Reference list
Ai, H., Kobayashi, Y., Matake, T., Takahashi, S., Hashimoto, K., Maeda,
S., & Tsuruta, N. (2017). Development of honeybee waggle dance and its
differences between recruits and scouts. BioRxiv .
https://doi.org/https://doi. org/10.1101/179408
Allan, B. M., Nimmo, D. G., Ierodiaconou, D., VanDerWal, J., Koh, L. P.,
& Ritchie, E. G. (2018). Futurecasting ecological research: The rise of
technoecology. Ecosphere , 9 (5), e02163.
https://doi.org/https://doi.org/10.1002/ ecs2.2163
Churchill, E. R., Bridle, J. R., & Thom, M. D. F. (2020). Spatially
clustered resources increase male aggregation and mating duration in
Drosophila melanogaster. Animal Behaviour , 169 , 45– 50.
https://doi.org/https://doi. org/10.1016/j.anbeh av.2020.09.002
Cox, W. A., Pruett, M. S., Benson, T. J., & Chiavacci, S. J., &
Thompson, F. R. I. (2012). Development of camera technology for
monitoring nests. In C. A. Ribic, F. R. Thompson, & P. J. Pietz (Eds.),Video surveillance of nesting birds. Studies in avian biology(pp. 185– 198). University of California Press.
Cutler, T. L., & Swann, D. E. (1999). Using remote photography in
wildlife ecology: A review. Wildlife Society Bulletin ,27 (3), 571– 581.
Felton, A., Alford, R. A., Felton, A. M., & Schwarzkopf, L. (2006).
Multiple mate choice criteria and the importance of age for male mating
success in the microhylid frog, Cophixalus ornatus. Behavioral
Ecology and Sociobiology , 59 (6), 786–795.
https://doi.org/10.1007/s00265-005-0124-6
Greenville, A. C., & Emery, N. J. (2016). Gathering lots of data on a
small budget. Science , 353 (6306), 1360– 1361.
Hereward, H. F. R., Facey, R. J., Sargent, A. J., Roda, S., Couldwell,
M. L., Renshaw, E. L., Shaw, K. H., Devlin, J. J., Long, S. E., Porter,
B. J., Henderson, J. M., Emmett, C. L., Astbury, L., Maggs, L., Rands,
S. A., & Thomas, R. J. (2021). Raspberry Pi nest cameras: An affordable
tool for remote behavioral and conservation monitoring of bird nests.Ecology and Evolution , 11 (21), 14585–14597.
https://doi.org/10.1002/ece3.8127
Hesed, K. M. (2012). Uncovering salamander ecology: a review of
coverboard design. Journal of Herpetology , 42 , 442–50.
Hopkins, W., Case, B., Groffen, J., Brooks, G., Jachowski, C. B.,
Button, S., Halligan, J., O’Brien, R., & Kindsvater, H. (2023). Filial
cannibalism leads to chronic nest failure of eastern hellbender
salamanders (Cryptobranchus alleganienesis). In The American
Naturalist . https://doi.org/10.1086/724819
Hoskin, C. J. (2004). Australian microhylid frogs (Cophixalus and
Austrochaperina): Phylogeny, taxonomy, calls, distributions and breeding
biology. Australian Journal of Zoology , 52 (3), 237–269.
https://doi.org/10.1071/ZO03056
Hoskin, C. J. (2012). Two new frog species (Microhylidae: Cophixalus)
from the Australian Wet Tropics region, and redescription of Cophixalus
ornatus. Zootaxa , 3271 , 1–16. www.mapress.com/zootaxa/
Hoskin, C. J., & Hero, J.-M. (2008). Rainforest Frogs Of The Wet
Tropics . Griffith University, Gold Coast, QLD, Australia.
Johnston, S. J., & Cox, S. J. (2017). The raspberry Pi: A technology
dis- rupter, and the enabler of dreams. Electronics
(Switzerland), 6 (3), 51.
https://doi.org/https://doi.org/10.3390/elect ronic s6030051
Jolles, J. W. (2021). Broad-scale applications of the Raspberry Pi: A
review and guide for biologists. Methods in Ecology and
Evolution , 12 (9), 1562–1579.
https://doi.org/10.1111/2041-210X.13652
Kallmyer, N. E., Shin, H. J., Brem, E. A., Israelsen, W. J., & Reuel,
N. F. (2017). Nesting box imager: Contact- free, real- time measurement
of activity, surface body temperature, and respiratory rate applied to
hibernating mouse models. PLOS Biology , 17 (7), e3000406.
https://doi.org/https:// doi.org/10.1371/journ al.pbio.3000406
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial
animal tracking as an eye on life and planet. Science ,348 (6240), aaa2478. https://doi.org/10.1126/science.aaa2478
McBride, W. J., & Courter, J. R. (2019). Using Raspberry Pi
microcomputers to remotely monitor birds and collect environmental data.Ecological Informatics , 54 , 101016.
https://doi.org/https://doi.org/10.1016/j. ecoinf.2019.101016
Meek, P. D., Ballard, G., Claridge, A., Kays, R., Moseby, K., O’Brien,
T., O’Connell, A., Sanderson, J., Swann, D. E., Tobler, M., & Townsend,
S. (2014). Recommended guiding principles for reporting on camera
trapping research. Biodiversity and Conservation , 23 (9),
2321– 2343. https://doi.org/https://doi.org/10.1007/s1053 1- 014- 0712-
8
Mouy, X., Black, M., Cox, K., Qualley, J., Mireault, C., Dosso, S., &
Juanes, F. (2020). FishCam: A low-cost open source autonomous camera for
aquatic research. HardwareX , 8 , e00110.
https://doi.org/https://doi.org/10.1016/j. ohx.2020.e00110
Nuñez, I., Matute, T., Herrera, R., Keymer, J., Marzullo, T., Rudge, T.,
& Federici, F. (2017). Low cost and open source multifluorescence
imaging system for teaching and research in biology and bioen-
gineering. PLoS ONE , 12 (11), 1– 21.
https://doi.org/https://doi.org/10.1371/journ al.pone.0187163
O’Brien, R. S. , Groffen, J., Dayer, A. A., & Hopkins, W. A. (2023a).
Pre-breeding, courtship, and mating behaviors of wild eastern
hellbenders (Cryptobranchus alleganiensis alleganiensis ).Herpetologica , Accepted.
O’Brien, R. S., Groffen, J., Dayer, A., & Hopkins, W. A. (2023b).
Modulation of self-maintenance and parental care behaviors in response
to microhabitat conditions by eastern hellbenders (Cryptobranchus
Alleganiensis ). in review , Animal Behaviour.
Prinz, A. C. B., Taank, V. K., Voegeli, V., & Walters, E. L. (2016). A
novel nest monitoring camera system using a Raspberry Pi micro-
computer. Journal of Field Ornithology , 87 (4), 427– 435.
https://doi.org/https://doi. org/10.1111/jofo.12182
Privitera, M., Ferrari, K. D., von Ziegler, L. M. Sturman, O., Duss, S.
N., Floriou- Servou, A., Germain, P. L., Vermeiren, Y., Wyss, M. T., De
Deyn, P. P., Weber, B., & Bohacek, J. (2020). A complete pupillometry
toolbox for real- time monitoring of locus coeruleus activity in
rodents. Nature Protocols, 15 (8), 2301– 2320.
https://doi.org/https://doi.org/10.1038/ s4159 6- 020- 0324- 6
Reif, V., & Tornberg, R. (2006). Using timelapse digital video
recording for a nesting study of birds of prey. European Journal
of Wildlife Research , 52 (4), 251– 258.
https://doi.org/https://doi.org/10.1007/s1034 4- 006- 0039- 1
Sutherland, C., Munoz, D. J., Miller, D. A., & Grant, E. H. C. (2016).
Spatial capture–recapture: a promising method for analyzing data
collected using artificial cover objects. Herpetologica ,72 , 6–12.
Swann, D. E., Hass, C. C., Dalton, D. C., & Wolf, S. A. (2004).
Infrared- triggered cameras for detecting wildlife: An evaluation and
review. Wildlife Society Bulletin , 32 (2), 357– 365.
https://doi.org/https://doi. org/10.2193/0091- 7648(2004)32[357:icfdw
a]2.0.co;2
Trolliet, F., Huynen, M.-C., Vermeulen, C., & Hambuckers, A. (2014).
Use of camera traps for wildlife studies. A review.Biotechnologie, Agronomie, Société Et Environnement ,18 (3), 446– 454.
Youngblood, M. (2019). A Raspberry Pi-based, RFID-equipped birdfeeder
for the remote monitoring of wild bird populations. Ringing and
Migration , 34 (1), 25–32.
https://doi.org/10.1080/03078698.2019.1759908
Zárybnická, M., Kubizňák, P., Šindelář, J., & Hlaváč, V. (2016). Smart
nest box: A tool and methodology for monitoring of cavity-dwelling
animals. Methods in Ecology and Evolution , 7 (4), 483–492.
https://doi.org/10.1111/2041-210X.12509