References
Ashikawa, I. et al. (2008) ‘Two Adjacent Nucleotide-Binding
Site–Leucine-Rich Repeat Class Genes Are Required to Confer
Pikm-Specific Rice Blast Resistance’, Genetics , 180(4), pp.
2267–2276. Available at: https://doi.org/10.1534/genetics.108.095034.
Banerjee, J. et al. (2013) ‘An Intergenic Region Shared by
At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and
Stress Inducible Bidirectional Promoter Analyzed in Transgenic
Arabidopsis and Tobacco Plants’, PLOS ONE , 8(11), p. e79622.
Available at: https://doi.org/10.1371/journal.pone.0079622.
Bi, G. et al. (2021) ‘The ZAR1 resistosome is a calcium-permeable
channel triggering plant immune signaling’, Cell , 184(13), pp.
3528-3541.e12. Available at: https://doi.org/10.1016/j.cell.2021.05.003.
Campbell, M.A., Chen, D. and Ronald, P.C. (2004) ‘Development of
Co-Dominant Amplified Polymorphic Sequence Markers in Rice that Flank
the Magnaporthe grisea Resistance Gene Pi7(t) in Recombinant Inbred Line
29’, Phytopathology® , 94(3), pp. 302–307. Available at:
https://doi.org/10.1094/PHYTO.2004.94.3.302.
Cesari, S., Bernoux, M., et al. (2014) ‘A novel conserved
mechanism for plant NLR protein pairs: the “integrated decoy”
hypothesis’, Frontiers in Plant Science , 5. Available at:
https://www.frontiersin.org/articles/10.3389/fpls.2014.00606 (Accessed:
6 July 2023).
Cesari, S., Kanzaki, H., et al. (2014) ‘The NB-LRR proteins RGA4
and RGA5 interact functionally and physically to confer disease
resistance’, The EMBO Journal , 33(17), pp. 1941–1959. Available
at: https://doi.org/10.15252/embj.201487923.
Chen, Y. et al. (2014) ‘Transcriptional regulation and spatial
interactions of head-to-head genes’, BMC Genomics , 15(1), p. 519.
Available at: https://doi.org/10.1186/1471-2164-15-519.
Deng, Y. et al. (2017) ‘Epigenetic regulation of antagonistic
receptors confers rice blast resistance with yield balance’,Science , 355(6328), pp. 962–965. Available at:
https://doi.org/10.1126/science.aai8898.
Deslandes, L. et al. (2003) ‘Physical interaction between RRS1-R,
a protein conferring resistance to bacterial wilt, and PopP2, a type III
effector targeted to the plant nucleus’, Proceedings of the
National Academy of Sciences of the United States of America , 100(13),
pp. 8024–8029. Available at: https://doi.org/10.1073/pnas.1230660100.
Fang, Y. et al. (2016) ‘Histone modifications facilitate the
coexpression of bidirectional promoters in rice’, BMC Genomics ,
17(1), p. 768. Available at: https://doi.org/10.1186/s12864-016-3125-0.
Heidrich, K. et al. (2011) ‘Arabidopsis EDS1 connects pathogen
effector recognition to cell compartment-specific immune responses’,Science (New York, N.Y.) , 334(6061), pp. 1401–1404. Available
at: https://doi.org/10.1126/science.1211641.
Hua, L. et al. (2012) ‘The isolation of Pi1, an allele at the Pik
locus which confers broad spectrum resistance to rice blast’,Theoretical and Applied Genetics , 125(5), pp. 1047–1055.
Available at: https://doi.org/10.1007/s00122-012-1894-7.
In, S. et al. (2020) ‘Molecular Characterization of a
Pathogen-Inducible Bidirectional Promoter from Hot Pepper (Capsicum
annuum)’, Molecular Plant-Microbe Interactions® , 33(11), pp.
1330–1339. Available at: https://doi.org/10.1094/MPMI-07-20-0183-R.
Jia, Y. et al. (2000) ‘Direct interaction of resistance gene and
avirulence gene products confers rice blast resistance’, The EMBO
Journal , 19(15), pp. 4004–4014. Available at:
https://doi.org/10.1093/emboj/19.15.4004.
Jiang, G. et al. (2016) ‘The rice thylakoid membrane-bound
ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight’,Scientific Reports , 6(1), p. 26104. Available at:
https://doi.org/10.1038/srep26104.
Kim, S.T. et al. (2008) ‘Proteomics Analysis of Rice Lesion Mimic
Mutant (spl1) Reveals Tightly Localized Probenazole-Induced Protein
(PBZ1) in Cells Undergoing Programmed Cell Death’, Journal of
Proteome Research , 7(4), pp. 1750–1760. Available at:
https://doi.org/10.1021/pr700878t.
Koga, H. et al. (2004) ‘A novel inoculation method of Magnaporthe
grisea for cytological observation of the infection process using intact
leaf sheaths of rice plants’, Physiological and Molecular Plant
Pathology , 64(2), pp. 67–72. Available at:
https://doi.org/10.1016/j.pmpp.2004.07.002.
Krom, N. and Ramakrishna, W. (2008) ‘Comparative Analysis of Divergent
and Convergent Gene Pairs and Their Expression Patterns in Rice,
Arabidopsis, and Populus’, Plant Physiology , 147(4), pp.
1763–1773. Available at: https://doi.org/10.1104/pp.108.122416.
Kwak, H. et al. (2013) ‘Precise maps of RNA polymerase reveal how
promoters direct initiation and pausing’, Science (New York,
N.Y.) , 339(6122), pp. 950–953. Available at:
https://doi.org/10.1126/science.1229386.
Lapin, D. et al. (2019) ‘A Coevolved EDS1-SAG101-NRG1 Module
Mediates Cell Death Signaling by TIR-Domain Immune Receptors’, The
Plant Cell , 31(10), pp. 2430–2455. Available at:
https://doi.org/10.1105/tpc.19.00118.
Lee, T.J. et al. (2014) ‘Suppression of Expression Between
Adjacent Genes Within Heterologous Modules in Yeast’, G3
Genes|Genomes|Genetics , 4(1), pp. 109–116. Available
at: https://doi.org/10.1534/g3.113.007922.
Lijavetzky, D., Carbonero, P. and Vicente-Carbajosa, J. (2003)
‘Genome-wide comparative phylogenetic analysis of the rice and
Arabidopsis Dof gene families’, BMC evolutionary biology , 3, p.
17. Available at: https://doi.org/10.1186/1471-2148-3-17.
Liu, H. et al. (2017) ‘NBS-LRR protein Pik-H4 Interacts with
OsBIHD1 to Balance Rice Blast Resistance and Growth by coordinating
Ethylene-Brassinosteroid pathway’, Frontiers in Plant Science , 8.
Available at:
https://www.frontiersin.org/articles/10.3389/fpls.2017.00127 (Accessed:
21 July 2023).
Liu, M. et al. (2019) ‘Phosphorylation-guarded light-harvesting
complex II contributes to broad-spectrum blast resistance in rice’,Proceedings of the National Academy of Sciences , 116(35), pp.
17572–17577. Available at: https://doi.org/10.1073/pnas.1905123116.
Liu, X. et al. (2014) ‘Identification and functional
characterization of bidirectional gene pairs and their intergenic
regions in maize’, BMC Genomics , 15(1), p. 338. Available at:
https://doi.org/10.1186/1471-2164-15-338.
Ma, S. et al. (2020) ‘Direct pathogen-induced assembly of an NLR
immune receptor complex to form a holoenzyme’, Science ,
370(6521), p. eabe3069. Available at:
https://doi.org/10.1126/science.abe3069.
Mackey, D. et al. (2002) ‘RIN4 Interacts with Pseudomonas
syringae Type III Effector Molecules and Is Required for RPM1-Mediated
Resistance in Arabidopsis’, Cell , 108(6), pp. 743–754. Available
at: https://doi.org/10.1016/S0092-8674(02)00661-X.
Martin, R. et al. (2020) ‘Structure of the activated ROQ1
resistosome directly recognizing the pathogen effector XopQ’,Science , 370(6521), p. eabd9993. Available at:
https://doi.org/10.1126/science.abd9993.
Meng, F. et al. (2021) ‘Analysis of natural variation of the rice
blast resistance gene Pike and identification of a novel allele Pikg’,Molecular Genetics and Genomics , 296(4), pp. 939–952. Available
at: https://doi.org/10.1007/s00438-021-01795-w.
Nakano, T. et al. (2006) ‘Genome-wide analysis of the ERF gene
family in Arabidopsis and rice’, Plant Physiology , 140(2), pp.
411–432. Available at: https://doi.org/10.1104/pp.105.073783.
Park, C.-H. et al. (2012) ‘The Magnaporthe oryzae Effector
AvrPiz-t Targets the RING E3 Ubiquitin Ligase APIP6 to Suppress
Pathogen-Associated Molecular Pattern–Triggered Immunity in Rice’,The Plant Cell , 24(11), pp. 4748–4762. Available at:
https://doi.org/10.1105/tpc.112.105429.
Rao, V. and Virupapuram, V. (2021) ‘Identification and characterization
of a biphasic/bidirectional wound-inducible RHA3B gene promoter from
Arabidopsis thaliana’. bioRxiv, p. 2021.01.28.428589. Available at:
https://doi.org/10.1101/2021.01.28.428589.
Ray, S. et al. (2016) ‘Analysis of Magnaporthe oryzae Genome
Reveals a Fungal Effector, Which Is Able to Induce Resistance Response
in Transgenic Rice Line Containing Resistance Gene, Pi54’,Frontiers in Plant Science , 7. Available at:
https://www.frontiersin.org/articles/10.3389/fpls.2016.01140 (Accessed:
31 July 2023).
Robert, X. and Gouet, P. (2014) ‘Deciphering key features in protein
structures with the new ENDscript server’, Nucleic Acids
Research , 42(Web Server issue), pp. W320-324. Available at:
https://doi.org/10.1093/nar/gku316.
Rozewicki, J. et al. (2019) ‘MAFFT-DASH: integrated protein
sequence and structural alignment’, Nucleic Acids Research ,
47(W1), pp. W5–W10. Available at: https://doi.org/10.1093/nar/gkz342.
Sainsbury, F., Thuenemann, E.C. and Lomonossoff, G.P. (2009) ‘pEAQ:
versatile expression vectors for easy and quick transient expression of
heterologous proteins in plants’, Plant Biotechnology Journal ,
7(7), pp. 682–693. Available at:
https://doi.org/10.1111/j.1467-7652.2009.00434.x.
Tian, F. et al. (2020) ‘PlantRegMap: charting functional
regulatory maps in plants’, Nucleic Acids Research , 48(D1), pp.
D1104–D1113. Available at: https://doi.org/10.1093/nar/gkz1020.
Trinklein, N.D. et al. (2004) ‘An Abundance of Bidirectional
Promoters in the Human Genome’, Genome Research , 14(1), pp.
62–66. Available at: https://doi.org/10.1101/gr.1982804.
Wang, G. et al. (2015) ‘The Decoy Substrate of a Pathogen
Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self
Recognition and Immunity in Plants’, Cell Host & Microbe , 18(3),
pp. 285–295. Available at: https://doi.org/10.1016/j.chom.2015.08.004.
Wang, Jizong et al. (2019) ‘Reconstitution and structure of a
plant NLR resistosome conferring immunity’, Science , 364(6435),
p. eaav5870. Available at: https://doi.org/10.1126/science.aav5870.
Whitehall, S.K., Kassavetis, G.A. and Geiduschek, E.P. (1995) ‘The
symmetry of the yeast U6 RNA gene’s TATA box and the orientation of the
TATA-binding protein in yeast TFIIIB.’, Genes & Development ,
9(23), pp. 2974–2985. Available at:
https://doi.org/10.1101/gad.9.23.2974.
Williams, E.J.B. and Bowles, D.J. (2004) ‘Coexpression of Neighboring
Genes in the Genome of Arabidopsis thaliana’, Genome Research ,
14(6), pp. 1060–1067. Available at: https://doi.org/10.1101/gr.2131104.
Williams, S.J. et al. (2014) ‘Structural Basis for Assembly and
Function of a Heterodimeric Plant Immune Receptor’, Science ,
344(6181), pp. 299–303. Available at:
https://doi.org/10.1126/science.1247357.
Xiao, W. et al. (2011) ‘Identification and fine mapping of a
resistance gene to Magnaporthe oryzae in a space-induced rice mutant’,Molecular Breeding , 28(3), pp. 303–312. Available at:
https://doi.org/10.1007/s11032-010-9481-6.
Xie, J. et al. (2023) ‘Tree Visualization By One Table (tvBOT): a
web application for visualizing, modifying and annotating phylogenetic
trees’, Nucleic Acids Research , 51(W1), pp. W587–W592. Available
at: https://doi.org/10.1093/nar/gkad359.
Xie, Y. et al. (2022) ‘SH3P2, an SH3 domain-containing protein
that interacts with both Pib and AvrPib, suppresses effector-triggered,
Pib-mediated immunity in rice’, Molecular Plant , 15(12), pp.
1931–1946. Available at: https://doi.org/10.1016/j.molp.2022.10.022.
Xu, L.C., Thali, M. and Schaffner, W. (1991) ‘Upstream box/TATA box
order is the major determinant of the direction of transcription.’,Nucleic Acids Research , 19(24), pp. 6699–6704.
Yan, X. and Talbot, N.J. (2016) ‘Investigating the cell biology of plant
infection by the rice blast fungus Magnaporthe oryzae’, Current
Opinion in Microbiology , 34, pp. 147–153. Available at:
https://doi.org/10.1016/j.mib.2016.10.001.
Yokotani, N. et al. (2014) ‘OsNAC111, a Blast Disease–Responsive
Transcription Factor in Rice, Positively Regulates the Expression of
Defense-Related Genes’, Molecular Plant-Microbe Interactions® ,
27(10), pp. 1027–1034. Available at:
https://doi.org/10.1094/MPMI-03-14-0065-R.
Zdrzałek, R. et al. (2020a) ‘The rice NLR pair Pikp-1/Pikp-2
initiates cell death through receptor cooperation rather than negative
regulation’, PLOS ONE , 15(9), p. e0238616. Available at:
https://doi.org/10.1371/journal.pone.0238616.
Zdrzałek, R. et al. (2020b) ‘The rice NLR pair Pikp-1/Pikp-2
initiates cell death through receptor cooperation rather than negative
regulation’, PLOS ONE , 15(9), p. e0238616. Available at:
https://doi.org/10.1371/journal.pone.0238616.
Zhai, C. et al. (2011) ‘The isolation and characterization of
Pik, a rice blast resistance gene which emerged after rice
domestication’, New Phytologist , 189(1), pp. 321–334. Available
at: https://doi.org/10.1111/j.1469-8137.2010.03462.x.
Zhai, C. et al. (2014) ‘Function and Interaction of the Coupled
Genes Responsible for Pik-h Encoded Rice Blast Resistance’, PLOS
ONE , 9(6), p. e98067. Available at:
https://doi.org/10.1371/journal.pone.0098067.
Zhang, Y. et al. (2011) ‘A highly efficient rice green tissue
protoplast system for transient gene expression and studying
light/chloroplast-related processes’, Plant Methods , 7(1), p. 30.
Available at: https://doi.org/10.1186/1746-4811-7-30.
Zhang, Y. et al. (2017) ‘Temperature-dependent autoimmunity
mediated by chs1 requires its neighboring TNL gene SOC3’, The New
Phytologist , 213(3), pp. 1330–1345. Available at:
https://doi.org/10.1111/nph.14216.
Zhao, Y.-B. et al. (2022) ‘Pathogen effector AvrSr35 triggers
Sr35 resistosome assembly via a direct recognition mechanism’,Science Advances , 8(36), p. eabq5108. Available at:
https://doi.org/10.1126/sciadv.abq5108.