References
[1] Hindricks G, Potpara T, Dagres N, et al. 2020 ESC guidelines for
the diagnosis and management of atrial fibrillation developed in
collaboration with the European Association for Cardio-Thoracic Surgery
(EACTS). Eur Heart J. 2021;42: 373–498.
[2] Mulder MJ, Kemme MJB, Allaart CP. Radiofrequency ablation to
achieve durable pulmonary vein isolation. Europace. 2022;24:874-886.
[3] Bergonti M, Spera FR, Ferrero TG, et al. Characterization of
Atrial Substrate to Predict the Success of Pulmonary Vein Isolation: The
Prospective, Multicenter MASH-AF II (Multipolar Atrial Substrate High
Density Mapping in Atrial Fibrillation) Study. J Am Heart Assoc.
2023;12:e027795.
[4] Shah S, Barakat AF, Saliba WI, et al. Recurrent Atrial
Fibrillation After Initial Long-Term Ablation Success:
Electrophysiological Findings and Outcomes of Repeat Ablation
Procedures. Circ Arrhythm Electrophysiol. 2018;11:e005785.
[5] Mohanty S, Trivedi C, Gianni C, et al. Procedural findings and
ablation outcome in patients with atrial fibrillation referred after two
or more failed catheter ablations. J Cardiovasc Electrophysiol.
2017;28:1379-1386.
[6] Pashakhanloo F, Herzka DA, Ashikaga H et al. Myofiber
Architecture of the Human Atria as Revealed by Submillimeter Diffusion
Tensor Imaging. Circ Arrhythm Electrophysiol. 2016;9:e004133.
[7] Ho SY, Cabrera JA, Sanchez-Quintana D. Left atrial anatomy
revisited. Circ Arrhythm Electrophysiol. 2012;5:220-228.
[8] Yoshida K, Baba M, Shinoda Y, et al. Epicardial connection
between the right-sided pulmonary venous carina and the right atrium in
patients with atrial fibrillation: A possible mechanism for preclusion
of pulmonary vein isolation without carina ablation. Heart Rhythm.
2019;16:671-678.
[9] Barrio-Lopez MT, Sanchez-Quintana D, Garcia-Martinez J, et al.
Epicardial Connections Involving Pulmonary Veins: The Prevalence,
Predictors, and Implications for Ablation Outcome. Circ Arrhythm
Electrophysiol. 2020;13:e007544.
[10] Sun X, Niu G, Lin J, et al. The incidence and location of
epicardial connections in the era of contact force guided ablation for
pulmonary vein isolation. J Cardiovasc Electrophysiol.
2021;32:2381-2390.
[11] Nakamura K, Sasaki T, Minami K, et al. Prevalence,
characteristics, and predictors of endocardial and nonendocardial
conduction gaps during local impedance-guided extensive pulmonary vein
isolation of atrial fibrillation with high-resolution mapping. J
Cardiovasc Electrophysiol. 2021;32:2045-2059.
[12] Nie Z, Chen S, Lin J, et al. Inferior Vena Cava as a Trigger
for Paroxysmal Atrial Fibrillation: Incidence, Characteristics, and
Implications. JACC Clin Electrophysiol. 2022;8:983-993.
[13] Vijayaraman P, Dandamudi G, Naperkowski A, Oren J, Storm R,
Ellenbogen KA. Assessment of exit block following pulmonary vein
isolation: far-field capture masquerading as entrance without exit
block. Heart Rhythm. 2012;9:1653-1659.
[14] Mulder MJ, Kemme MJB, Götte MJW, et al. Differences between
gap-related persistent conduction and carina-related persistent
conduction during radiofrequency pulmonary vein isolation. J Cardiovasc
Electrophysiol. 2020;31:1616-1627.
[15] El Haddad M, Taghji P, Phlips T, et al. Determinants of Acute
and Late Pulmonary Vein Reconnection in Contact Force-Guided Pulmonary
Vein Isolation: Identifying the Weakest Link in the Ablation Chain. Circ
Arrhythm Electrophysiol. 2017;10:e004867.
[16] Anter E, Contreras-Valdes FM, Shvilkin A, Tschabrunn CM,
Josephson ME. Acute pulmonary vein reconnection is a predictor of atrial
fibrillation recurrence following pulmonary vein isolation. J Interv
Card Electrophysiol. 2014;39:225-232.
[17] Ho SY, Cabrera JA, Tran VH, Farré J, Anderson RH,
Sánchez-Quintana D. Architecture of the pulmonary veins: relevance to
radiofrequency ablation. Heart. 2001;86:265-270.
[18] Ho SY, Anderson RH, Sánchez-Quintana D. Atrial structure and
fibres: morphologic bases of atrial conduction. Cardiovasc Res.
2002;54:325-36.
[19] Cabrera JA, Ho SY, Climent V, Fuertes B, Murillo M,
Sánchez-Quintana D. Morphological evidence of muscular connections
between contiguous pulmonary venous orifices: relevance of the
interpulmonary isthmus for catheter ablation in atrial fibrillation.
Heart Rhythm. 2009;6:1192-1198.
[20] Pambrun T, Duchateau J, Delgove A, et al. Epicardial course of
the septopulmonary bundle: Anatomical considerations and clinical
implications for roof line completion. Heart Rhythm. 2021;18:349-357.
[21] Ishidoya Y, Kwan E, Dosdall DJ, et al. Shorter distance between
the esophagus and the left atrium is associated with higher rates of
esophageal thermal injury after radiofrequency ablation. J Cardiovasc
Electrophysiol. 2022;33:1460-1471.
[22] List S, Meinhardt C, Mueller J, et al. Incidence of
ablation-induced esophageal lesions and gastroparesis in patients
undergoing ablation index guided high power short duration atrial
fibrillation ablation. J Cardiovasc Electrophysiol. 2023;3482-3489.
[23] Schlüter M, Cappato R, Ouyang F, Antz M, Schlüter CA, Kuck KH.
Clinical recurrences after successful accessory pathway ablation: the
role of ”dormant” accessory pathways. J Cardiovasc Electrophysiol.
1997;8:1366-1372.
[24] Sekihara T, Miyazaki S, Nagao M, et al. Evaluation of
interatrial conduction pattern after pulmonary vein isolation using an
ultrahigh-resolution electroanatomical mapping system. Heart Vessels.
2022;37:1425-1435.
[25] Sousa PA, Barra S, Adão L, Primo J, Khoueiry Z, Puga L,
Lebreiro A, Fonseca P, Lagrange P, Gonçalves L; Study Group Members.
Assessment of the need of a waiting period after pulmonary vein
isolation with the ablation index software. J Cardiovasc Electrophysiol.
2022;33:1725-1733.