References
Astel, A., Biziuk, M., Przyjazny, A., Namieśnik, J., 2006. Chemometrics
in monitoring spatial and temporal variations in drinking water quality.
Water Res. 40, 1706–1716. https://doi.org/10.1016/j.watres.2006.02.018
Behmel, S., Damour, M., Ludwig, R., Rodriguez, M.J., 2016. Water quality
monitoring strategies — A review and future perspectives. Sci. Total
Environ. 571, 1312–1329.
https://doi.org/10.1016/j.scitotenv.2016.06.235
Chen, J., Li, F., Fan, Z., Wang, Y., 2016. Integrated application of
multivariate statistical methods to source apportionment ofwatercourses
in the liao river basin, northeast China. Int. J. Environ. Res. Public
Health 13. https://doi.org/10.3390/ijerph13101035
Chen, J., Lu, J., 2014. Effects of land use, topography and
socio-economic factors on river water quality in a mountainous watershed
with intensive agricultural production in East China. PLoS One 9, 1–12.
https://doi.org/10.1371/journal.pone.0102714
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo,
M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., Ren, H.,
2020. Comparative analysis of surface water quality prediction
performance and identification of key water parameters using different
machine learning models based on big data. Water Res. 171, 115454.
https://doi.org/10.1016/j.watres.2019.115454
Chen, Q., Wu, W., Blanckaert, K., Ma, J., Huang, G., 2012. Optimization
of water quality monitoring network in a large river by combining
measurements, a numerical model and matter-element analyses. J. Environ.
Manage. 110, 116–124. https://doi.org/10.1016/j.jenvman.2012.05.024
Dodds, W.K., Cole, J.J., 2007. Expanding the concept of trophic state in
aquatic ecosystems: It’s not just the autotrophs. Aquat. Sci. 69,
427–439. https://doi.org/10.1007/s00027-007-0922-1
Dokulil, M., Chen, W., Cai, Q., 2000. Anthropogenic impacts to large
lakes in China: The Tai Hu example. Aquat. Ecosyst. Heal. Manag. 3,
81–94. https://doi.org/10.1080/14634980008656993
Du, H., Chen, Z., Mao, G., Chen, L., Crittenden, J., Li, R.Y.M., Chai,
L., 2019. Evaluation of eutrophication in freshwater lakes: A new
non-equilibrium statistical approach. Ecol. Indic. 102, 686–692.
https://doi.org/10.1016/j.ecolind.2019.03.032
Fink, G., Alcamo, J., Flörke, M., Reder, K., 2018. Phosphorus Loadings
to the World’s Largest Lakes: Sources and Trends. Global Biogeochem.
Cycles 32, 617–634. https://doi.org/10.1002/2017GB005858
Güler, C., Thyne, G.D., McCray, J.E., Turner, A.K., 2002. Evaluation of
graphical and multivariate statistical methods for classification of
water chemistry data. Hydrogeol. J. 10, 455–474.
https://doi.org/10.1007/s10040-002-0196-6
Guo, L., Dai, L., Zheng, J., Zhou, W., Peng, C., Li, D., Li, G., 2022.
Environmental factors associated with the filamentous green algae
Cladophora blooms: A mesocosm experiment in a shallow eutrophic lake. J.
Environ. Manage. 313, 114977.
https://doi.org/10.1016/j.jenvman.2022.114977
Hajigholizadeh, M., Melesse, A.M., 2017. Assortment and spatiotemporal
analysis of surface water quality using cluster and discriminant
analyses. Catena 151, 247–258.
https://doi.org/10.1016/j.catena.2016.12.018
Havens, K.E., Walker, W.W., 2002. Development of a total phosphorus
concentration goal in the TMDL process for Lake Okeechobee, Florida
(USA). Lake Reserv. Manag. 18, 227–238.
https://doi.org/10.1080/07438140209354151
Herb, W.R., Stefan, H.G., 2003. Integral growth of submersed macrophytes
in varying light regimes. Ecol. Modell. 168, 77–100.
https://doi.org/10.1016/S0304-3800(03)00206-0
Holz, J.C., Hoagland, K.D., Spawn, R.L., Popp, A., Andersen, J.L., 1997.
Phytoplankton community response to reservoir aging, 1968-92.
Hydrobiologia 346, 183–192. https://doi.org/10.1023/a:1002978302479
Huang, C., Wang, X., Yang, H., Li, Y., Wang, Y., Chen, X., Xu, L., 2014.
Satellite data regarding the eutrophication response to human activities
in the plateau lake Dianchi in China from 1974 to 2009. Sci. Total
Environ. 485–486, 1–11.
https://doi.org/10.1016/j.scitotenv.2014.03.031
Kim, B., Ju-Hyun Park, Gilson Hwang, Man-Sig Jun, Kwangsoon Choi, 2001.
Eutrophication of reservoirs in South Korea. Limnology 2, 223–229.
https://doi.org/https://doi.org/10.1007/s10201-001-8040-6
Klemas, V., 2012. Remote sensing of algal blooms: An overview with case
studies. J. Coast. Res. 28, 34–43.
https://doi.org/10.2112/JCOASTRES-D-11-00051.1
Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., Yin, B., 2010. Eutrophication
of lake waters in China: Cost, causes, and control. Environ. Manage. 45,
662–668. https://doi.org/10.1007/s00267-010-9440-3
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard,
C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A.,
Pinay, G., 2019. Eutrophication: A new wine in an old bottle? Sci. Total
Environ. 651, 1–11. https://doi.org/10.1016/j.scitotenv.2018.09.139
Li, J., Luo, G., He, L.J., Xu, J., Lyu, J., 2018. Analytical Approaches
for Determining Chemical Oxygen Demand in Water Bodies: A Review. Crit.
Rev. Anal. Chem. 48, 47–65.
https://doi.org/10.1080/10408347.2017.1370670
Li, M., Dong, J., Zhang, Y., Yang, H., Van Zwieten, L., Lu, H.,
Alshameri, A., Zhan, Z., Chen, X., Jiang, X., Xu, W., Bao, Y., Wang, H.,
2021. A critical review of methods for analyzing freshwater
eutrophication. Water (Switzerland) 13, 1–20.
https://doi.org/10.3390/w13020225
Li, N., Wang, J., Yin, W., Jia, H., Xu, J., Hao, R., Zhong, Z., Shi, Z.,
2021. Linking water environmental factors and the local watershed
landscape to the chlorophyll a concentration in reservoir bays. Sci.
Total Environ. 758, 143617.
https://doi.org/10.1016/j.scitotenv.2020.143617
Li, T., Li, S., Liang, C., Bush, R.T., Xiong, L., Jiang, Y., 2018. A
comparative assessment of Australia’s Lower Lakes water quality under
extreme drought and post-drought conditions using multivariate
statistical techniques. J. Clean. Prod. 190, 1–11.
https://doi.org/10.1016/j.jclepro.2018.04.121
Liu, H., He, B., Zhou, Y., Yang, X., Zhang, X., Xiao, F., Feng, Q.,
Liang, S., Zhou, X., Fu, C., 2021. Eutrophication monitoring of lakes in
Wuhan based on Sentinel-2 data. GIScience Remote Sens. 58, 776–798.
https://doi.org/10.1080/15481603.2021.1940738
Liu, J., Feng, Y., Zhang, Y., Liang, N., Wu, H., Liu, F., 2022.
Allometric releases of nitrogen and phosphorus from sediments mediated
by bacteria determines water eutrophication in coastal river basins of
Bohai Bay. Ecotoxicol. Environ. Saf. 235, 113426.
https://doi.org/10.1016/j.ecoenv.2022.113426
Liu, W., Zhang, Q., Liu, G., 2010. Lake eutrophication associated with
geographic location, lake morphology and climate in China. Hydrobiologia
644, 289–299. https://doi.org/10.1007/s10750-010-0151-9
Ma, L., He, F., Huang, T., Zhou, Q., Zhang, Y., Wu, Z., 2016. Nitrogen
and phosphorus transformations and balance in a pond-ditch circulation
system for rural polluted water treatment. Ecol. Eng. 94, 117–126.
https://doi.org/10.1016/j.ecoleng.2016.05.051
Mäler, K.G., 2000. Development, ecological resources and their
management: A study of complex dynamic systems. Eur. Econ. Rev. 44,
645–665. https://doi.org/10.1016/S0014-2921(00)00043-X
Mamun, M., Kim, J.Y., An, K.G., 2021. Multivariate statistical analysis
of water quality and trophic state in an artificial dam reservoir. Water
(Switzerland) 13. https://doi.org/10.3390/w13020186
Mamun, M., Kwon, S., Kim, J.E., An, K.G., 2020. Evaluation of algal
chlorophyll and nutrient relations and the N:P ratios along with trophic
status and light regime in 60 Korea reservoirs. Sci. Total Environ. 741,
140451. https://doi.org/10.1016/j.scitotenv.2020.140451
Memet Varol, Bülent Gökot, Aysel Bekleyen, Bülent Şen, 2012.
Geochemistry of the Tigris River basin, Turkey: spatial and seasonal
variations of major ion compositions and their controlling factors.
Quat. Int. 304, 22–32.
https://doi.org/https://doi.org/10.1016/j.quaint.2012.12.043
Naveedullah, N., Hashmi, M.Z., Yu, C., Shen, C., Muhammad, N., Shen, H.,
Chen, Y., 2016. Water Quality Characterization of the Siling Reservoir
(Zhejiang, China) Using Water Quality Index. Clean - Soil, Air, Water
44, 553–562. https://doi.org/10.1002/clen.201400126
Paerl, H.W., Otten, T.G., 2013. Harmful Cyanobacterial Blooms: Causes,
Consequences, and Controls. Microb. Ecol. 65, 995–1010.
https://doi.org/10.1007/s00248-012-0159-y
Peche, R., Rodríguez, E., 2012. Development of environmental quality
indexes based on fuzzy logic. A case study. Ecol. Indic. 23, 555–565.
https://doi.org/10.1016/j.ecolind.2012.04.029
Qi, L., Hu, C., Duan, H., Cannizzaro, J., Ma, R., 2014. A novel MERIS
algorithm to derive cyanobacterial phycocyanin pigment concentrations in
a eutrophic lake: Theoretical basis and practical considerations. Remote
Sens. Environ. 154, 298–317. https://doi.org/10.1016/j.rse.2014.08.026
Romero, E., Le Gendre, R., Garnier, J., Billen, G., Fisson, C.,
Silvestre, M., Riou, P., 2016. Long-term water quality in the lower
Seine: Lessons learned over 4 decades of monitoring. Environ. Sci.
Policy 58, 141–154. https://doi.org/10.1016/j.envsci.2016.01.016
Sajeev, S., Sekar, S., Kumar, B., Senapathi, V., Chung, S.Y.,
Gopalakrishnan, G., 2020. Variations of water quality deterioration
based on GIS techniques in surface and groundwater resources in and
around Vembanad Lake, Kerala, India. Chemie der Erde 80, 125626.
https://doi.org/10.1016/j.chemer.2020.125626
Saluja, R., Garg, J.K., 2017. Trophic state assessment of Bhindawas
Lake, Haryana, India. Environ. Monit. Assess. 189.
https://doi.org/10.1007/s10661-016-5735-z
Singh, K.P., Malik, A., Mohan, D., Sinha, S., 2004. Multivariate
statistical techniques for the evaluation of spatial and temporal
variations in water quality of Gomti River (India) - A case study. Water
Res. 38, 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011
Smayda, T.J., 2008. Complexity in the eutrophication-harmful algal bloom
relationship, with comment on the importance of grazing. Harmful Algae
8, 140–151. https://doi.org/10.1016/j.hal.2008.08.018
Sommaruga, R., Augustin, G., 2006. Seasonality in UV transparency of an
alpine lake is associated to changes in phytoplankton biomass. Aquat.
Sci. 68, 129–141. https://doi.org/10.1007/s00027-006-0836-3
Sui, Q., Duan, L., Zhang, Y., Zhang, X., Liu, Q., Zhang, H., 2022.
Seasonal Water Quality Changes and the Eutrophication of Lake Yilong in
Southwest China. Water (Switzerland) 14.
https://doi.org/10.3390/w14213385
Varol, M., 2020. Use of water quality index and multivariate statistical
methods for the evaluation of water quality of a stream affected by
multiple stressors: A case study. Environ. Pollut. 266.
https://doi.org/10.1016/j.envpol.2020.115417
Varol, M., 2019. Spatio-temporal changes in surface water quality and
sediment phosphorus content of a large reservoir in Turkey. Environ.
Pollut. 259, 113860. https://doi.org/10.1016/j.envpol.2019.113860
Wang, J., Fu, Z., Qiao, H., Liu, F., 2019. Assessment of eutrophication
and water quality in the estuarine area of Lake Wuli, Lake Taihu, China.
Sci. Total Environ. 650, 1392–1402.
https://doi.org/10.1016/j.scitotenv.2018.09.137
Wang, R., Liu, X., Wu, J., Wai, T.C., Shen, P., Lam, P.K.S., 2020.
Long-term variations of phytoplankton community in relations to
environmental factors in Deep Bay, China, from 1994 to 2016. Mar.
Pollut. Bull. 153, 111010.
https://doi.org/10.1016/j.marpolbul.2020.111010
Westall, F., Brack, A., 2018. The Importance of Water for Life. Space
Sci. Rev. 214, 1–23. https://doi.org/10.1007/s11214-018-0476-7
Wong, H., Hu, B.Q., 2014. Application of improved extension evaluation
method to water quality evaluation. J. Hydrol. 509, 539–548.
https://doi.org/10.1016/j.jhydrol.2013.12.003
Wu, D., Yan, H., Shang, M., Shan, K., Wang, G., 2017. Water
eutrophication evaluation based on semi-supervised classification: A
case study in Three Gorges Reservoir. Ecol. Indic. 81, 362–372.
https://doi.org/10.1016/j.ecolind.2017.06.004
Wu, Yunhai, Wen, Y., Zhou, J., Wu, Yunying, 2014. Phosphorus release
from lake sediments: Effects of pH, temperature and dissolved oxygen.
KSCE J. Civ. Eng. 18, 323–329.
https://doi.org/10.1007/s12205-014-0192-0
Wu, Z., Wang, X., Chen, Y., Cai, Y., Deng, J., 2018. Assessing river
water quality using water quality index in Lake Taihu Basin, China. Sci.
Total Environ. 612, 914–922.
https://doi.org/10.1016/j.scitotenv.2017.08.293
Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K., 2019. Nutrients,
eutrophication and harmful algal blooms along the freshwater to marine
continuum. Wiley Interdiscip. Rev. Water 6, 1–27.
https://doi.org/10.1002/WAT2.1373
Yao, X., Zhang, Y., Zhu, G., Qin, B., Feng, L., Cai, L., Gao, G., 2011.
Resolving the variability of CDOM fluorescence to differentiate the
sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere
82, 145–155. https://doi.org/10.1016/j.chemosphere.2010.10.049
Yin, Y., Zhang, Y., Liu, X., Zhu, G., Qin, B., Shi, Z., Feng, L., 2011.
Temporal and spatial variations of chemical oxygen demand in Lake Taihu,
China, from 2005 to 2009. Hydrobiologia 665, 129–141.
https://doi.org/10.1007/s10750-011-0610-y
Zeinalzadeh, K., Rezaei, E., 2017. Determining spatial and temporal
changes of surface water quality using principal component analysis. J.
Hydrol. Reg. Stud. 13, 1–10. https://doi.org/10.1016/j.ejrh.2017.07.002
Zhao, P., Tang, X., Tang, J., Wang, C., 2013. Assessing Water Quality of
Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to
2011. Water Resour. Manag. 27, 4545–4558.
https://doi.org/10.1007/s11269-013-0425-x
Zhou, F., Huang, G.H., Guo, H.C., Zhang, W., Hao, Z., 2007.
Spatio-temporal patterns and source apportionment of coastal water
pollution in eastern Hong Kong. Water Res. 41, 3429–3439.
https://doi.org/10.1016/j.watres.2007.04.022
Zhou, F., Tian, C.C., Xu, J.L., Wei, J., 2020. Water quality assessment
of the river network in Wenzhou city using PCA-BP neural network model.
IOP Conf. Ser. Earth Environ. Sci. 612.
https://doi.org/10.1088/1755-1315/612/1/012018
Zhou, H.D., Jiang, C.L., Zhu, L.Q., Wang, X.W., Hu, X.Q., Cheng, J.Y.,
Xie, M.H., 2011. Impact of pond and fence aquaculture on reservoir
environment. Water Sci. Eng. 4, 92–100.
https://doi.org/10.3882/j.issn.1674-2370.2011.01.009
Zhou, S., Hosomi, M., 2008. Nitrogen transformations and balance in a
constructed wetland for nutrient-polluted river water treatment using
forage rice in Japan. Ecol. Eng. 32, 147–155.
https://doi.org/10.1016/j.ecoleng.2007.10.004