References
Alam MJ, Rengasamy N, Dahalan MPB, Halim SA, Nath TK (2022) Socio-economic and ecological outcomes of a community-based restoration of peatland swamp forests in Peninsular Malaysia: A 5Rs approach. Land Use Policy 122. doi: 10.1016/j.lusepol.2022.106390
Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57, 979-994. doi: 10.1016/j.soilbio.2012.10.003
Ausec L, Kraigher B, Mandic-Mulec I (2009) Differences in the activity and bacterial community structure of drained grassland and forest peat soils. Soil Biol Biochem 41, 1874-1881. doi: 10.1016/j.soilbio.2009.06.010
Blodau C, Siems M (2012) Drainage-induced forest growth alters beloSWWround carbon biogeochemistry in the Mer Bleue bog, Canada. Biogeochemistry 107, 107-123. doi: 10.1007/s10533-010-9535-1
Danilova OV, Belova SE, Gagarinova IV, Dedysh SN (2016) Microbial community composition and methanotroph diversity of a subarctic wetland in Russia. Microbiology 85, 545-554. doi: 10.1134/S0026261716050039
Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl. Enviro Microb 72, 2110-2117. doi:10.1128/AEM.72.3.2110-2117.2006
Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184. doi: 10.3389/fmicb.2011.00184
DeGrood SH, Claassen VP, Scow KM (2005) Microbial community composition on native and drastically disturbed serpentine soils. Soil Biol Biochem 37, 1427-1435. doi:10.1016/j.soilbio.2004.12.013
Elliott DR, Caporn SJM, Nwaishi F, Nilsson RH, Sen R (2015) Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. Plos One 10. doi: 10.1371/journal.pone.0124726
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecolog 88, 1354-1364. doi: 10.1890/05-1839
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103, 626-631. doi: 10.1073/pnas.0507535103
Galand PE, Fritze H, Conrad R, Yrjala K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Enviro Microb 71, 2195-2198. doi: 10.1128/AEM.71.4.2195-2198.2005
Gupta V, Smemo KA, Yavitt JB, Basiliko N (2012) Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb Ecol 63, 438-445. doi: 10.1007/s00248-011-9902-z
Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic control of bacterial communities in wetland soils. P Natl Acad Sci USA 105, 17842-17847. doi: 10.1073/pnas.0808254105
Ifo SA, Garcin Y (2022) Peat decomposition in central Congo was triggered by a drying climate. Nature. doi: 10.1038/d41586-022-03481-2
Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biol 13, 491-510. doi: 10.1111/j.1365-2486.2006.01312.x
Kandel TP, Laerke PE, Elsgaard L (2018) Annual emissions of CO2, CH4 and N2O from a temperate peat bog: Comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato. Agr Forest Meteorol 256, 470-481. doi: 10.1016/j.agrformet.2018.03.021
Kaštovská E, Straková P, Edwards K, Urbanová Z, Bárta J, Mastný J (2018) Cotton-grass and blueberry have opposite effect on peat characteristics and nutrient transformation in peatland. Ecosystems 21, 443-458. doi: 10.1007/s10021-017-0159-3
Kim SY, Lee SH, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biol Biochem 40, 2874-2880. doi: 10.1016/j.soilbio.2008.08.004
Kraigher B, Stres B, Hacin J, Ausec L, Mahne I, van Elsas JD (2006) Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol Biochem 38, 2762-2771. doi: 10.1016/j. soilbio.2006.04.031
Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. P Natl Acad Sci USA 112, 10967-10972. doi: 10.1073/pnas.1508382112
le Roes-Hill M, Khan N, Burton SG (2011) Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl. Enviro Microb 164, 681-713. doi: 10.1007/s12010-011-9167-5
Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microb 78, 7023-7031. doi:10.1128/AEM.01750-12
Li TT, Lei Y, Dai C, Yang LF, Li ZQ, Wang ZX (2018) Effects of both substrate and nitrogen and phosphorus fertilizer on Sphagnum palustre growth in subtropical high-mountain regions and implications for peatland recovery. Wetl Ecol Manag 26, 651-663. doi:10.1007/s11273-018-9598-7
Li TT, Wang ZX, Bu GJ, Lin LQ, Lei Y, Liu CY (2019) Effects of microtopography and water table on Sphagnum palustre L. in subtropical high mountains and implications for peatland restoration. J Bryol 41, 121-134. doi: 10.1080/03736687.2019.1601446
Lynda DP, Scott CN, Grant JW, David MB (2023) Post-fire restoration of Sphagnum bogs in the Tasmanian Wilderness World Heritage Area, Australia. Restor Ecol 31. doi: 10.1111/rec.13797
Mastný J, Urbanová Z, Kaštovská E, Straková P, Šantrůčková H, Edwards KR (2016) Soil organic matter quality and microbial activities in spruce swamp forests affected by drainage and water regime restoration. Soil Use Manage 32, 200-209. doi:10.1111/sum.12260
Mckinley VL, Peacock AD, White DC (2005) Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem 37, 1946-1958. doi: 10.1016/j.soilbio.2005.02.033
Morales SE, Mouser PJ, Ward N, Hudman SP, Gotelli NJ, Ross DS, Lewis TA (2006) Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 52, 34-44. doi:10.1007/s00248-005-0264-2
Page SE, Baird AJ (2016) Peatlands and global change: Response and resilience. Annu Rev Env Resour 41, 35-57. doi:10.1146/annurev-environ-110615-085520
Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13, 1800-1814. doi:10.1111/j.1462-2920.2011.02491.x
Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2, 551-560. doi: 10.1038/ismej.2008.7
Perotto S, Daghino S, Martino E (2018) Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol 220, 1141-1147. doi: 10.1111/nph.15218
Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8, 523-529. doi: 10.1038/nrmicro2367
Pospisilova P, Vitovcova K, Prach K (2023) Importance of repeated sampling: vegetation analyses after 10 years revealed different restoration trends in formerly extracted peatlands. Restor Ecol 31: e13720. doi: 10.1111/rec.13720
Serkebaeva YM, Kim Y, Liesack W, Dedysh SN (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a Northern Wetland, with focus on poorly studied phyla and candidate divisions. Plos One 8. doi: 10.1371/journal.pone.0063994
Sloan TJ, Payne RJ, Anderson AR, Bain C, Chapman S, Cowie N (2019) Peatland afforestation in the UK and consequences for carbon storage. Mires Peat 23:1. doi: 10.19189/MaP.2017.OMB.315
Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Enviro Microb 67, 2284-2291. doi: 10.1128/AEM.67.5.2284-2291.2001
Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74, 37-45. doi: 10.1016/j.apsoil.2013.09.010
Tian W, Wang H, Xiang X, Wang RC, Xu Y (2019) Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Front Microbiol 10:1661. doi:10.3389/fmicb.2019.01661
Urbanová Z, Bárta J (2016) Effects of long-term drainage on microbial community composition vary between peatland types. Soil Biol Biochem 92, 16-26. doi: 10.1016/j.soilbio.2015.09.017
Urbanová Z, Bárta J (2014) Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types. FEMS Microbiol Ecol 90, 633-646. doi:10.1111/1574-6941.12422
Urbanová Z, Picek T, Bárta J (2011) Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecol Eng 37, 1017-1026. doi: 10.1016/j.ecoleng.2010.07.012
Urbanová Z, Straková P, Kaštovská E (2018) Response of peat biogeochemistry and soil organic matter quality to rewetting in bogs and spruce swamp forests. Eur J Soil Biol 85, 12-22. doi: 10.1016/j.ejsobi.2017.12.004
Vitovcova K, Liparova J, Manukjanova A, Vasutova M, Vrba P, Prach K (2022) Biodiversity restoration of formerly extracted raised bogs: vegetation succession and recovery of other trophic groups. Wetl Ecol Manag 30, 207-237. doi: 10.1007/s11273-021-09847-z
Wang H, Li TT, Ran N, He MY, Jiang HQ, Wang ZX (2021) Peat swamp biodiversity in the Qizimei Mountain National Nature Reserve, China. Mires Peat 27. doi: 10.19189/MaP.2020.OMB.StA.2095
Wilkinson SL, Andersen R, Moore PA, Davidson SJ, Granath G, Waddington JM (2023) Wildfire and degradation accelerate northern peatland carbon release. Nat Clim Change. doi: 10.1038/s41558-023-01657-w