. [31] For any initial value X(0) = (S(0), I(0),m(0), β(0)) ∈ Ω, if there is a bounded closed domain
U ⊂ Ω with a regular boundary and

lim inf
t→∞

1

t

∫ t

0

P (τ,X(0), U)dτ > 0 a.s., (3.18)

where P (t,X(0), U) is the transition probability of the solution X(t) = (S(t), I(t),m(t), β(t)), then the stochastic
system (1.2) has at least one stationary distribution.

Theorem 3.3. If Rs
0 > 1, then the stochastic system (1.2) has a stationary distribution in the invariant set Ω

Proof. We will prove this theorem in three steps: (i) constructing a non-negative Lyapunov function V ; (ii)
searching a compact set U ⊂ Ω which can ensure that LV ≤ −1 for any (S, I,m, β) ∈ Ω \U ; (iii) verifying that
the inequality (3.18) holds.

Step I. (Formulation of the suitable Lyapunov function V)

Define a C2−Lyapunov function V4: Ω → R as

V4 = − logS − log

(
b

a
−m

)
− log

(
Λ

µ
− S − I

)
+ β − 1− log β.

By Itô’s formula and the inequality (2.3), there is

LV4 =− Λ

S
+

βmI

1 + hI
+ µ+

m
(
b− am− αI

1+hI

)
b
a −m

+
Λ− µ(S + I)− γI

Λ
µ − S − I

+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β)

≤− Λ

S
+

b

ah
β + µ+ am−

αmI
1+hI
b
a −m

+ µ− γI
Λ
µ − S − I

+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β).

(3.19)

Since αI
1+hΛ

µ

≤ αI
1+hI , we can deduce − αI

1+hI ≤ − αµI
hΛ+µ . Therefore, we know that

LV4 ≤− Λ

S
+

b

ah
β + 2µ+ b− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β).

(3.20)

Let V5 = NV3 + V4, and N is a large enough positive constant satisfying

−1

2
N(µ+ γ)(Rs

0 − 1) + sup
β∈R+

g(β) ≤ −2, (3.21)

where

g(β) = 2µ+ b+
b

ah
β + β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β).

Because the function V5 → +∞ as (S, I,m, β) trends to the boundary of the set Ω, there is a minimum value
(V5)min ∈ Ω. Finally, we can define a non-negative suitable C2−Lyapunov function: Ω → R+ as

V = V5 − (V5)min.
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According to (3.13) and (3.20), we have

LV ≤− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ 2µ+ b+
b

ah
β + β

(
θ log β̄ − θ log β +

1

2
σ2

)
− θ(log β̄ − log β) +NF (β)

=− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β) +NF (β)

:=G(S, I,m, β) +NF (β).

(3.22)

Step II. (Search of a compact set U)

Now we are in the process to find a compact set U ⊂ Ω such that LV ≤ −1 for any (S, I,m, β) ∈ Ω \ U .
Denote

U =

{
(S, I,m, β) ∈ Ω|S ≥ ϵ, I ≥ ϵ, ϵ ≤ m ≤ b

a
− ϵ2, S + I ≤ Λ

µ
− ϵ2, ϵ ≤ β ≤ 1

ϵ

}
,

where ϵ is a positive constant and satisfies the following inequalities

−2 +
c4Λb

4c5µa
N −min

{
Λ

ϵ
,
αµ( ba − ϵ2)

ϵ(hΛ + µ)
,
γ

ϵ

}
≤− 1, (3.23a)

−2 + max

{
c4b

4c5a
Nϵ,

c4Λ

4c4µ
Nϵ

}
≤− 1, (3.23b)

−1

2
N(µ+ γ)(Rs

0 − 1) +
c4Λb

4c5µa
N +

1

2
θ log ϵ+ sup

β∈R+

[
g(β)− 1

2
θ log β

]
≤− 1, (3.23c)

−1

2
N(µ+ γ)(Rs

0 − 1) +
c4Λb

4c5µa
N +

θ log ϵ

2ϵ
+ sup

β∈R+

[
g(β) +

θβ log β

2

]
≤− 1. (3.23d)

Then the set Ω \ U can be expressed as Ω \ U = ∪7
i=1Ui, and

U c
1 = {(S, I,m, β) ∈ Ω|S < ϵ} , U c

2 = {(S, I,m, β) ∈ Ω|I < ϵ} , U c
3 = {(S, I,m, β) ∈ Ω|m < ϵ} ,

U c
4 =

{
(S, I,m, β) ∈ Ω|I ≥ ϵ, m >

b

a
− ϵ2

}
, U c

5 =

{
(S, I,m, β) ∈ Ω|I ≥ ϵ, S + I >

Λ

µ
− ϵ2

}
,

U c
6 = {(S, I,m, β) ∈ Ω|β < ϵ} , U c

7 =

{
(S, I,m, β) ∈ Ω|β >

1

ϵ

}
.

Case 1. If (S, I,m, β) ∈ U c
1 , from (3.21) and (3.23a), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 2 +
c4Λb

4c5µa
N − Λ

ϵ

≤− 2 +
c4Λb

4c5µa
N −min

{
Λ

ϵ
,

αµb

aϵ(hΛ + µ)
,
γ

ϵ

}
≤− 1.

Case 2. If (S, I,m, β) ∈ U c
2 , from (3.21) and (3.23b), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 2 +
c4b

4c5a
Nϵ

10



≤− 2 + max

{
c4b

4c5a
Nϵ,

c4Λ

4c4µ
Nϵ

}
≤− 1.

Case 3. If (S, I,m, β) ∈ U c
3 , from (3.21) and (3.23b), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 2 +
c4Λ

4c4µ
Nϵ

≤− 2 + max

{
c4b

4c5a
Nϵ,

c4Λ

4c4µ
Nϵ

}
≤− 1.

Case 4. If (S, I,m, β) ∈ U c
4 , from (3.21) and (3.23a), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 2 +
c4Λb

4c5µa
N −

αµ( ba − ϵ2)

ϵ(hΛ + µ)

≤− 2 +
c4Λb

4c5µa
N −min

{
Λ

ϵ
,
αµ( ba − ϵ2)

ϵ(hΛ + µ)
,
γ

ϵ

}
≤− 1.

Case 5. If (S, I,m, β) ∈ U c
5 , from (3.21) and (3.23a), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 2 +
c4Λb

4c5µa
N − γ

ϵ

≤− 2 +
c4Λb

4c5µa
N −min

{
Λ

ϵ
,
αµ( ba − ϵ2)

ϵ(hΛ + µ)
,
γ

ϵ

}
≤− 1.

Case 6. If (S, I,m, β) ∈ U c
6 , from and (3.23c), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4Λb

4c5µa
N +

1

2
θ log ϵ+ sup

β∈R+

[
g(β)− 1

2
θ log β

]
≤− 1.

Case 7. If (S, I,m, β) ∈ U c
7 , from (3.23d), we have

G(S, I,m, β) =− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4
4c5

NmI − Λ

S
− αµmI

(hΛ + µ)( ba −m)
− γI

Λ
µ − S − I

+ g(β)

≤− 1

2
N(µ+ γ)(Rs

0 − 1) +
c4Λb

4c5µa
N +

θ log ϵ

2ϵ
+ sup

β∈R+

[
g(β) +

θβ log β

2

]
≤− 1.
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By the Case 1-7, we get the conclusion that

G(S, I,m, β) ≤ −1, ∀(S, I,m, β) ∈ Ω \ U. (3.24)

Until now, the compact set U ⊂ Ω is established.

Step III. Verify of the inequality (3.18)

On the other hand, we can find a positive constant H to make sure that

G(S, I,m, β) ≤ H, ∀(S, I,m, β) ∈ Ω. (3.25)

Integrating (3.22) over the interval [0, t] and taking expectations obtain

0 ≤E [V (S(t), I(t),m(t), β(t))]

=E [V (S(0), I(0),m(0)β(0))] +

∫ t

0

E [(G (S(τ), I(τ),m(τ), β(τ)))] dτ +N

∫ t

0

E(F (β(τ)))dτ.
(3.26)

From (3.16), dividing t on the both sides of (3.26) and letting t → +∞ follow

0 ≤ lim inf
t→+∞

1

t

∫ t

0

E [V (S(t), I(t),m(t), β(t))] dτ

= lim inf
t→+∞

1

t

∫ t

0

E [(G (S(τ), I(τ),m(τ)β(τ)))] dτ +N lim inf
t→+∞

1

t

∫ t

0

E(F (β(τ)))dτ

≤ lim inf
t→+∞

1

t

∫ t

0

E [(G (S(τ), I(τ),m(τ)β(τ)))] dτ a.s..

(3.27)

Combining (3.24) and (3.25), the inequality (3.27) can be expressed as

0 ≤ lim inf
t→+∞

1

t

∫ t

0

E [V (S(t), I(t),m(t), β(t))] dτ

≤ lim inf
t→+∞

1

t

∫ t

0

E
[
G (S(τ), I(τ),m(τ), β(τ))1{(S(τ),I(τ),m(τ),β(τ))∈U}

]
dτ

+ lim inf
t→+∞

1

t

∫ t

0

E
[
G (S(τ), I(τ),m(τ), β(τ))1{(S(τ),I(τ),m(τ),β(τ))∈Ω\U}

]
dτ

≤H lim inf
t→+∞

1

t

∫ t

0

P ((S(τ), I(τ),m(τ), β(τ)) ∈ U) dτ − lim inf
t→+∞

1

t

∫ t

0

P ((S(τ), I(τ),m(τ), β) ∈ Ω\U) dτ

≤− 1 + (H + 1) lim inf
t→+∞

1

t

∫ t

0

P ((S(τ), I(τ),m(τ), β(τ)) ∈ U) dτ a.s.,

(3.28)
where 1{X} denotes the indicator function. This means that, for any initial value (S(0), I(0),m(0), β(0)) ∈ Ω,
the following inequality holds

lim inf
t→+∞

1

t

∫ t

0

P (τ, (S(0), I(0),m(0), β(0)), U)dτ ≥ 1

H + 1
> 0 a.s..

Therefore, the stochastic system (1.2) admits at least one stationary distribution in the invariant set Ω by
Lemma 3.2, which implies that the influenza will prevail. The proof ends.

Remark 3.1. From the expression of R0, Re
0 and Rs

0, we get Rs
0 ≤ R0 ≤ Re

0. For one thing, it is obvious
that R0 > 1 if Rs

0 > 1, and R0 < 1 when Re
0 < 1, this means Rs

0 > 1 or Re
0 < 1 can also be the sufficient

conditions for the influenza persistence or extinction of the deterministic system (1.1). For another thing,
Rs

0 = R0 = Re
0 holds if and only if the intensity of environmental perturbations θ = 0, which implies that the

dynamical properties of the stochastic system (1.2) are consistent with the deterministic model (1.1) when there
are no environmental perturbations.
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4. Probability density function

Theorem 3.3 shows that the stochastic system (1.2) has a stationary distribution when Rs
0 > 1. Since

the probability function can greatly reveal the dynamical and statistical properties, it is more specific and
comprehensive than the stationary distribution. In this section, we will give the explicit expression of the
probability function of stationary distribution near the quasi-endemic equilibrium. The process is divided into
two steps: (i) linearizing the stochastic system (1.2) around the quasi-endemic equilibrium; (ii) solving the
corresponding four-dimensional Fokker-Planck equation.

4.1. Linearization of the system (1.2)

To get the corresponding linearized system of (1.2), we first have to define the quasi-endemic equilibrium E∗

involved in stochasticity, which is calculated by
Λ− µS∗ − β∗m∗I∗S∗

1+hI∗ = 0,
β∗m∗I∗S∗

1+hI∗ − (µ+ γ)I∗ = 0,

bm∗ − a(m∗)2 − αI∗m∗

1+hI∗ = 0,

log β̄ − log β∗ = 0.

From the former discussion, E∗ =
(
S∗, I∗,m∗, log β̄

)
exists when R0 > 1. Let Y T = (y1, y2, y3, y4)

T
=(

S − S∗, I − I∗,m−m∗, log β − log β̄
)T

, then the stochastic system (1.2) can be linearized around E∗ as follows
dy1 = (−a11y1 − a12y2 − a13y3 − a14y4)dt,
dy2 = (a21y1 − a22y2 + a13y3 + a14y4)dt,
dy3 = (−a32y2 − a33y3)dt,
dy4 = −a44y4dt+ σdB(t),

(4.1)

where

a11 =
β̄m∗I∗

1 + hI∗
+ µ, a12 =

β̄m∗S∗

1 + hI∗
− β̄hm∗S∗I∗

(1 + hI∗)2
, a13 =

β̄S∗I∗

1 + hI∗
, a14 =

β̄m∗S∗I∗

1 + hI∗
, a21 =

β̄m∗I∗

1 + hI∗
,

a22 =
β̄hm∗S∗I∗

(1 + hI∗)2
, a32 = m∗

(
α

1 + hI∗
− αhI∗

(1 + hI∗)2

)
, a33 = am∗, a44 = θ. aij > 0 (i, j = 1, 2, 3, 4).

4.2. Calculation of the corresponding Fokker-Planck equation

Before solving the matrix equation to get the expression of the probability function, we give the following
needed definition and one lemma.

Definition 4.1. [32] Let ϕA(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an be the characteristic polynomial of n-
dimensional square matrix A, then A is a Hurwitz matrix if and only its eigenvalues all have negative real-part.
That is equal to

Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2k−1

1 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 1 a2 · · · a2k−4

...
...

... · · ·
...

0 0 0 · · · ak

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

k = 1, 2, · · · , n, among them j > n, replenishing definition aj = 0.

Lemma 4.1. [33] For the four-dimensional algebraic equation G2
0+KΘ+ΘKT = 0, where G0 = diag(1, 0, 0, 0)

and

K =


−k1 −k2 −k3 −k4
1 0 0 0
0 1 0 0
0 0 1 0

 ,
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the solution Θ takes the form

Θ =


θ11 0 θ13 0
0 −θ13 0 θ24
θ13 0 −θ24 0
0 θ24 0 θ44

 ,

in which

k =2
[
k1(k1k4 − k2k3) + k23

]
,

θ11 =
k1k4 − k2k3

k
, θ13 =

k3
k
, θ24 =

k1
k
, θ44 =

k3 − k1k2
k4k

.

What is more, Θ is a symmetric and positive definite matrix with conditions k1 > 0, k3 > 0, k4 > 0 and
k1(k2k3 − k1k4)− k23 > 0.

Theorem 4.1. Suppose that Rs
0 > 1 and ω = a32(µ−am∗)

γ ̸= 0, then the distribution of the solution (S, I,m, log β)

of stochastic system (1.2) follows the normal density function Φ(S, I,m, log β) near the quasi-endemic equilib-
rium E∗, which has the following expression

Φ(S, I,m, log β) = (2π)−2|Σ|− 1
2 e−

1
2 (S−S∗,I−I∗,m−m∗,log β−log β̄)Σ−1(S−S∗,I−I∗,m−m∗,log β−log β̄)T .

The expression of covariance matrix Σ will be confirmed later.

Proof. For the sake of simplicity, let B(t) = (0, 0, 0, B(t))T ,

A =


−a11 −a12 −a13 −a14
a21 −a22 a13 a14
0 −a32 −a33 0
0 0 0 −a44

 , G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 σ

 .

With those symbols, the system (4.1) can be expressed as

dY (t) = AY dt+GdB(t). (4.2)

Moreover, we can rewrite the matrix A as

A =

(
B3×3 C3×1

01×3 −a44

)
.

From conclusions in [15], the eigenvalues of matrix B3×3 all have negative real parts, meaning that the real part
of eigenvalues of matrix A are also all negative, so A is a Hurwitz matrix. In the view of Gardiner’s theory [34],
the equation (4.2) admits a unique probability density Φ(S, I,m, log β), and it is determined by the following
four-dimensional Fokker-Planck equation

∂

∂t
Φ(Y (t), t) +

∂

∂Y (t)
[AY (t)Φ(Y (t), t)]− σ2

2

∂2

∂y24
Φ(Y (t), t) = 0. (4.3)

Since ∂
∂tΦ(Y (t), t) = 0 under a stationary distribution, the equation (4.3) becomes

∂

∂y1
[(−a11y1 − a12y2 − a13y3 − a14y4)Φ] +

∂

∂y2
[(a21y1 − a22y2 + a13y3 + a14y4)Φ]

+
∂

∂y3
[(−a32y2 − a33y3)Φ]−

σ2

2

∂2

∂y24
Φ = 0.

(4.4)

Because the diffusion matrix G is a constant matrix, then the probability density function Φ follows a Gaussian
distribution by the theory of Roozen [35], and the covariance matrix Σ is calculated by

G2 +AΣ+ ΣAT = 0. (4.5)
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Next, we are devoted to solving equation (4.5) to get the expression of probability function of stationary
distribution near E∗.

Let A1 = J1AJ−1
1 , where

J1 =


0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 ,

then we obtain

A1 =


−a44 0 0 0
−a14 a12 − a11 −a12 −a13
0 γ −a12 − a22 0
0 a32 −a32 −a33

 .

Denote

J2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −a32

γ 1

 ,

we calculate A2 = J2A1J
−1
2 and get

A2 =


−a44 0 0 0
−a14 a12 − a11 −a13a32

γ − a12 −a13
0 γ −a12 − a22 0
0 0 ω −a33

 .

Motivated by the method in [33], the transmission matrix of A2 is given by

T =


t1 t2 t3 t4
0 γω −ω(a12 + a22 + a33) a233
0 0 ω −a33
0 0 0 1

 ,

in which

t1 =− γωa14, t2 = −γω(a11 + a22 + a33),

t3 =ω
[
(a12 + a22)(a12 + a22 + a33) + a233 − (a13a32 + γa12)

]
, t4 = −(γωa13 + a333).

Define A3 = TA2T
−1, by a simple calculation, we have

A3 =


−r1 −r2 −r3 −r4
1 0 0 0
0 1 0 0
0 0 1 0


where

r1 =a11 + a22 + a33 + a44 ≜ p1 + a44,

r2 =a11a22 + a12a21 + a11a33 + a13a32 + a22a33 + p1a44 ≜ p2 + p1a44,

r3 =a11a22a33 + a11a13a32 + a12a21a33 − a13a21a32 + p2a44 ≜ p3 + p2a44,

r4 =p3a44.

Therefore, the equation (4.5) can be transformed into

(TJ2J1)G
2(TJ2J1)

T +A3(TJ2J1)Σ(TJ2J1)
T + (TJ2J1)Σ(TJ2J1)

TAT
3 = 0. (4.6)
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Let ρ = t1σ and Σ̃ = ρ−2(TJ2J1)Σ(TJ2J1)
T , then equation (4.6) is equal to

G2
0 +A3Σ̃ + Σ̃AT

3 = 0.

According to the Lemma 4.1, we have

Σ̃ =


σ11 0 σ13 0
0 −σ13 0 σ24

σ13 0 −σ24 0
0 σ24 0 σ44

 ,

where

r =2
[
r1(r1r4 − r2r3) + r23

]
,

σ11 =
r1r4 − r2r3

r
, σ13 =

r3
r
, σ24 =

r1
r
, σ44 =

r3 − r1r2
r4r

.

From the analysis in [15], we know that p1 > 0, p2 > 0, p3 > 0 and p1p2 − p3 > 0, which can deduce
ri > 0 (i = 1, 2, 3, 4) and

r1(r2r3 − r1r4)− r23 =(p1 + a44) [(p2 + p1a44)(p3 + p2a44)− p3a44(p1 + a44)]− (p3 + p2a44)
2

=(p1p2 − p3)a
3
44 + p1(p1p2 − p3)a

2
44 + p2(p1p2 − p3)a44 + p3(p1p2 − p3)

>0,

This implies Σ̃ is a positive definite matrix. Finally, we get the expression of the covariance matrix Σ =
ρ2(TJ2J1)

−1Σ̃[(TJ2J1)
−1]T and Σ is also a positive definite matrix. The proof completes.

5. Numerical simulations

In this section, several numerical simulations are performed to illustrate obtained analytical results. We
mainly focus on the four aspects: (i) the local asymptotic stability of endemic equilibrium E2 in the deterministic
model (1.1); (ii) the correctness of Theorem 3.1, 3.3 and 4.1; (iii) the impact of the social capacity of population
mobility b

a and transmission rate β̄ on the disease spread; (iv) the influence of environmental perturbations on
the disease extinction and persistence.

According to the higher-order numerical method developed by Milstein [36], the corresponding discretization
equation of stochastic system (1.2) takes the form as

Sj+1 = Sj +
[
Λ− µSj − β̄exjSjIjmj

1+hJj

]
∆t,

Ij+1 = Ij +
[
β̄exjSjIjmj

1+hJj − (µ+ γ)Ij
]
∆t,

mj+1 = mj +
[
mj

(
b− amj − αIj

1+hIj

)]
∆t,

xj+1 = xj − θxj∆t+ σ
√
∆tξj +

σ2

2 (ξ2j − 1)∆t,

where the value of the jth iteration of (S, I,m, x) is depicted by (Sj , Ij ,mj , xj), ∆t is the time increment and
ξj (j = 1, 2, · · · , n) represent the mutually independent Gaussian random variables satisfying the standard
normal distribution N(0, 1).

Example 5.1 Let

Π = 0.5, µ = 0.2, β̄ = 0.6, h = 3, γ = 0.15, b = 3, a = 1, α = 1, (5.1)

then simple calculations lead to R0 = 12.8571 > 1 and E2 = (0.8216, 0.9591, 2.7526), which implies that E2 is
locally asymptotically stable. We select five different (S(0), I(0),m(0)), and fig.1 represents the trajectories of
model (1.1) with initial values (1.5, 0.5, 2.5), (1.2, 0.3, 1.5), (0.6, 0.6, 0.5), (1, 0.8, 2), (0.9, 07, 1), respectively. It
is obvious that E2 is locally asymptotically stable when the basic reproduction number R0 > 1.

Example 5.2 We set Π = 0.1, b = 1, θ = 0.5, σ = 0.4 and the rest parameters are the same as in (5.1),
then it follows that R0 = 0.8571, Re

0 = 0.9285 < 1 and E1 = (0.5, 0, 1), which satisfies Theorem 3.1. The fig.2
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fig. 1: The trajectories of model (1.1) with different initial values (1.5, 0.5, 2.5), (1.2, 0.3, 1.5), (0.6, 0.6, 0.5), (1, 0.8, 2), (0.9, 07, 1),
respectively.

shows the variation of S(t), I(t) and m(t) of the deterministic model (1.1) and stochastic model (1.2), implying
that the disease dies out.

Example 5.3 Assume that θ = 0.5, σ = 0.03 and other parameters satisfy the equations (5.1), then there are
Rs

0 = 12.4714 and the quasi-endemic equilibrium E∗ = (0.8216, 0.9591, 2.7526, log 0.6). The covariance matrix
Σ can be expressed as

Σ = 1× 10−3


0.1778 −0.1297 0.0086 −0.2905
−0.1297 0.1022 −0.0065 0.2393
0.0086 −0.0065 0.0004 −0.0135
−0.2905 0.2393 −0.0135 0.9000

 ,

which can deduce the following three marginal density functions

∂Φ

∂S
=29.85e−5556(S−0.8216)2 ,

∂Φ

∂I
=40e−10000(I−0.9591)2 ,

∂Φ

∂m
=634.92e−2500000(m−2.7526)2 .

Therefore, the probability density function of the stationary distribution near E∗ is coincident with the function

Φ(S, I,m, log β) = (2π)−2|Σ|− 1
2 e−

1
2 (S−S∗,I−I∗,m−m∗,log β−log β̄)Σ−1(S−S∗,I−I∗,m−m∗,log β−log β̄)T .

The fig.3 realizes the variation of S(t), I(t) and m(t) of the deterministic model (1.1) and stochastic model
(1.2), and it is clear that the values are stable around the quasi-endemic equilibrium E∗. What is more, fig.4
gives the frequency histograms and marginal density function curves of S(t), I(t) and m(t) of the stochastic
model (1.2) in the left column, and the frequency fitting density functions and marginal density functions are
represented in the right column. From those two pictures, we can see that influenza will eventually prevail,
which can also strongly support Theorem 3.3 and 4.1.

Example 5.4 Population mobility is inevitable in modern society with convenient and fast means of trans-
portation, but if influenza is harder to control and makes huge damage to human health, then governmental
agencies may take the implementation of lockdowns to maintain social distance to reduce the loss caused by
influenza. This will influence the social capacity of population mobility b

a . Also, with the increasing number
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fig. 2: The variation of S(t), I(t) and m(t) of the deterministic model (1.1) and stochastic model (1.2) under example 5.2.
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fig. 3: The variation of S(t), I(t) and m(t) of the deterministic model (1.1) and stochastic model (1.2) under example 5.3.
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fig. 4: Left column are frequency histograms and marginal density function curves of S(t), I(t) and m(t) in the stochastic model
(1.2), respectively. Right column represent frequency fitting density functions and marginal density functions of S(t), I(t) and
m(t), respectively.

of infectious population, people would take proper precautionary measures for disease transmission (i.e., use of
face mask, social distancing and implementing hygiene), this has an effect on the transmission rate β̄. We use
the same parameters in example 5.3. On the one hand, fig.5 and 7 show the variation trend of R0, R

e
0 and Rs

0

with the social capacity of population mobility b
a ∈ [0, 1] and the transmission rate β̄ ∈ [0, 0.15], respectively.

On the other hand, fig.6 and fig.8 give the trajectories of S(t), I(t) and m(t) with b
a = 0.3, 0.5, 0.8 and

β̄ = 0.1, 0.3, 0.5, respectively. Those all indicate that reducing population mobility or autonomously taking
necessary protection measures can help control influenza. However, the excessive lockdown will hinder economic
development. The issue of how to balance the intensity of blockade and development is discussed in [37].

Example 5.5 For one thing, let the parameters be the same as in example 5.2 but θ ∈ [0.1, 1] and σ ∈ [0.1, 1].
We carry out fig.9 to show the value of Re

0 with different reversion speed and volatility intensity. Obviously,
Re

0 decreases with the increase of θ and the decrease of σ, which means that influenza inclines to die out. For
another, let σ = 0.03 and other parameters satisfy the equations (5.1), then fig.10 demonstrates the trajectories
of S(t), I(t) and m(t) with different reversion speeds θ = 0.2, 0.5, 1, respectively. Suppose that θ = 0.5,
fig.11 exhibits the trajectories under different volatility intensities σ = 0.02, 0.05, 0.07, respectively. Those two
pictures reveal that a bigger reversion speed or smaller volatility intensity makes the population more stable.

6. Conclusion and discussions

In this paper, we construct a stochastic epidemic model driven by the log-normal Ornstein-Uhlenbeck process
to investigate the dynamical behaviors of influenza transmission. Based on the present research about the mean-
reverting Ornstein-Uhlenbeck process, we find that using the mean-reverting process rather than the linear
functions of white noise to simulate the environmental interference is more realistic in biological significance.
However, up to now, there are few achievements in the basic theories of the mean-reverting process. Hence, in
this article, we concentrate on the methods used in the investigation of dynamic properties of the stochastic
model governed by the OU process. To be specific, the dynamic behaviors of the influenza system (1.2) can be
summarized by the following conclusions:

• The stochastic model admits a unique global positive solution. Furthermore, if the initial value satisfies a
certain condition, then the solution will remain in an invariant set a.s.. This is the basis for the next research.

• By constructing suitable Lyapunov functions, two critical conditions

Re
0 = R0e

σ2

4θ < 1, Rs
0 = R0

[
1− 3

(
e

σ2

9θ − 2e
σ2

36θ + 1
) 1

2

]
> 1
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fig. 9: The plane Re
0 = 1 and the three-dimensional diagram of Re

0 with θ ∈ [0.1, 1] and σ ∈ [0.1, 1].
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respectively.
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respectively.

are established for the influenza exponential extinction and persistence. It is worth noting that Re
0 → R0 and

Rs
0 → R0 as the volatility intensity σ → 0, in which R0 is the basic reproduction number in the corresponding

deterministic model.

• Based on the theories developed by Gardiner and Roozen, we obtain the probability density function of
stationary distribution, which can reveal lots of statistical properties.

In the end, we propose several issues that hope to be better solved in future studies. On the one hand, the
social capacity of population mobility in the context of economics has important impacts on disease transmission.
Globalization and rapid changes in transportation have made it easier for people to widely travel. Therefore,
influenza viruses can spread around the world as people move, putting enormous pressure on disease control.
However, a strict blockade will set barriers to economic development and life. It is necessary to select a suitable
b/a to minimize the damage caused by influenza and ensure the normal operation of society. On the other
hand, limited by the present methods, there is a gap between the key values Re

0 and Rs
0, which means they

are only sufficient conditions. We hope to establish an accurate sufficient and necessary condition for disease
extinction and persistence which is our working towards.
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