References
Ashikawa, I. et al. (2008) ‘Two Adjacent Nucleotide-Binding Site–Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance’, Genetics , 180(4), pp. 2267–2276. Available at: https://doi.org/10.1534/genetics.108.095034.
Banerjee, J. et al. (2013) ‘An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants’, PLOS ONE , 8(11), p. e79622. Available at: https://doi.org/10.1371/journal.pone.0079622.
Bi, G. et al. (2021) ‘The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling’, Cell , 184(13), pp. 3528-3541.e12. Available at: https://doi.org/10.1016/j.cell.2021.05.003.
Campbell, M.A., Chen, D. and Ronald, P.C. (2004) ‘Development of Co-Dominant Amplified Polymorphic Sequence Markers in Rice that Flank the Magnaporthe grisea Resistance Gene Pi7(t) in Recombinant Inbred Line 29’, Phytopathology® , 94(3), pp. 302–307. Available at: https://doi.org/10.1094/PHYTO.2004.94.3.302.
Cesari, S., Bernoux, M., et al. (2014) ‘A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis’, Frontiers in Plant Science , 5. Available at: https://www.frontiersin.org/articles/10.3389/fpls.2014.00606 (Accessed: 6 July 2023).
Cesari, S., Kanzaki, H., et al. (2014) ‘The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance’, The EMBO Journal , 33(17), pp. 1941–1959. Available at: https://doi.org/10.15252/embj.201487923.
Chen, Y. et al. (2014) ‘Transcriptional regulation and spatial interactions of head-to-head genes’, BMC Genomics , 15(1), p. 519. Available at: https://doi.org/10.1186/1471-2164-15-519.
Deng, Y. et al. (2017) ‘Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance’,Science , 355(6328), pp. 962–965. Available at: https://doi.org/10.1126/science.aai8898.
Deslandes, L. et al. (2003) ‘Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus’, Proceedings of the National Academy of Sciences of the United States of America , 100(13), pp. 8024–8029. Available at: https://doi.org/10.1073/pnas.1230660100.
Fang, Y. et al. (2016) ‘Histone modifications facilitate the coexpression of bidirectional promoters in rice’, BMC Genomics , 17(1), p. 768. Available at: https://doi.org/10.1186/s12864-016-3125-0.
Heidrich, K. et al. (2011) ‘Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses’,Science (New York, N.Y.) , 334(6061), pp. 1401–1404. Available at: https://doi.org/10.1126/science.1211641.
Hua, L. et al. (2012) ‘The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast’,Theoretical and Applied Genetics , 125(5), pp. 1047–1055. Available at: https://doi.org/10.1007/s00122-012-1894-7.
In, S. et al. (2020) ‘Molecular Characterization of a Pathogen-Inducible Bidirectional Promoter from Hot Pepper (Capsicum annuum)’, Molecular Plant-Microbe Interactions® , 33(11), pp. 1330–1339. Available at: https://doi.org/10.1094/MPMI-07-20-0183-R.
Jia, Y. et al. (2000) ‘Direct interaction of resistance gene and avirulence gene products confers rice blast resistance’, The EMBO Journal , 19(15), pp. 4004–4014. Available at: https://doi.org/10.1093/emboj/19.15.4004.
Jiang, G. et al. (2016) ‘The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight’,Scientific Reports , 6(1), p. 26104. Available at: https://doi.org/10.1038/srep26104.
Kim, S.T. et al. (2008) ‘Proteomics Analysis of Rice Lesion Mimic Mutant (spl1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death’, Journal of Proteome Research , 7(4), pp. 1750–1760. Available at: https://doi.org/10.1021/pr700878t.
Koga, H. et al. (2004) ‘A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants’, Physiological and Molecular Plant Pathology , 64(2), pp. 67–72. Available at: https://doi.org/10.1016/j.pmpp.2004.07.002.
Krom, N. and Ramakrishna, W. (2008) ‘Comparative Analysis of Divergent and Convergent Gene Pairs and Their Expression Patterns in Rice, Arabidopsis, and Populus’, Plant Physiology , 147(4), pp. 1763–1773. Available at: https://doi.org/10.1104/pp.108.122416.
Kwak, H. et al. (2013) ‘Precise maps of RNA polymerase reveal how promoters direct initiation and pausing’, Science (New York, N.Y.) , 339(6122), pp. 950–953. Available at: https://doi.org/10.1126/science.1229386.
Lapin, D. et al. (2019) ‘A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors’, The Plant Cell , 31(10), pp. 2430–2455. Available at: https://doi.org/10.1105/tpc.19.00118.
Lee, T.J. et al. (2014) ‘Suppression of Expression Between Adjacent Genes Within Heterologous Modules in Yeast’, G3 Genes|Genomes|Genetics , 4(1), pp. 109–116. Available at: https://doi.org/10.1534/g3.113.007922.
Lijavetzky, D., Carbonero, P. and Vicente-Carbajosa, J. (2003) ‘Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families’, BMC evolutionary biology , 3, p. 17. Available at: https://doi.org/10.1186/1471-2148-3-17.
Liu, H. et al. (2017) ‘NBS-LRR protein Pik-H4 Interacts with OsBIHD1 to Balance Rice Blast Resistance and Growth by coordinating Ethylene-Brassinosteroid pathway’, Frontiers in Plant Science , 8. Available at: https://www.frontiersin.org/articles/10.3389/fpls.2017.00127 (Accessed: 21 July 2023).
Liu, M. et al. (2019) ‘Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice’,Proceedings of the National Academy of Sciences , 116(35), pp. 17572–17577. Available at: https://doi.org/10.1073/pnas.1905123116.
Liu, X. et al. (2014) ‘Identification and functional characterization of bidirectional gene pairs and their intergenic regions in maize’, BMC Genomics , 15(1), p. 338. Available at: https://doi.org/10.1186/1471-2164-15-338.
Ma, S. et al. (2020) ‘Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme’, Science , 370(6521), p. eabe3069. Available at: https://doi.org/10.1126/science.abe3069.
Mackey, D. et al. (2002) ‘RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis’, Cell , 108(6), pp. 743–754. Available at: https://doi.org/10.1016/S0092-8674(02)00661-X.
Martin, R. et al. (2020) ‘Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ’,Science , 370(6521), p. eabd9993. Available at: https://doi.org/10.1126/science.abd9993.
Meng, F. et al. (2021) ‘Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg’,Molecular Genetics and Genomics , 296(4), pp. 939–952. Available at: https://doi.org/10.1007/s00438-021-01795-w.
Nakano, T. et al. (2006) ‘Genome-wide analysis of the ERF gene family in Arabidopsis and rice’, Plant Physiology , 140(2), pp. 411–432. Available at: https://doi.org/10.1104/pp.105.073783.
Park, C.-H. et al. (2012) ‘The Magnaporthe oryzae Effector AvrPiz-t Targets the RING E3 Ubiquitin Ligase APIP6 to Suppress Pathogen-Associated Molecular Pattern–Triggered Immunity in Rice’,The Plant Cell , 24(11), pp. 4748–4762. Available at: https://doi.org/10.1105/tpc.112.105429.
Rao, V. and Virupapuram, V. (2021) ‘Identification and characterization of a biphasic/bidirectional wound-inducible RHA3B gene promoter from Arabidopsis thaliana’. bioRxiv, p. 2021.01.28.428589. Available at: https://doi.org/10.1101/2021.01.28.428589.
Ray, S. et al. (2016) ‘Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54’,Frontiers in Plant Science , 7. Available at: https://www.frontiersin.org/articles/10.3389/fpls.2016.01140 (Accessed: 31 July 2023).
Robert, X. and Gouet, P. (2014) ‘Deciphering key features in protein structures with the new ENDscript server’, Nucleic Acids Research , 42(Web Server issue), pp. W320-324. Available at: https://doi.org/10.1093/nar/gku316.
Rozewicki, J. et al. (2019) ‘MAFFT-DASH: integrated protein sequence and structural alignment’, Nucleic Acids Research , 47(W1), pp. W5–W10. Available at: https://doi.org/10.1093/nar/gkz342.
Sainsbury, F., Thuenemann, E.C. and Lomonossoff, G.P. (2009) ‘pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants’, Plant Biotechnology Journal , 7(7), pp. 682–693. Available at: https://doi.org/10.1111/j.1467-7652.2009.00434.x.
Tian, F. et al. (2020) ‘PlantRegMap: charting functional regulatory maps in plants’, Nucleic Acids Research , 48(D1), pp. D1104–D1113. Available at: https://doi.org/10.1093/nar/gkz1020.
Trinklein, N.D. et al. (2004) ‘An Abundance of Bidirectional Promoters in the Human Genome’, Genome Research , 14(1), pp. 62–66. Available at: https://doi.org/10.1101/gr.1982804.
Wang, G. et al. (2015) ‘The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants’, Cell Host & Microbe , 18(3), pp. 285–295. Available at: https://doi.org/10.1016/j.chom.2015.08.004.
Wang, Jizong et al. (2019) ‘Reconstitution and structure of a plant NLR resistosome conferring immunity’, Science , 364(6435), p. eaav5870. Available at: https://doi.org/10.1126/science.aav5870.
Whitehall, S.K., Kassavetis, G.A. and Geiduschek, E.P. (1995) ‘The symmetry of the yeast U6 RNA gene’s TATA box and the orientation of the TATA-binding protein in yeast TFIIIB.’, Genes & Development , 9(23), pp. 2974–2985. Available at: https://doi.org/10.1101/gad.9.23.2974.
Williams, E.J.B. and Bowles, D.J. (2004) ‘Coexpression of Neighboring Genes in the Genome of Arabidopsis thaliana’, Genome Research , 14(6), pp. 1060–1067. Available at: https://doi.org/10.1101/gr.2131104.
Williams, S.J. et al. (2014) ‘Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor’, Science , 344(6181), pp. 299–303. Available at: https://doi.org/10.1126/science.1247357.
Xiao, W. et al. (2011) ‘Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant’,Molecular Breeding , 28(3), pp. 303–312. Available at: https://doi.org/10.1007/s11032-010-9481-6.
Xie, J. et al. (2023) ‘Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees’, Nucleic Acids Research , 51(W1), pp. W587–W592. Available at: https://doi.org/10.1093/nar/gkad359.
Xie, Y. et al. (2022) ‘SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice’, Molecular Plant , 15(12), pp. 1931–1946. Available at: https://doi.org/10.1016/j.molp.2022.10.022.
Xu, L.C., Thali, M. and Schaffner, W. (1991) ‘Upstream box/TATA box order is the major determinant of the direction of transcription.’,Nucleic Acids Research , 19(24), pp. 6699–6704.
Yan, X. and Talbot, N.J. (2016) ‘Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae’, Current Opinion in Microbiology , 34, pp. 147–153. Available at: https://doi.org/10.1016/j.mib.2016.10.001.
Yokotani, N. et al. (2014) ‘OsNAC111, a Blast Disease–Responsive Transcription Factor in Rice, Positively Regulates the Expression of Defense-Related Genes’, Molecular Plant-Microbe Interactions® , 27(10), pp. 1027–1034. Available at: https://doi.org/10.1094/MPMI-03-14-0065-R.
Zdrzałek, R. et al. (2020a) ‘The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation’, PLOS ONE , 15(9), p. e0238616. Available at: https://doi.org/10.1371/journal.pone.0238616.
Zdrzałek, R. et al. (2020b) ‘The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation’, PLOS ONE , 15(9), p. e0238616. Available at: https://doi.org/10.1371/journal.pone.0238616.
Zhai, C. et al. (2011) ‘The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication’, New Phytologist , 189(1), pp. 321–334. Available at: https://doi.org/10.1111/j.1469-8137.2010.03462.x.
Zhai, C. et al. (2014) ‘Function and Interaction of the Coupled Genes Responsible for Pik-h Encoded Rice Blast Resistance’, PLOS ONE , 9(6), p. e98067. Available at: https://doi.org/10.1371/journal.pone.0098067.
Zhang, Y. et al. (2011) ‘A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes’, Plant Methods , 7(1), p. 30. Available at: https://doi.org/10.1186/1746-4811-7-30.
Zhang, Y. et al. (2017) ‘Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3’, The New Phytologist , 213(3), pp. 1330–1345. Available at: https://doi.org/10.1111/nph.14216.
Zhao, Y.-B. et al. (2022) ‘Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism’,Science Advances , 8(36), p. eabq5108. Available at: https://doi.org/10.1126/sciadv.abq5108.