References
Astel, A., Biziuk, M., Przyjazny, A., Namieśnik, J., 2006. Chemometrics in monitoring spatial and temporal variations in drinking water quality. Water Res. 40, 1706–1716. https://doi.org/10.1016/j.watres.2006.02.018
Behmel, S., Damour, M., Ludwig, R., Rodriguez, M.J., 2016. Water quality monitoring strategies — A review and future perspectives. Sci. Total Environ. 571, 1312–1329. https://doi.org/10.1016/j.scitotenv.2016.06.235
Chen, J., Li, F., Fan, Z., Wang, Y., 2016. Integrated application of multivariate statistical methods to source apportionment ofwatercourses in the liao river basin, northeast China. Int. J. Environ. Res. Public Health 13. https://doi.org/10.3390/ijerph13101035
Chen, J., Lu, J., 2014. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East China. PLoS One 9, 1–12. https://doi.org/10.1371/journal.pone.0102714
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., Ren, H., 2020. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 171, 115454. https://doi.org/10.1016/j.watres.2019.115454
Chen, Q., Wu, W., Blanckaert, K., Ma, J., Huang, G., 2012. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. J. Environ. Manage. 110, 116–124. https://doi.org/10.1016/j.jenvman.2012.05.024
Dodds, W.K., Cole, J.J., 2007. Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat. Sci. 69, 427–439. https://doi.org/10.1007/s00027-007-0922-1
Dokulil, M., Chen, W., Cai, Q., 2000. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Heal. Manag. 3, 81–94. https://doi.org/10.1080/14634980008656993
Du, H., Chen, Z., Mao, G., Chen, L., Crittenden, J., Li, R.Y.M., Chai, L., 2019. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol. Indic. 102, 686–692. https://doi.org/10.1016/j.ecolind.2019.03.032
Fink, G., Alcamo, J., Flörke, M., Reder, K., 2018. Phosphorus Loadings to the World’s Largest Lakes: Sources and Trends. Global Biogeochem. Cycles 32, 617–634. https://doi.org/10.1002/2017GB005858
Güler, C., Thyne, G.D., McCray, J.E., Turner, A.K., 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 10, 455–474. https://doi.org/10.1007/s10040-002-0196-6
Guo, L., Dai, L., Zheng, J., Zhou, W., Peng, C., Li, D., Li, G., 2022. Environmental factors associated with the filamentous green algae Cladophora blooms: A mesocosm experiment in a shallow eutrophic lake. J. Environ. Manage. 313, 114977. https://doi.org/10.1016/j.jenvman.2022.114977
Hajigholizadeh, M., Melesse, A.M., 2017. Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena 151, 247–258. https://doi.org/10.1016/j.catena.2016.12.018
Havens, K.E., Walker, W.W., 2002. Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake Reserv. Manag. 18, 227–238. https://doi.org/10.1080/07438140209354151
Herb, W.R., Stefan, H.G., 2003. Integral growth of submersed macrophytes in varying light regimes. Ecol. Modell. 168, 77–100. https://doi.org/10.1016/S0304-3800(03)00206-0
Holz, J.C., Hoagland, K.D., Spawn, R.L., Popp, A., Andersen, J.L., 1997. Phytoplankton community response to reservoir aging, 1968-92. Hydrobiologia 346, 183–192. https://doi.org/10.1023/a:1002978302479
Huang, C., Wang, X., Yang, H., Li, Y., Wang, Y., Chen, X., Xu, L., 2014. Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Sci. Total Environ. 485–486, 1–11. https://doi.org/10.1016/j.scitotenv.2014.03.031
Kim, B., Ju-Hyun Park, Gilson Hwang, Man-Sig Jun, Kwangsoon Choi, 2001. Eutrophication of reservoirs in South Korea. Limnology 2, 223–229. https://doi.org/https://doi.org/10.1007/s10201-001-8040-6
Klemas, V., 2012. Remote sensing of algal blooms: An overview with case studies. J. Coast. Res. 28, 34–43. https://doi.org/10.2112/JCOASTRES-D-11-00051.1
Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., Yin, B., 2010. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manage. 45, 662–668. https://doi.org/10.1007/s00267-010-9440-3
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., Pinay, G., 2019. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 651, 1–11. https://doi.org/10.1016/j.scitotenv.2018.09.139
Li, J., Luo, G., He, L.J., Xu, J., Lyu, J., 2018. Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Crit. Rev. Anal. Chem. 48, 47–65. https://doi.org/10.1080/10408347.2017.1370670
Li, M., Dong, J., Zhang, Y., Yang, H., Van Zwieten, L., Lu, H., Alshameri, A., Zhan, Z., Chen, X., Jiang, X., Xu, W., Bao, Y., Wang, H., 2021. A critical review of methods for analyzing freshwater eutrophication. Water (Switzerland) 13, 1–20. https://doi.org/10.3390/w13020225
Li, N., Wang, J., Yin, W., Jia, H., Xu, J., Hao, R., Zhong, Z., Shi, Z., 2021. Linking water environmental factors and the local watershed landscape to the chlorophyll a concentration in reservoir bays. Sci. Total Environ. 758, 143617. https://doi.org/10.1016/j.scitotenv.2020.143617
Li, T., Li, S., Liang, C., Bush, R.T., Xiong, L., Jiang, Y., 2018. A comparative assessment of Australia’s Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. J. Clean. Prod. 190, 1–11. https://doi.org/10.1016/j.jclepro.2018.04.121
Liu, H., He, B., Zhou, Y., Yang, X., Zhang, X., Xiao, F., Feng, Q., Liang, S., Zhou, X., Fu, C., 2021. Eutrophication monitoring of lakes in Wuhan based on Sentinel-2 data. GIScience Remote Sens. 58, 776–798. https://doi.org/10.1080/15481603.2021.1940738
Liu, J., Feng, Y., Zhang, Y., Liang, N., Wu, H., Liu, F., 2022. Allometric releases of nitrogen and phosphorus from sediments mediated by bacteria determines water eutrophication in coastal river basins of Bohai Bay. Ecotoxicol. Environ. Saf. 235, 113426. https://doi.org/10.1016/j.ecoenv.2022.113426
Liu, W., Zhang, Q., Liu, G., 2010. Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia 644, 289–299. https://doi.org/10.1007/s10750-010-0151-9
Ma, L., He, F., Huang, T., Zhou, Q., Zhang, Y., Wu, Z., 2016. Nitrogen and phosphorus transformations and balance in a pond-ditch circulation system for rural polluted water treatment. Ecol. Eng. 94, 117–126. https://doi.org/10.1016/j.ecoleng.2016.05.051
Mäler, K.G., 2000. Development, ecological resources and their management: A study of complex dynamic systems. Eur. Econ. Rev. 44, 645–665. https://doi.org/10.1016/S0014-2921(00)00043-X
Mamun, M., Kim, J.Y., An, K.G., 2021. Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir. Water (Switzerland) 13. https://doi.org/10.3390/w13020186
Mamun, M., Kwon, S., Kim, J.E., An, K.G., 2020. Evaluation of algal chlorophyll and nutrient relations and the N:P ratios along with trophic status and light regime in 60 Korea reservoirs. Sci. Total Environ. 741, 140451. https://doi.org/10.1016/j.scitotenv.2020.140451
Memet Varol, Bülent Gökot, Aysel Bekleyen, Bülent Şen, 2012. Geochemistry of the Tigris River basin, Turkey: spatial and seasonal variations of major ion compositions and their controlling factors. Quat. Int. 304, 22–32. https://doi.org/https://doi.org/10.1016/j.quaint.2012.12.043
Naveedullah, N., Hashmi, M.Z., Yu, C., Shen, C., Muhammad, N., Shen, H., Chen, Y., 2016. Water Quality Characterization of the Siling Reservoir (Zhejiang, China) Using Water Quality Index. Clean - Soil, Air, Water 44, 553–562. https://doi.org/10.1002/clen.201400126
Paerl, H.W., Otten, T.G., 2013. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 65, 995–1010. https://doi.org/10.1007/s00248-012-0159-y
Peche, R., Rodríguez, E., 2012. Development of environmental quality indexes based on fuzzy logic. A case study. Ecol. Indic. 23, 555–565. https://doi.org/10.1016/j.ecolind.2012.04.029
Qi, L., Hu, C., Duan, H., Cannizzaro, J., Ma, R., 2014. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sens. Environ. 154, 298–317. https://doi.org/10.1016/j.rse.2014.08.026
Romero, E., Le Gendre, R., Garnier, J., Billen, G., Fisson, C., Silvestre, M., Riou, P., 2016. Long-term water quality in the lower Seine: Lessons learned over 4 decades of monitoring. Environ. Sci. Policy 58, 141–154. https://doi.org/10.1016/j.envsci.2016.01.016
Sajeev, S., Sekar, S., Kumar, B., Senapathi, V., Chung, S.Y., Gopalakrishnan, G., 2020. Variations of water quality deterioration based on GIS techniques in surface and groundwater resources in and around Vembanad Lake, Kerala, India. Chemie der Erde 80, 125626. https://doi.org/10.1016/j.chemer.2020.125626
Saluja, R., Garg, J.K., 2017. Trophic state assessment of Bhindawas Lake, Haryana, India. Environ. Monit. Assess. 189. https://doi.org/10.1007/s10661-016-5735-z
Singh, K.P., Malik, A., Mohan, D., Sinha, S., 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - A case study. Water Res. 38, 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011
Smayda, T.J., 2008. Complexity in the eutrophication-harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae 8, 140–151. https://doi.org/10.1016/j.hal.2008.08.018
Sommaruga, R., Augustin, G., 2006. Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat. Sci. 68, 129–141. https://doi.org/10.1007/s00027-006-0836-3
Sui, Q., Duan, L., Zhang, Y., Zhang, X., Liu, Q., Zhang, H., 2022. Seasonal Water Quality Changes and the Eutrophication of Lake Yilong in Southwest China. Water (Switzerland) 14. https://doi.org/10.3390/w14213385
Varol, M., 2020. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 266. https://doi.org/10.1016/j.envpol.2020.115417
Varol, M., 2019. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environ. Pollut. 259, 113860. https://doi.org/10.1016/j.envpol.2019.113860
Wang, J., Fu, Z., Qiao, H., Liu, F., 2019. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 650, 1392–1402. https://doi.org/10.1016/j.scitotenv.2018.09.137
Wang, R., Liu, X., Wu, J., Wai, T.C., Shen, P., Lam, P.K.S., 2020. Long-term variations of phytoplankton community in relations to environmental factors in Deep Bay, China, from 1994 to 2016. Mar. Pollut. Bull. 153, 111010. https://doi.org/10.1016/j.marpolbul.2020.111010
Westall, F., Brack, A., 2018. The Importance of Water for Life. Space Sci. Rev. 214, 1–23. https://doi.org/10.1007/s11214-018-0476-7
Wong, H., Hu, B.Q., 2014. Application of improved extension evaluation method to water quality evaluation. J. Hydrol. 509, 539–548. https://doi.org/10.1016/j.jhydrol.2013.12.003
Wu, D., Yan, H., Shang, M., Shan, K., Wang, G., 2017. Water eutrophication evaluation based on semi-supervised classification: A case study in Three Gorges Reservoir. Ecol. Indic. 81, 362–372. https://doi.org/10.1016/j.ecolind.2017.06.004
Wu, Yunhai, Wen, Y., Zhou, J., Wu, Yunying, 2014. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J. Civ. Eng. 18, 323–329. https://doi.org/10.1007/s12205-014-0192-0
Wu, Z., Wang, X., Chen, Y., Cai, Y., Deng, J., 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293
Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K., 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 6, 1–27. https://doi.org/10.1002/WAT2.1373
Yao, X., Zhang, Y., Zhu, G., Qin, B., Feng, L., Cai, L., Gao, G., 2011. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82, 145–155. https://doi.org/10.1016/j.chemosphere.2010.10.049
Yin, Y., Zhang, Y., Liu, X., Zhu, G., Qin, B., Shi, Z., Feng, L., 2011. Temporal and spatial variations of chemical oxygen demand in Lake Taihu, China, from 2005 to 2009. Hydrobiologia 665, 129–141. https://doi.org/10.1007/s10750-011-0610-y
Zeinalzadeh, K., Rezaei, E., 2017. Determining spatial and temporal changes of surface water quality using principal component analysis. J. Hydrol. Reg. Stud. 13, 1–10. https://doi.org/10.1016/j.ejrh.2017.07.002
Zhao, P., Tang, X., Tang, J., Wang, C., 2013. Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011. Water Resour. Manag. 27, 4545–4558. https://doi.org/10.1007/s11269-013-0425-x
Zhou, F., Huang, G.H., Guo, H.C., Zhang, W., Hao, Z., 2007. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res. 41, 3429–3439. https://doi.org/10.1016/j.watres.2007.04.022
Zhou, F., Tian, C.C., Xu, J.L., Wei, J., 2020. Water quality assessment of the river network in Wenzhou city using PCA-BP neural network model. IOP Conf. Ser. Earth Environ. Sci. 612. https://doi.org/10.1088/1755-1315/612/1/012018
Zhou, H.D., Jiang, C.L., Zhu, L.Q., Wang, X.W., Hu, X.Q., Cheng, J.Y., Xie, M.H., 2011. Impact of pond and fence aquaculture on reservoir environment. Water Sci. Eng. 4, 92–100. https://doi.org/10.3882/j.issn.1674-2370.2011.01.009
Zhou, S., Hosomi, M., 2008. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan. Ecol. Eng. 32, 147–155. https://doi.org/10.1016/j.ecoleng.2007.10.004