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Abstract13

Porous materials, such as carbonate rocks, frequently have pore sizes which span many orders of14

magnitude. This is a challenge for models that rely on an image of the pore space, since much of15

the pore space may be unresolved. There is a trade off between image size and resolution. For most16

carbonates, to have an image sufficiently large to be representative of the pore structure, many fine17

details cannot be captured. In this work, sub-resolution porosity in X-ray images is characterized18

using differential imaging which quantifies the difference between a dry scan and 30 wt% KI brine19

saturated rock images. Once characterized, we develop a robust workflow to incorporate the sub-20

resolution pore space into network model using Darcy-type elements called micro-links. Each grain21

voxel with sub-resolution porosity is assigned to the two nearest resolved pores using an automatic22

dilation algorithm. By including these micro-links with empirical models in flow modeling, we23

simulate single-phase and multiphase flow.24

By fine-tuning the micro-link empirical models, we achieve effective permeability, formation25

factor, and drainage capillary pressure predictions that align with experimental results. We then26

show that our model can successfully predict steady-state relative permeability measurements on a27

water-wet Estaillades carbonate sample within the uncertainty of the experiments and modeling. Our28

approach of incorporating sub-resolution porosity in two-phase flow modeling using image-based29

multiscale pore network techniques can capture complex pore structures and accurately predict flow30

behavior in porous materials with a wide range of pore size.31
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1 Introduction32

Two-phase flow in porous media is a critical area in many scientific fields and applications [Blunt,33

2017; Sahimi, 2011; Bear and Cheng, 2010; Zhao, 2013; Shokri-Kuehni et al., 2017; Boot-Handford34

et al., 2014; Juanes et al., 2006; Blunt, 2022; Zhang et al., 2023c; Moghadasi et al., 2023; Li et al.,35

2023]. Many porous materials, from electrochemical devices to catalysts and porous rocks, have36

a wide range of pore size. While three-dimensional imaging, including X-ray micro-tomography37

(micro-CT) and FIB-SEM, have transformed the characterization of porous media [Blunt et al.,38

2013; Meakin and Tartakovsky, 2009], a single image cannot, in many cases, fully resolve the pore39

space [Da Wang et al., 2021]. The images themselves form the basis for simulation studies to40

predict and design the performance of porous structures: this can either be direct simulation of flow41

and transport in the pore space [Blunt et al., 2013; Raeini et al., 2014; Akai et al., 2019; Foroughi42

et al., 2018; McClure et al., 2018; Armstrong et al., 2019; Mostaghimi et al., 2013], or network43

modeling [Oren et al., 2018; Joekar-Niasar et al., 2010; Raeini et al., 2018; Giudici et al., 2023;44

Foroughi et al., 2020], where the void space is represented by a topologically equivalent lattice of45

wide regions, pores, connected by constrictions, called throats. However, when the pore space cannot46

be explicitly resolved, a multiscale modeling approach is required [Mehmani et al., 2013; Bultreys47

et al., 2015; Ruspini et al., 2021].48

Multiscale simulation is a computational strategy that combines the use of the averaged Darcy49

law with an explicit representation of flow in the pore space [Brinkman, 1949]. Multiscale modeling50

has been employed in direct numerical simulation of porous materials with two characteristic length51

scales [Bijeljic et al., 2018; Lesinigo et al., 2011; Guo et al., 2018; Carrillo and Bourg, 2019] and52

also extended to multiphase flow [Dinariev et al., 2020; Wu et al., 2022]. Despite its accuracy53

in predicting fluid flow in complex porous media, it is computationally demanding and resource-54

intensive [Meakin and Tartakovsky, 2009; Raeini et al., 2012].55

In contrast to direct numerical simulation, pore network modeling is more computationally56

efficient [Øren et al., 2019; Foroughi et al., 2020, 2021; Bultreys et al., 2018; Raeini et al., 2019;57

Giudici et al., 2023]. However, for materials, such as carbonate rocks, with a significant fraction of58

the pore space that is unresolved by micro-CT imaging, which are the subject of the current study,59

multiscale image-based models must be developed, validated, and tested. The use of network models60

allow many simulations to be run efficiently while capturing displacement behavior over a wide range61

of length scales.62
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Various methodologies to construct and simulate flow through multiscale pore networks have63

been proposed in the literature. These methods can be classified into two general groups: the first64

group generates a network where pores and throats at two distinct scales are explicitly incorporated.65

The smaller elements are captured using ultra-high-resolution imaging (such as nano-CT) and merged66

with pores and throats imaged, for instance, using micro-CT scanning [Mehmani et al., 2013;67

Mehmani and Prodanović, 2014; Prodanović et al., 2015; Jiang et al., 2013; Bekri et al., 2005]. The68

second group replaces regions of the pore space where a single image is unable to explicitly resolve69

pores with Darcy-type elements whose properties are some appropriate average over many smaller70

elements [Bauer et al., 2011, 2012; Bultreys et al., 2015, 2016; Ruspini et al., 2021; Wang et al.,71

2022].72

Generating synthetic pore networks, which explicitly represent pores and throats over multiple73

scales, has some drawbacks, including potential inaccuracies in representing the actual pore structure,74

difficulties and uncertainties in fusing synthetic and micro-CT extracted networks, and the possibility75

of time-consuming and computationally expensive network modeling due to the increased number76

of elements. Instead, the use of effective Darcy-like elements that consider the averaged behavior77

of several combined small-scale elements is more computationally efficient. The problem is how to78

characterize their properties. One method, used in this paper, is differential imaging which can at79

least capture locally the connected porosity of unresolved elements [Lin et al., 2016].80

Multiscale network models, which represent sub-resolution porosity as a continuous medium81

or Darcy element, have been used in several studies. Bauer et al. [2011, 2012] introduced a Darcy-82

type throat between two pores only when a macro-throat (a throat that is explicitly resolved in the83

underlying image) already existed between them. While these works successfully captured micro-84

porosity as a parallel circuit along the macro-pore throats, they inherently assumed that connectivity85

through micro-porosity only occurs where there is connectivity through resolved macro-throats. This86

assumption might limit their models’ ability to accurately represent the behavior of complex porous87

media, particularly when the micro-porous regions provide additional connectivity and accessibility88

that are not captured by the resolved macro-throats.89

This limitation was later addressed by Bultreys et al. [2015], who extended Bauer’s approach to90

include Darcy connections between pores regardless of the presence of macro-throats. They tested91

their model by extracting a multiscale network from an Estaillades micro-CT image and compared it92

to the drainage relative permeability measurement from the study by Ott et al. [2015]. In a subsequent93

study, they compared the waterflooding results for Estaillades limestone with experimental results for94

–4–



Confidential manuscript submitted to <Water Resource Research>

a Middle Eastern carbonate reservoir rock [Bultreys et al., 2016]. Later Wang et al. [2022] used the95

same approach to create a pore network model that effectively handles complex, multiscale porosity.96

This approach shows promise in addressing sub-resolution porosity using micro-links (connections97

between explicitly resolved macro-pores). However, they did not validate their multiscale results98

for waterflooding in Estaillades against experimental data from the same sample. Additionally,99

their methodology does not guarantee the exclusive assignment of each sub-resolution voxel to a100

specific micro-link. Moreover, there is an artificial constraint on the allowed maximum length of a101

micro-link. In our study, we address these issues by developing a generative algorithm for micro-link102

characterization and proposing a methodology to incorporate wettability in empirical models for103

micro-links. Then we successfully validate our methodology against a waterflooding experiment on104

Estaillades.105

Recently, Ruspini et al. [2021] introduced a multiscale digital rock workflow. They used Darcy-106

type pores for unresolved porosity and considered connections through additional micro-porous107

micro-throats (without length and volume). They represented smaller-scale pore structures in a108

continuum manner using relative permeability and capillary pressure saturation functions calculated109

from high-resolution images. The multiscale workflow incorporates experimental data to constrain110

modeling assumptions at different scales. The workflow was validated using two complex reservoir111

rocks, and the numerical predictions showed good agreement with the experimental data. How-112

ever, the main concern lies in the generalizability of the high-resolution imaging data. While the113

researchers were able to derive information from high-resolution images for specific areas, this local114

information may not be representative of the whole sample. Furthermore, the study relies heavily on115

high-quality imaging, such as sub-micron resolution images, which might not be easily accessible or116

feasible in all situations. Finally, wettability is assigned to micro-porous regions by matching to the117

measured waterflood capillary pressure which requires additional experimental information.118

While existing studies effectively address unresolved porosity in complex porous media, a need119

persists for a more automated and robust algorithm for characterizing sub-resolution elements and120

incorporating them into a model with explicitly resolved pores and throats. In addition, the general121

relations for micro-links should consider diverse constraints, such as geometry and wettability, and122

be supported by experimental data for both single and two-phase flow. It is important to create123

a standard, automatic workflow that can be used for every micro-CT experiment involving sub-124

resolution porosity without needing to adjust the geometrical parameters every time. Another crucial125

question is how to reduce the amount of experimental work needed to gather enough data for the126

–5–



Confidential manuscript submitted to <Water Resource Research>

multiscale model. If too much effort is required to collect the experimental data used as input, it127

might be more cost-effective to directly measure relative permeabilities.128

In response to these needs, we have developed a workflow that incorporates sub-resolution129

porosity from differential imaging into pore network modeling, thus establishing a robust multiscale130

approach. Unlike previous work, our method incorporates a dilation algorithm to automatically131

identify micro-links between macro-pores, guaranteeing each accessible micro-porous voxel is as-132

signed to a specific micro-link. This eliminates the need for arbitrary constraints on the micro-link133

length and maintains model efficiency without compromising the accurate representation of the134

complex pore structure. The following items distinguish the algorithm developed in this paper from135

previous studies:136

1. Based on dilation, we have developed an automatic and robust algorithm that allows us to137

consider sub-resolution porosity as micro-links that connect the two nearest resolved pores138

and construct a multiscale pore network.139

2. Considering sub-resolution porosity as micro-links, similar to resolved throat elements, means140

the number of linear equations in the multiscale pore network will be the same as in the resolved141

network (i.e., the same number of pores). This is in contrast to methods that consider this142

sub-resolution porosity as a type of pore element, resulting in a larger set of equations to solve143

for flow calculations.144

3. Based on our capillary model proposed for all types of wettability, it is possible to derive145

scanning curves with minimal information regarding the wettability of the system. This146

eliminates the need for experiments to derive scanning capillary pressure data .147

We apply our model to Estaillades carbonate using primary drainage capillary pressure data to148

calibrate the geometric parameters in the model.149

The structure of this paper is as follows: Section 2 briefly describes the imaging experiment150

performed on Estaillades carbonate, which serves as a validation experiment. We then elaborate on151

our workflow for incorporating sub-resolution porosity into pore network modeling. In Section 3, we152

first assess the sensitivity of the multiscale approach and then validate its results against experimental153

data. Finally, Section 4 concludes the paper with a summary and discussion of future work.154
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2 Materials and Methods155

Gao et al. [2019] conducted a study to investigate the behavior of pore occupancy, relative156

permeability, and flow intermittency measurements using X-ray micro-tomography in a complex157

carbonate Estaillades sample. The experiment specifically focused on a high capillary number,158

𝐶𝑎 = 7.3 × 10−6, which was intentionally chosen to examine the effect of flow intermittency, where159

the configuration of the phases fluctuates.160

Concurrently, a hitherto unpublished experiment was performed on a different Estaillades sample161

that had a significantly lower capillary number (2.1×10−7). In this experiment, the displacement was162

capillary-dominated with a fixed configuration of phases during steady-state flow. It was conducted163

on a water-wet Estaillades sample and followed a similar procedure to the high capillary number164

experiment.165

Given its absence of dynamic effects, its water-wet condition, and its notable sub-resolution166

porosity that has been characterized through differential imaging, this second, unpublished experi-167

ment is deemed an ideal case for validating our multiscale quasi-static pore network methodology.168

Subsequent sections will provide a brief overview of the experimental materials, procedures, and169

analysis. Furthermore, a link to the images obtained from the experiment can be found at the end170

of the paper. For a more comprehensive understanding of the experimental procedures and analysis171

methods, readers are encouraged to refer to the work by Gao et al. [2019]; Lin et al. [2021].172

2.1 Rock and fluid properties173

The sample used in this study is Estaillades carbonate. It was cylindrical, with a diameter174

of 6.00 ± 0.01 mm and a length of 46.70 ± 0.01 mm. A companion sample was composed of175

approximately 97.9% calcite and 2.1% quartz, as analyzed at Weatherford Laboratories in East176

Grinstead, UK [Gao et al., 2019].177

Using Darcy’s law and pressure differential measurements at three flow rates (0.1 mL/min, 0.3178

mL/min, and 0.6 mL/min), corresponding to pressure drops in the sample of 25.76 kPa, 80.81 kPa,179

and 166.60 kPa respectively, and corresponding pressure drops in the tubing without the sample of180

4.30 kPa, 12.91 kPa, and 25.83 kPa, the absolute permeability of the sample was calculated to be181

128 ± 4 mD. The uncertainty in the permeability was determined using the Monte Carlo method,182

considering uncertainties of 0.1% in measured pressure, 0.5% in flow rates, 0.01 mPa·s in viscosity,183

and 0.01 mm in the length and diameter of the sample.184
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The total porosity, estimated from the micro-CT image in Section 2.3, was 28.2 ± 1.5%, with185

micro-porosity and macro-porosity accounting for 19.0% and 9.2% respectively. The reported helium186

porosity for another Estaillades sample was 30.3 ± 0.2%. The image-based porosity value for both187

this sample and the other Estaillades sample is slightly lower than the helium porosity suggesting188

that some micro-porosity might not have been captured.189

The non-wetting phase was decane, with a density of 730 kg/m3 (n-Decane, Acros Organics)190

and a viscosity of 0.838 mPa·s (provided by PubChem, open chemistry database). To achieve optimal191

contrast between the brine, oil, and rock phases, a 30 wt% potassium iodide (KI) brine was used as192

the wetting (aqueous or brine) phase. The density of brine was measured to be 1263 ± 2 kg/m3 at193

ambient conditions by weighing a 1 mL drop of the liquid. The viscosity of the brine was determined194

to be 0.82 ± 0.01 mPa·s.195

The interfacial tension between brine and decane was measured using the pendant drop196

method [Andreas et al., 2002; Stauffer, 1965], yielding a value of 47±2 mN/m at ambient conditions,197

as determined by a Ramé-Hart apparatus (590 F4 series).198

2.2 Experimental procedure for in situ X-ray tomography199

Our experiment utilized a 1𝑚𝑚 thick, X-ray transparent Hassler-type flow cell made from carbon200

fiber epoxy specially designed to withstand high pressures while remaining nearly transparent to X-201

rays. The cylindrical Estaillades sample was positioned within this cell, encased within a Viton202

sleeve, and connected to the fluid flow-lines via metal fittings. Simultaneous injection of brine203

and decane was performed through separate ports at a maintained total flow rate of 0.02𝑚𝐿/𝑚𝑖𝑛204

corresponding to a linear flow velocity of 0.71𝑚𝑚/𝑚𝑖𝑛. We used this total flow rate and the mean205

viscosity value of oil and brine to calculate the capillary number, obtaining a value of 2.1×10−7. This206

categorized our experiment within the capillary dominant regime, common to reservoir settings. The207

ratio of the Darcy velocity of the aqueous phase to the total velocity of both oil and aqueous phases208

( 𝑓 =
𝑞𝑤
𝑞𝑡

) defines the fractional flow. In the course of the experiment, we increased the fractional209

flow sequentially to reach steady-state at the following values: 0, 0.15, 0.3, 0.5, 0.7, 0.85, and 1. For210

further details on the experimental design, refer to the published work by Gao et al. [2019].211

The experimental procedure was akin to other studies on intermittency by Gao et al. [2019].212

The steps taken are explained in further detail in the Appendix Section 5.1.213
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We imaged the fluid configurations using a Zeiss XRM-510 X-Ray microscope. The process214

employed a flat panel detector, achieving a voxel size of 3.58 𝜇𝑚. It involved an X-ray energy of 75215

𝑘𝑒𝑉 , an exposure duration of 0.5 seconds, and 1601 projections. These projections were converted216

into a three-dimensional image using the proprietary software of the Versa system. To broaden217

the vertical (flow direction) field of view for analysis, two images were captured, stitched together,218

and cropped into cylindrical forms to remove the sleeve visible at the core boundaries. The final219

image had dimensions of 1608 × 1598 × 2720 voxels (5.76 𝑚𝑚 in diameter and 9.74 𝑚𝑚 in length),220

representing a total volume of 252.1 𝑚𝑚3. To ensure a uniform orientation, all the reconstructed221

images were registered to the dry scan image. The resampling of these images was facilitated by the222

Lanczos algorithm [Burger and Burge, 2022].223

2.3 Image Analysis and Determination of Macroscopic Parameters224

2.3.1 Characterization of Micro- and Macro-pore Space225

The Estaillades carbonate exhibited a bimodal pore structure with inter-granular macro-porosity226

and micro-porosity. Mercury injection capillary pressure, MICP, analysis showed two peaks in the227

throat radius distribution at around 0.2 and 10 µm [Tanino and Blunt, 2012; Bijeljic et al., 2013;228

Alyafei and Blunt, 2016].229

Images were segmented into grains, resolved pores, and sub-resolution pore spaces; the use of230

30 wt% KI brine intensified the contrast and emphasized sub-resolution porosity [Lin et al., 2016].231

Commercial software, Avizo, was used for image analysis, segmenting the images into resolved, sub-232

resolution pore space and grains using the interactive thresholding segmentation method. Differential233

imaging facilitated the discrimination of sub-resolution porosity within the images, enabling the234

separation of voxels solely filled with brine, voxels partially filled with brine representing the sub-235

resolution pore space, and voxels constituting grain without any sub-resolution porosity. Figure 1236

represents histograms of grayscale CT numbers or intensity values, indicative of X-ray attenuation,237

for the various phases. These histograms allow for the distinct identification of solid grain, resolved238

pore, and voxels containing sub-resolution porosity.239

Dry and saturated scans, illustrated in Figures 2a and 2b, respectively, leveraged brine’s high240

X-ray adsorption for clear imaging. Differential imaging then enabled the discrimination of micro241

and macro-porosity. A non-local means filter was applied to the differential images to reduce242

noise [Buades et al., 2005, 2008], and intensity-based thresholding segmented the image into distinct243

phases [Lin et al., 2016] (see Figure 2d).244
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Figure 1. Histograms of intensity for different phases obtained from the brine-saturated scan. Each line

represents a specific phase found in the scan, including the ‘All phases’, category.

245

246

In the context of a dry scan, the average intensity 𝐼dry is related to the porosity (𝜙) and the247

specific intensities of air (𝐼air) and rock (𝐼rock):248

𝐼dry = 𝜙𝐼air + (1 − 𝜙)𝐼rock (1)

For a brine-saturated scan, the average intensity 𝐼brine is a function of the porosity and the249

intensities of brine and rock:250

𝐼brine = 𝜙𝐼brine + (1 − 𝜙)𝐼rock (2)

Porosity is determined by the difference in average intensity between the brine-saturated scan251

and the dry scan, normalized by the difference in specific intensities of brine and air:252

𝜙 =
𝐼brine − 𝐼dry

𝐼brine − 𝐼air
(3)

This approach essentially measures the contrast change in the image due to the replacement of air by253

brine in the pore space.254

For saturation, the formula is based on the average intensity of a fluid mixture scan 𝐼f𝑤 . It is255

computed by accounting for the porosity, water saturation (𝑆𝑤), and the specific intensities of brine,256

oil, and rock:257

𝐼f𝑤 = 𝜙𝑆𝑤 𝐼brine + 𝜙(1 − 𝑆𝑤)𝐼oil + (1 − 𝜙)𝐼rock (4)

The water saturation is then calculated from the difference in average intensity between the brine-258

saturated scan and the fluid mixture scan, normalized by the difference in specific intensities of brine259

–10–



Confidential manuscript submitted to <Water Resource Research>

and oil:260

𝑆𝑤 = 1 −
𝐼brine − 𝐼f𝑤

𝜙(𝐼brine − 𝐼oil)
(5)

This process essentially quantifies the contrast change due to the partial replacement of brine by oil.261

Importantly, we normalize the images to have the same intensity for rock in brine-saturated,262

dry, and fluid mixture images and also the same intensity for brine in both brine-saturated and fluid263

mixture images. This ensures consistent interpretation of image intensities across different scans264

and conditions. Taking into account the uncertainty inherent in determining the intensity of phases265

allows us to estimate the resulting uncertainty in the calculated values of porosity and saturation.266

2.3.2 Relative Permeability and Uncertainty Quantification267

As mentioned above, the pressure difference across the rock sample at steady-state conditions268

was measured using the differential pressure transducer. We recorded the mean pressure differentials269

at different fractional flows during the last two hours, as well as the corresponding standard deviation.270

We subtracted the pressure drop in the flow lines themselves (see step 10 of the experimental procedure271

in the Appendix Section 5.1). The relative permeability was calculated by:272

𝑘𝑟𝑤 =
𝑞𝑤𝜇𝑤𝐿

𝐾Δ𝑝
; 𝑘𝑟𝑜 =

𝑞𝑜𝜇𝑜𝐿

𝐾Δ𝑝
(6)

𝑘𝑟𝑤 and 𝑘𝑟𝑜 represent the relative permeabilities of water and oil, respectively. 𝑞𝑤 denotes the Darcy273

velocity of brine (flow rate per unit area) in m/s, while 𝑞𝑜 denotes the Darcy velocity of oil in m/s.274

The parameters 𝜇𝑤 and 𝜇𝑜 signify the viscosities of water and oil respectively, measured in275

units of Pa·s. The term 𝐿 represents the length of the porous medium through which fluid flow276

occurs, quantified in meters. Δ𝑝, denoting the pressure drop across the sample, is expressed in277

Pascals. 𝐾 is the absolute permeability (𝑚2) determined from single-phase flow (water) through the278

porous medium based on Darcy’s law:279

𝐾 =
𝑞𝑡𝜇𝑤𝐿

Δ𝑝
; (7)

where 𝑞𝑡 is the Darcy velocity for single-phase flow, also measured in meters per second (m/s).280

It is important to note that the pressure drops in Eqs. 6 and 7 are corrected by excluding281

the pressure drop across the tubing in the absence of the sample. Uncertainties are computed by282

considering the variability in all these parameters. Additionally, to accommodate the impact of local283

fluctuations in the average saturation in the flow direction, an adjustment is made to the relative284

permeability according to the methodology proposed by Zhang et al. [2023a] and Zhang et al.285

[2023b].286
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2.4 Modeling287

2.4.1 Brief Introduction to Pore Network Modeling (PNM)288

In this section we will introduce quasi-static pore network modeling based on our previous289

work [Blunt et al., 2002; Valvatne and Blunt, 2004]; later we will describe the extensions implemented290

to accommodate micro-porosity. A pore network simplifies the representation of a porous medium as291

a network of pores and throats. This streamlined representation is accomplished using the maximal292

ball method, which identifies pores as local maxima from the distance map of the nearest solid, while293

throats are defined as narrow passageways connecting two neighboring pores. Comprehensive details294

on the pore network extraction workflow can be found in the following references [Dong and Blunt,295

2009; Raeini et al., 2017]. The software used for this extraction, referred to as pnextract, is available296

through the GitHub link provided at the end of this paper. The primary advantage of simplifying297

intricate pore structures into a network of pores and throats is the facilitation it offers for fluid flow298

simulation. The code to simulate multiphase flow assumes capillary-controlled displacement and299

has two main steps. First, we determine the distribution of fluid phases at a specific pressure for the300

invading phase. Then, we calculate the pressure or potential field in the pore network by solving the301

mass or current balance equations for each phase.302

Gradually increasing the pressure of the invading phase at the inlet leads to updates in the303

fluid-fluid interface locations. These updates cause changes in the distribution or saturation of the304

fluid phase in the network. Displacements of the fluid phase within the center of the element can305

occur due to potential invasion events, such as piston-like displacement, snap-off, or pore body306

filling. They can also happen as the fluid interface moves within each individual element, aiming to307

reach a new equilibrium state. These changes ultimately affect the curvature of the interface, which308

balances the pressure difference between the phases,309

𝑃c = 𝑃2 − 𝑃1 = 𝜎𝜅 (8)

where 𝑃c is the capillary pressure, 𝑃1 and 𝑃2 are the fluid pressures of the two phases (phase 1 is310

brine and phase 2 is oil), 𝜎 is the interfacial tension, and 𝜅 is the total curvature of the interface.311

When the pressure difference exceeds the capillary pressure required for a specific event (psiton-like312

displacement, pore body filling, snap-off) in the pore or throat, the event occurs [Blunt, 2001; Blunt313

et al., 2002; Valvatne and Blunt, 2004].314
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For a known distribution of phases, volume conservation is imposed at each pore, assuming315

incompressible fluids:316 ∑︁
𝑗

𝑄𝑝,𝑖 𝑗 = 0 ∀𝑖 (9)

where 𝑗 runs over all throats connected to pore 𝑖. The flow rate, 𝑄 (volume per unit time), between317

each pair of neighboring pores 𝑖 and 𝑗 is determined by multiplying the conductance between the318

two pores by the pressure difference between them.319

𝑄𝑝,𝑖 𝑗 =
𝑔𝑝,𝑖 𝑗

𝐿𝑖 𝑗
(𝑃𝑖 − 𝑃 𝑗 ) (10)

where 𝑃 is pressure, 𝑔𝑝 is fluid conductance, and 𝐿 is the length between the pore centers. The320

conductance represents the inverse of the resistance, which is the sum of the resistance of two pores321

and the connecting throat. Conductance is controlled by the geometrical parameters of pores and322

throats [Blunt, 2001; Blunt et al., 2002; Valvatne and Blunt, 2004], which are determined from the323

image:324

𝐿𝑖 𝑗

𝑔𝑝,𝑖 𝑗
=

𝐿𝑖

𝑔𝑝,𝑖
+ 𝐿𝑡

𝑔𝑝,𝑡
+
𝐿 𝑗

𝑔𝑝, 𝑗
(11)

where 𝑡 indicates the connecting throat. The pore lengths, 𝐿𝑖 and 𝐿 𝑗 are the lengths from the325

pore-throat interface to the pore center and 𝐿𝑡 is the length of throat measure the length between the326

pore-throat interface 𝑖 and pore-throat interface 𝑗 .327

Eq. (9) leads to a system of linear equations for pressure. Solving this system enables us to328

determine the flow rate for each phase and, subsequently, calculate the permeability for that phase. A329

similar system of equations can also be used to compute the electrical current through the pore space330

in response to a potential gradient, invoking conservation of charge. The equations are identical in331

form, but 𝑔 represents the electrical conductivity, 𝑄 is the current and 𝑃 the electrical potential.332

2.4.2 Development of the Multiscale Pore Network Modeling Workflow - Topology Update333

We assume that any voxel with sub-resolution porosity—whether directly connected to the pore334

space or through other sub-resolution pores—should be included in the multiscale pore network and335

considered during the micro-link identification process. We present a comprehensive, automatic336

algorithm in the following sections, developed to effectively incorporate these micro-links into the337

pore-scale flow model.338

The workflow is illustrated in Figure 2. Traditional image-based pore network modeling relies339

on segmented images from dry scans, with extracted networks composed of pores and throats. The340

first row in Figure 2 illustrates this process, where (a) is the dry scan image, (c) is the segmented dry341
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scan image, and (e) shows the topology of the extracted network. Even for rocks with permeability342

of 100s of miilidarcies some pores and throats may not be fully resolved however [Leu et al., 2014;343

Saxena et al., 2017, 2019].344

However, since in the workflow we propose to include sub-resolution porosity, we acquire an345

additional image using high concentration brine as shown in Figure 2 (b). Using differential imaging346

and Figure 2 (a) and (b), we distinguish voxels with sub-resolution porosity from solid voxels and347

determine the porosity of each voxel (see Figure 2 (d)).348

These voxels with sub-resolution porosity should be incorporated into the extracted network364

shown in Figure 2 (e). This is accomplished using the detailed workflow that will be described later,365

considering a new element called a micro-link. This results in a multiscale network as shown in366

Figure 2 (f).367
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Figure 2. (a) Displays a 2D slice from a dry-scan 3D image used to identify resolved pore space. The different

colors represent the density of each phase. In the wet image, red represents the highest density (grains), green

represents the intermediate phase (microporous regions), while blue represents the resolvable pore space. In

the dry image, it is the other way around.(b) Presents the same 2D slice as in (a), but of the rock saturated

with 30% KI brine. This image is used alongside (a) for differential imaging to discern solid voxels containing

sub-resolution porosity. (c) Features the same slice as (a) after watershed segmentation, highlighting resolved

pores in black for conventional pore network extraction. (d) Depicts the same slice as in (a), (b), and (c), but

segmented to label three components: resolved pore voxels (black), solid voxels (blue), and voxels containing

sub-resolution porosity (red), which are distinguished through differential imaging. The porosity of the red

voxels is determined using the grayscale values from (a) and (b). (e) Presents a 3D schematic of the network,

composed of macro-pores and macro-throats, extracted from the resolved pores (c). (f) Shows the schematic of

a multiscale pore network, which incorporates the extracted network from (e), the pore label image generated

by network extraction (not shown here), and the 3D image from (d). This facilitates the identification and

characterization of micro-links, resulting in a network composed of macro-pores, macro-throats, and additional

micro-links.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

2.4.2.1 Development of An Automatic Algorithm for Micro-link Identification: We treat368

voxels with sub-resolution porosity as micro-links connecting two resolved pores, provided that369

these pores are interconnected via these micro-links. The fundamental hypothesis of our workflow370

involves identifying the two nearest accessible pores for each voxel with sub-resolution porosity, a371

task accomplished through an automated dilation algorithm.372
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The first step in this process involves assigning a pore label to each void voxel during pore373

network extraction. The output of this stage is a pore labeling map that assigns each void voxel to a374

specific pore (e.g., as seen in the first column of Figure 4, where schematically (a) and (b) display375

pores differentiated by various colors. The gray area represents voxels with sub-resolution porosity).376

During network extraction, the local maxima of the void space are assigned a pore label. The377

pnextract code then assigns these pore labels to all nearby void voxels, up to a boundary corresponding378

to the throat surface. This procedure results in a field map of pore labels for void voxels, which is379

approximately the same size as the dry scan image. This field map is then used to assign the two380

nearest pore labels to solid voxels containing sub-resolution porosity. This is done using a dilation381

algorithm in which, the pore labels start to grow into neighboring solid with sub-resolution voxels,382

and this process continues until each voxel with sub-resolution porosity has two pore labels assigned.383

the process schematiclly descirbed in Fig. 3.384

Figure 3. Schematic of the dilation algorithm. The first row represents a porous medium in which white

represents void, gray represents voxels with sub-resolution porosity, and black represents solid rock with no

porosity. The pore network extraction identifies two pore labels for void voxels. The second row explains the

steps taken using the dilation algorithm to identify nearest pores, and the third row explains the steps to identify

next-nearest pores.

385

386

387

388

389

The explanation of this process in more detail is as follows:390
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• Assigning Nearest Pore Labels to Voxels with Sub-Resolution Porosity—An Algorithmic391

Approach: The process of identifying micro-links starts with assigning the two nearest pore392

labels to each grain voxel that contains sub-resolution porosity, a process carried out in two393

stages using dilation algorithms.394

In the initial stage, we create a matrix, microPore1, that is the same size as the pore-label395

matrix. Void voxels are initialized to correspond with the pore label matrix, while all other396

voxels (grains with or without sub-resolution porosity) are set to zero. We use another matrix397

to identify grain voxels with sub-resolution porosity. A schematic representation of cases in398

which we have two or three pores with a gray area (the region with sub-resolution porosity)399

in between is shown in the first columns of Figure 4 (a) and (b), respectively.400

Applying a dilation algorithm, we extend the microPore1 pore label to adjacent grain voxels401

containing sub-resolution porosity, thereby updating microPore1. The first layer of voxels402

with sub-resolution porosity that directly contacts the pore inherits the adjacent void voxel’s403

pore label, signifying the nearest pore label. This action updates the microPore1 matrix.404

The dilation process is performed randomly across six directions to prevent directional bias.405

This process only applies to voxels with sub-resolution porosity. Grain voxels without sub-406

resolution porosity are not part of the dilation process.407

This procedure is repeated, updating the microPore1 matrix through subsequent dilation levels408

until no more changes occur. By this stage, all grain voxels containing sub-resolution porosity409

that are directly accessible to void space or through other microporous voxels will have been410

assigned the nearest pore label. The output of this process for cases in which we have two411

and three pores and a gray area (the region with sub-resolution porosity) in between is shown412

in the second columns of Figure 4 (a) and (b), respectively.413

• Assigning Next-Nearest Pore Labels to Voxels with Sub-Resolution Porosity—An Al-414

gorithmic Approach: The second step involves assigning the next-nearest pore label to415

each grain voxel with sub-resolution porosity. We use a similar algorithm as before. We ini-416

tialize a new matrix, microPore2, of the same size as microPore1, with all elements initially417

set to zero. We then dilate microPore1 and assign the results to microPore2. Dilation occurs418

through void voxels and grains with sub-resolution porosity. The dilation of microPore2419

continues through the void voxels and grains with sub-resolution porosity until no further420

changes occur in microPore2. After these two steps, we obtain two matrices, each the same421

size as the dry scan image, in which each voxel with sub-resolution porosity is associated with422

its nearest and next-nearest pore, as indicated by microPore1 and microPore2, respectively.423
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A schematic representation of next-nearest pores for cases where we have two or three pores424

with a gray area (the region with sub-resolution porosity) in between is shown in the third425

columns of Figure 4 (a) and (b), respectively.426

• Identification of Micro-Links: Once we have successfully assigned two labels to each grain427

voxel with sub-resolution porosity—either in direct contact with a void voxel or connected428

through other voxels with sub-resolution porosity—we can identify the micro-links. A micro-429

link comprises all grain voxels with sub-resolution porosity that share the same pair of labels,430

regardless of their order. In other words, all elements in the microPore1 matrix with label i,431

and corresponding elements in the microPore2 matrix with label j (or vice versa), correspond432

to a micro-link m that connects Pore i and Pore j. A schematic representation of a micro-433

link between adjacent pores, determined after superimposing microPore1 and microPore2434

on each other for cases where we have two or three pores with a gray area (the region with435

sub-resolution porosity) in between, is shown in the fourth columns of Figure 4 (a) and (b),436

respectively. We then assign the parameters of micro-link m based on these grouped voxels.437

Note that many microporous voxels will be assigned to the same micro-links: the number of438

micro-links is therefore much smaller than the number of voxels in the image.439
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Figure 4. The first column presents a schematic of resolved pores with a gray area denoting the voxels

that connect these pores via sub-resolution porosity. The first row consists of two pores, while the second row

contains three. The identification of these pores is facilitated by a pore network extraction on the resolved

pore space. The second column highlights the use of the dilation algorithm, which assists in recognizing

the nearest pore label for each voxel with sub-resolution porosity. With further dilation, we can identify the

next-nearest pore label for each voxel with sub-resolution porosity, as illustrated in the third column. The

fourth column demonstrates the process of superimposing the nearest and next-nearest labels, enabling the

identification of micro-links. Each voxel sharing the same set of nearest and next-nearest labels, irrespective of

order, corresponds to a unique micro-link.
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2.4.2.2 Addressing Computational Challenges in the Proposed Algorithm: The dilation449

algorithm poses substantial computational challenges, particularly when processing large images.450

To mitigate this issue, we implemented a strategy that subdivides the label matrix into smaller451

sub-matrices. The computations for each of these sub-matrices are executed concurrently using452

multi-threading, significantly enhancing the efficiency of the algorithm. By employing this strategy,453

we successfully navigated the computational complexity associated with the dilation algorithm,454

enabling the processing of large images without encountering excessive computational costs.455

2.4.2.3 Integrating Micro-Links into the Resolved Pore Space-Derived Network and456

Redefining Topology: A traditional pore network, derived from resolved pore space, comprises457

pores and throats. In this context, pores represent larger void spaces within porous media, while458

throats function as connecting constrictions.459
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For illustrative purposes, we have provided an example topology from a pore network. This460

network has been extracted from the resolved pore space of Estaillades rock and is depicted in461

Figure 5(a). Additionally, Figure 5(b) presents the updated network structure incorporating micro-462

links, often referred to as the multiscale pore network model.463

The incorporation of micro-links as a new element in this framework, and the corresponding466

update to the network topology, require modifications to the output files generated by the pnextract467

code. These amendments account for a new throat type and adjustments to the coordination numbers468

of the pores.

Figure 5. (a) Topology of the extracted pore network based on the resolved pore space. (b) Updated topology

of the same pore network after incorporation of micro-links (referred to as the multiscale pore network).

464

465

469

2.4.3 Development of the Multiscale Pore Network Modeling Workflow - Flow Modeling470

Update471

2.4.3.1 Characterization of Micro-Links: Consider a micro-link, denoted 𝑚, connecting472

pores 𝑖 and 𝑗 . Consider a voxel with index 𝑘 with sub-resolution porosity corresponding to this473

micro-link. The porosity of this voxel is given by 𝜙 (𝑚)
𝑘

. Therefore, the porosity of the micro-link,474

denoted as 𝜙𝑚, is defined as:475

𝜙𝑚 =

∑𝑁voxels
𝑚

𝑘
𝜙
(𝑚)
𝑘

𝑁voxels
𝑚

(12)

where 𝑁voxels
𝑚 represents the number of voxels with sub-resolution porosity associated with micro-476

link 𝑚. The total volume of the micro-link, denoted as 𝑉𝑇
𝑚, is equal to the total volume of the477
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corresponding voxels:478

𝑉𝑇
𝑚 = 𝑑𝑥3𝑁voxels

𝑚 (13)

where 𝑑𝑥 represents the voxel size. The pore volume of the micro-link, 𝑉𝑚, is determined by479

multiplying the micro-link porosity by the total volume:480

𝑉𝑚 = 𝑉𝑇
𝑚𝜙𝑚 (14)

The length of the micro-link, denoted as 𝑙𝑚, is defined as the distance between pores 𝑖 and 𝑗 ,481

subtracting their respective pore inscribed radii 𝑅𝑖 and 𝑅 𝑗 :482

𝑙𝑚 = 𝑑 (𝑖, 𝑗) − 𝑅𝑖 − 𝑅 𝑗 (15)

where, 𝑑 (𝑖, 𝑗) represents the Euclidean distance between the centers of pores 𝑖 and 𝑗 . The cross-483

sectional area of the micro-link, denoted as 𝐴𝑚, is determined using:484

𝐴𝑚 ∝ 𝑉𝑇
𝑚

𝑙𝑚
, ⇒ 𝐴𝑚 = 𝛽

𝑉𝑇
𝑚

𝑙𝑚
(16)

Here, 𝛽 is considered as a tuning parameter, and the same 𝛽 value is used for all micro-links. We will485

show later that 𝐴𝑚 will be used for micro-link conductance calculations. To calculate the micro-link486

flow conductance, we also need the permeability of the micro-link, denoted as 𝐾𝑚. The permeability487

is found empirically: in this paper, we use the Kozeny-Carman equation [Kozeny, 1927; Carman,488

1937],489

𝐾𝑚 =
1

180
𝜙3
𝑚 · 𝑑2

𝑔

(1 − 𝜙𝑚)2 (17)

where 𝑑𝑔 is the average grain diameter which we will use as an adjustable parameter.490

2.4.3.2 Incorporating Micro-Links in Flow Simulation: The introduction of micro-links491

does not alter the total number of pores in the network, ensuring that the size of the linear system of492

equations remains unchanged. This is a significant advantage of representing subresolution porosity493

as micro-links since the number of unknown pressures remains constant. We use Eqs. (9)-(11) as494

before but replace the throat length 𝐿𝑡 with the length 𝑙𝑚 from Eq. (15) and the lengths of pores 𝑖495

and 𝑗 with their radii. Note that if both a micro-link and a macro-throat exist between pores 𝑖 and 𝑗 ,496

we separately calculate two 𝑄𝑝,𝑖 𝑗 values: one for the micro-link and one for the macro-throat, and497

then add them together.498

The micro-link hydraulic conductance to phase 𝑝 is defined as follows:499

𝑔𝑝,𝑚 (𝑆𝑤) =
𝐾𝑚 · 𝑘𝑟 , 𝑝 (𝑆𝑤)

𝜇𝑝

𝐴𝑚 (18)
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where 𝐾𝑚 is micro-link permeability determined from Eq. (17), 𝑘𝑟 , 𝑝 (𝑆𝑤) is the relative permeability500

of phase 𝑝 at brine saturation 𝑆𝑤 , 𝐴𝑚 denotes the cross-sectional area of the micro-link,Eq. (16), and501

𝜇𝑝 is the dynamic viscosity of phase 𝑝. For electrical conductance we use the Archie equation [Archie,502

1942],503

𝑔𝑝,𝑚 (𝑆𝑤) =
𝑆𝑛𝑤

𝐹 · 𝑅𝑤

𝐴𝑚 (19)

where 𝑅𝑤 is the brine resistivity, 𝑛 is the saturation exponent, and 𝐹 is the Formation factor that is504

the ratio of the resistivity of a rock filled with water (𝑅𝑜) to the resistivity of water alone (𝑅𝑤). We505

assume:506

𝐹 =
𝑅𝑜

𝑅𝑤

=
𝑎

𝜙𝑏𝑚
(20)

where the constant 𝑎 represents the tortuosity factor, and 𝑏 is the cementation exponent.507

For single-phase flow simulation, we set the water saturation (𝑆𝑤) to one. From this, we508

determine conductances and construct the system of equations for flow and electrical conductivity509

through the network. Solving these systems of equations provides us with the pressure and potential510

fields, respectively. Next, we calculate the permeability and formation factor of the pore network511

system. The parameters 𝑑𝑔 and 𝛽, Eqs. (16) and (17), are tuning parameters used to match the512

permeability and formation factor obtained from experiments.513

In two-phase flow, we must find the brine saturation at each micro-link based on the prevailing514

capillary pressure. This pressure is applied to all accessible resolved elements to determine the515

curvature of oil/water interfaces, as well as the saturation for all elements including micro-links.516

To do this, we use the Leverett J-function, which relates capillary pressure to water saturation in a517

porous medium [Leverett, 1941]:518

𝐽 (𝑆𝑤) =
𝑃c (𝑆𝑤)
𝜎

√︄
𝐾𝑚

𝜙𝑚
(21)

where 𝐽 is the Leverett J-function, 𝑃c is the prevailing capillary pressure, 𝜎 is the interfacial tension519

between the fluids, 𝐾𝑚 is the micro-link permeability, and 𝜙𝑚 is the micro-link porosity, Eq. (12).520

By assuming an empirical model for the J-function based on saturation, we can determine saturation521

from the prevailing capillary pressure. For drainage, we use the a power-law model,522

𝐽 (𝑆𝑤) = 𝐽∗𝑆−1/𝜆
𝑒 ⇒ 𝑆𝑒 =

( 𝐽∗

𝐽 (𝑆𝑤)

)𝜆
(22)

here, 𝐽∗ corresponds to the entry pressure. If 𝐽 (𝑆𝑤) is less than 𝐽∗, 𝑆𝑒 is set to 1. The parameter 𝜆523

represents the power-law exponent, which determines the shape of the capillary pressure-saturation524

relationship. The normalized saturation of the wetting phase, denoted as 𝑆𝑒, can be expressed as:525

𝑆𝑒 =
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑟

(23)
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where 𝑆𝑤𝑟 is the residual water saturation, and 𝑆𝑜𝑟 is the residual oil saturation (for drainage, 𝑆𝑜𝑟526

is set to zero). During drainage, we increase the prevailing capillary pressure, which causes the527

water saturation in the system to decrease. This continues until we reach a maximum capillary528

pressure, each micro-link water saturation at this point is represented by 𝑆𝐻𝑦𝑠𝑡
𝑤 . Since micro-links529

have varying permeability and porosity, each micro-link will have a different water saturation (𝑆𝐻𝑦𝑠𝑡
𝑤 )530

at this capillary pressure (as given by Eq. (21)).531

Despite the simplicity of the power-law model, it often provides a good approximation for the532

capillary pressure-saturation relationship, allowing us to determine saturation for each prevailing533

capillary pressure in micro-links explicitly. However, its application is limited to water-wet systems.534

Therefore, in this context, we only use it to describe primary drainage.535

Afterward, we decrease the capillary pressure gradually to proceed with water injection. For536

water flooding, we employ a more elaborate model that can accommodate different wettabilities and537

can explicitly determine the saturation for the prevailing capillary pressure [Foroughi et al., 2022].538

The Leverett J-function based on this capillary pressure model is as follows:539

𝐽 (𝑆𝑤) = 𝐴 + 𝐵 tan( 𝜋
2
− 𝜋𝑆𝐶𝑒 ) (24)

with fitting parameters 𝐴, 𝐵 and 𝐶. Eq. (24) can be inverted to find the saturation as a function of540

capillary pressure:541

𝑆𝑒 =

( 1
𝜋

( 𝜋
2
− tan−1 ( 𝐽 (𝑆𝑤) − 𝐴

𝐵
)
) )1/𝐶

(25)

After calculating the normalized water saturation, we convert it to water saturation using Eq. (23).542

Instead of using 𝑆𝑜𝑟 and 𝑆𝑤𝑟 in Eq. (23), we use 𝑆𝑛𝑟 and 𝑆∗𝑤𝑟 to compute the micro-link saturation543

during waterflooding at each prevailing capillary pressure. Next, we will discuss how we obtain544

these two values. Firstly, by applying the Land trapping model [Land, 1968], we can predict the545

residual oil saturation, denoted as 𝑆𝑛𝑟 , at the end of waterflooding for each micro-link as follows:546

𝑆𝑛𝑟 =
1 − 𝑆𝐻𝑦𝑠𝑡

𝑤

1 + 𝐶𝐿 (1 − 𝑆𝐻𝑦𝑠𝑡
𝑤 )

(26)

where the coefficient 𝐶𝐿 is determined by:547

𝐶𝐿 =
1
𝑆𝑜𝑟

− 1
1 − 𝑆𝑤𝑟

(27)

where we define 𝑆𝑜𝑟 as the maximum residual saturation. At the start of waterflooding, we require548

the same 𝐽 (𝑆𝑤) as determined by both Eq. (22) and (24). To achieve this, we introduce a pseudo549

residual water saturation 𝑆∗𝑤𝑟 defined as follows:550

𝑆∗𝑤𝑟 =
𝑆
𝐻𝑦𝑠𝑡
𝑤 − 𝑆𝐻𝑦𝑠𝑡

𝑒 + 𝑆𝐻𝑦𝑠𝑡
𝑒 · 𝑆𝑛𝑟

1 − 𝑆𝐻𝑦𝑠𝑡
𝑒

(28)
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where using waterflooding model (Eq. (25)) 𝑆𝐻𝑦𝑠𝑡
𝑒 defined as:551

𝑆
𝐻𝑦𝑠𝑡
𝑒 =

( 1
𝜋

( 𝜋
2
− tan−1 ( 𝐽

𝑃𝐷 (𝑆𝐻𝑦𝑠𝑡
𝑤 ) − 𝐴
𝐵

)
) )1/𝐶

(29)

Now that we have determined 𝑆𝑛𝑟 and 𝑆∗𝑤𝑟 , we use these values instead of 𝑆𝑜𝑟 and 𝑆𝑤𝑟 in552

Eq. (23) to compute the micro-link saturation during waterflooding at each prevailing capillary553

pressure.554

To examine the behavior of the Leverett J-function for both drainage and waterflooding, refer to555

the results illustrated in Figure 6a. The Leverett J-function for primary drainage is determined using556

Eq. (22), while for waterflooding, it is found using Eq. (24).557

After calculating the micro-link saturations, we can predict the micro-link flow and electrical558

conductances using Eqs. (18) and (19), respectively. For flow conductance, empirical models for559

the relative permeabilities of micro-links are required. As mentioned earlier, we adopt power-law560

models to describe the relative permeabilities of micro-links. These expressions are often referred561

to as modified Brooks-Corey relations [Brooks and Corey, 1964],562

𝑘𝑟𝑤 (𝑆𝑤) = 𝑘𝑚𝑎𝑥
𝑟𝑤 𝑆𝛼𝑤

𝑒 (30)
563

𝑘𝑟𝑜 (𝑆𝑤) = 𝑘𝑚𝑎𝑥
𝑟𝑜 (1 − 𝑆𝑒)𝛼𝑜 (31)

where 𝑘𝑚𝑎𝑥
𝑟𝑤 and 𝑘𝑚𝑎𝑥

𝑟𝑜 represent the endpoint relative permeabilities for water and oil, respectively.564

𝛼𝑤 and 𝛼𝑜 are power law exponents. To account for hysteresis, we employ the Killough model [Kil-565

lough, 1976]. For illustrative purposes, the relative water and oil permeabilities for various 𝑆𝐻𝑦𝑠𝑡
𝑤566

values are depicted in Figures 6b and 6c.567

2.4.3.3 Bypassing Zero Saturation in Two-phase Conductivity: In our study of two-phase576

flow, we encountered a situation where the saturation of the wetting phase in a pore became very low,577

effectively halting the flow (see Figure 7). To handle this situation and to ensure continuity of flow578

when water is present in micro-links, we devised a bypassing mechanism. This mechanism works by579

rerouting the flow around the pore with zero or very low saturation for the wetting phase, allowing580

the flow to continue despite the blockage. To facilitate this bypassing mechanism, we set 𝐿𝑖 𝑗/𝑔𝑝,𝑖 𝑗581

to 𝐿𝑚/𝑔𝑝,𝑖 𝑗 whenever 𝐿𝑖 𝑗/𝑔𝑝,𝑖 𝑗 , calculated using Eq. (11), is less than 𝐿𝑚/𝑔𝑝,𝑖 𝑗 . This adjustment582

allows us to maintain a non-zero conductance.583

In the following section, we will evaluate the performance of the multiscale pore network model588

using the aforementioned Estaillades rock sample as a benchmark.589
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Figure 6. (a) Illustrates the behavior of the Leverett J-function employed in our model. The diagram depicts

the power-law model for drainage, Eq. (22), and our proposed model, Eq. (24), for waterflooding. We present

the results for three different saturations based on our proposed model, Eq. (24), considering potential variations

in saturation following primary drainage. (b) This graph shows the water relative permeability using the

Killough hysteresis model based on power-law relative permeability (𝑘𝑟𝑤) during drainage and waterflooding.

(c) This graph shows the oil relative permeability using the Killough hysteresis model based on power-law

relative permeability (𝑘𝑟𝑛𝑤) during waterflooding. The model considers three initial saturations at the start of

waterflooding, denoted as 𝑆𝐻𝑦𝑠𝑡
𝑤 .

568
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570

571

572

573

574

575

Figure 7. Illustration of a pore, denoted as 𝑗 , located between two micro-links (𝑚𝑖 𝑗 and 𝑚 𝑗𝑘), while all other

elements belong to resolved porosity. This pore tends to fill before the micro-links (with blue representing the

wetting phase and red representing the non-wetting phase), requiring a bypass of pore 𝑗 to ensure that the flow

is directed exclusively through the micro-links, thereby avoiding fluid trapping.

584

585

586

587

3 Results and Discussion590

In this section, we will evaluate the performance of our multiscale pore network model. The591

benchmark for this assessment is the Estaillades rock sample, described in Section 2.3.592

Estaillades rock is a heterogeneous material characterized by a broad range of pore throat sizes.593

Figure 8 depicts the throat size distribution obtained from MICP porosimetry, as reported by Tanino594

–25–



Confidential manuscript submitted to <Water Resource Research>

and Blunt [2012]. This distribution spans from a few nanometers to tens of micrometers, indicating595

a wide range of radii.596

We use the voxel size as a threshold (red dashed line in Figure 8) to distinguish between resolved597

and unresolved pore space noting that more than one voxel is required to accurately resolve the width598

of a pore or throat. For heterogeneous rocks such as Estaillades, the throat size distribution typically599

exhibits a bimodal pattern: the peak at smaller radii corresponds to micro-pores and micro-throats,600

while the peak at larger radii represents macro-pores and macro-throats. By scrutinizing the voxel601

size threshold and the distribution, we can differentiate between two types of unresolved pore space:602

micro-pores associated with the first peak, and macro-pores linked to the second.603

Considering the considerable fraction of unresolved macro-pores (see Figure 8), our multiscale607

modeling approach needs to accurately differentiate them from micro-pores.
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Figure 8. The throat radius distribution for the Estaillades Limestone is depicted here, highlighting the clear

presence of a bimodal pore size distribution. The dashed line represents the image voxel size of 3.58 𝜇𝑚. Data

from Tanino and Blunt [2012].

604

605

606

608

The subsequent sections present single-phase flow results based on this multiscale pore network.609

Here, we tune the parameters of the micro-links to match the experimental permeability. Next, we610

focus on two-phase flow simulations. Initially, we match the reported primary drainage capillary611

pressure for Estaillades. Following this, we present the drainage relative permeability results. In the612

end, we display the predicted results for waterflooding relative permeability, comparing them against613

the experimentally measured values.614

The equations to be used in the following sections are summarized in Table 1.615
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Table 1. Summary of parameters and equations used for micro-links.616

Parameter Model

Residual water saturation 𝑆𝑤𝑖 = 0.1

Residual oil saturation 𝑆𝑜𝑟 = 0.1

Archie model for conductivity Eq. (19) 𝜎𝐸
𝑚 =

𝑆2
𝑤 𝜙1.9

𝑅𝑤

Assumed analytical relation for J in primary drainage Eq. (22) 𝐽 (𝑆𝑤) = 0.25𝑆−1
𝑒

Assumed analytical relation for J in waterflooding Eq. (24) 𝐽 (𝑆𝑤) = 0.2 + 0.01 tan
(
𝜋
2 − 𝜋𝑆1.5

𝑒

)
Corey model for water relative permeability in drainage Eq. (30) 𝑘𝑟𝑤 = 𝑆4

𝑒

Corey model for oil relative permeability in drainage Eq. (31) 𝑘𝑟𝑜 = 0.9(1 − 𝑆𝑒)2

Corey model for water relative permeability in waterflooding Eq. (30) 𝑘𝑟𝑤 = 0.5𝑆4
𝑒

Corey model for oil relative permeability in waterflooding Eq. (31) 𝑘𝑟𝑜 = 0.6(1 − 𝑆𝑒)2

3.1 Single-Phase Flow - Model Tuning617

In this section, we present the results of single-phase flow analysis conducted on three sub-618

volumes of the sample. Each sub-volume consists of 1127 × 1127 × 1127 voxels, representing619

a substantial portion of the rock sample. The analysis focused on determining the permeability620

and formation factor, which were obtained through simulations. Permeability was calculated using621

Eq. (7) through the simulation of flow within the extracted pore network. The formation factor622

was determined by simulating the electrical current through the rock and calculating its electrical623

resistivity (the inverse of electrical conductivity). Eq. (20) was then employed to calculate the624

formation factor.625

For single-phase fluid flow simulations, we use the Carman-Kozeny equation (See Eq. (18)) to626

calculate the conductance of micro-links. Two distinct grain diameters (𝑑𝑔) have been used: 14.0627

𝜇𝑚 and 1.75 𝜇𝑚. This choice is essential to account for the capillary pressure behavior seen in the628

MICP tests. We will explain the implementation technique in more detail later in the paper. By using629

two different grain diameters, we can account for two types of unresolved porosity. The selection of630

these two values allows us to tune the capillary behavior observed in the MICP tests during drainage,631

while also aligning with the experimental permeability at the same time. For electrical simulations,632

we use an empirical conductivity model for micro-links based on Archie’s law (see Table 1 for the633

exact form).634
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The results for single-phase flow are presented in Table 2. To assess the influence of sub-635

resolution porosity on flow behavior, two simulation types were compared. The first simulation636

disregarded the presence of sub-resolution porosity, while the second simulation, based on our637

methodology, considered the micro-porous nature of the rock. By comparing these two simulations,638

we can evaluate the impact of sub-resolution porosity on flow characteristics within the sub-volumes.639

Additionally, as shown in Table 2, we have reported the corresponding porosity values for640

each sub-volume. The analysis revealed that all three sub-volumes exhibited similar fractions of641

resolved and unresolved pore space. When sub-resolution porosity was not considered, the predicted642

permeability using pore network modeling was consistently one order of magnitude lower than643

the experimentally measured permeability. Similarly, the predicted formation factors exhibited644

unreasonably high values (see Table 2).645

However, by incorporating sub-resolution porosity and implementing our multiscale pore net-646

work model, we successfully calibrated the micro-link parameter to obtain reasonable permeability647

values that aligned with the experimental measurements (see Table 2 for all sub-volumes). Fur-648

thermore, the predicted formation factors experienced a significant improvement and fell within the649

reported range for carbonate rocks, namely 10-100 [Youssef et al., 2008].650

It is worth noting that the tuning parameters in this study included the constant 𝑑𝑔, which651

corresponds to the grain diameter in the Kozeny-Carman relation, and the parameter 𝛽 which scales652

the micro-link cross-sectional area in Eq. (16). By carefully adjusting these parameters, we managed653

to achieve more accurate simulations that closely aligned with experimental values for permeability654

and formation factor. In this context, a calibrated value of 2.5 was used for 𝛽 across all sub-volumes.655

The tuned value for 𝑑𝑔 will be discussed in the next section.656
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Table 2. Comparison of experimental and sub-volume data.657

𝜙 [%] 𝑘 [mD] F

Experimental 28.2 ± 1.5 128 ± 4 n/a

Sub-volume 1 (resolved pore space) 9.8 12 1064

Sub-volume 1 (multiscale) 29.7 130 53

Sub-volume 2 (resolved pore space) 9.1 10 2153

Sub-volume 2 (multiscale) 28.7 132 59

Sub-volume 3 (resolved pore space) 10.2 27 711

Sub-volume 3 (multiscale) 30.2 162 51

3.2 Two-Phase Flow - Model Tuning658

In this section we tune our model to mimic reported MICP for Estaillades in the literature.659

As mentioned earlier, the throat size distribution from the MICP tests for Estaillades rock displays660

two distinct peaks, corresponding to two types of porosity. Additionally, based on Figure 8 and661

considering the measured voxel size of the sample (3.58 𝜇𝑚), it is evident that a significant fraction662

of the pore space in this rock remains unresolved. We assign the grain diameter to each micro-link663

as follows:664

𝜙𝑚,𝑐 = N(𝜙𝑚, 0.25𝜎2
𝜙𝑚

) ⇒ 𝑑𝑔 =


14.0 𝜇𝑚, if 𝜙𝑚 > 𝜙𝑚,𝑐

1.75 𝜇𝑚, if 𝜙𝑚 <= 𝜙𝑚,𝑐

(32)

Here, 𝜙𝑚 represents the mean porosity of micro-links, and𝜎𝜙𝑚
is the standard deviation of micro-link665

porosity. Additionally, 𝜙𝑚,𝑐 denotes the porosity criterion value corresponding to each micro-link,666

which is used to assign 𝑑𝑔 to that micro-link.667

The N symbol represents a random selection of 𝜙𝑚,𝑐 from a normal distribution with the mean668

and standard deviation indicated. Then the 𝑑𝑔 and hence permeability, Eq. (17), of the micro-link669

is then determined based on the thresholds shown in Eq. (32). This probabilistic model allows the670

capillary pressure to vary smoothly in the transition from resolved macro-pores, to unresolved but671

larger pores to true micro-porosity, to reproduce the behavior observed in Figure 9.672
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It is assumed that the pores and throats extracted from the resolved pore space are strongly673

water-wet, with a contact angle of 0◦ for drainage. The Leverett J-function used for primary drainage674

is presented in Table 1.675

To validate the performance of our approach, we generated capillary pressure for three sub-676

volumes of the Estaillades rock sample (Figure 9). We then compared these results with experimental677

MICP data from two literature sources: Tanino and Blunt [2012] and Alyafei and Blunt [2016]. There678

is excellent agreement between the simulated and experimental results. The simulated capillary679

pressure values were slightly higher than the data of Alyafei and Blunt [2016], which may be due680

to the lower permeability observed in our sample which is not fully accounted for by J-function681

scaling. Alyafei and Blunt [2016] reported a permeability of 182 mD, while the sample studied682

by Tanino and Blunt [2012] had a permeability of 166 mD compared to our value of 128 mD. Note683

that hereafter we have used the colors orange, purple, and teal to indicate the results of sub-volumes684

1, 2, and 3, respectively.685

Figure 9. Dimensionless measured capillary pressure (written as a dimensionless 𝐽 function, Eq. (21)) as

a function of water saturation and the results of multiscale modeling for three different sub-volumes. Data

from Tanino and Blunt [2012] and Alyafei and Blunt [2016].

686

687

688

3.3 Prediction and Validation689

In Figure 10, we depict the primary drainage relative permeability for three distinct sub-volumes690

of the Estaillades sample. The graphs in Figures 10a and 10b show the same data on Cartesian and691

–30–



Confidential manuscript submitted to <Water Resource Research>

logarithmic y-axes respectively. The relative permeability trends of water and oil are generally692

similar across all sub-volumes. Here, however, we do not have experimental data for comparison.693

(a) (b)

Figure 10. Comparative analysis of relative permeability for water and oil across three distinct Estaillades

sub-volumes, obtained during the drainage with our multiscale pore network model.

694

695

The final results of relative permeability for waterflooding in the Estaillades sample are plotted696

against experimentally determined values in Figure 11. For the sake of clarity, we have presented each697

subvolume using separate plots. The various lines on the graph represent the inherent uncertainties698

associated with pore network modeling and different assumptions about initial saturation. For each699

subvolume, we generated 310 realizations by varying the initial brine saturation and using different700

seeds for the waterflooding simulations. The initial brine saturation is consistent and within the701

range of the experiments. The results are shown on both Cartesian (Figures 11a, 11c, and 11e)702

and logarithmic scales (Figures 11b, 11d, and 11f), and fall within the bounds of experimental703

uncertainty.704

The relative permeability model for micro-links (Table 1) assumes water-wet behavior during705

waterflooding. Pores and throats extracted from the resolved pore space are considered water-wet,706

with a contact angle of 45◦ for waterflooding. This contact angle is similar to the one reported707

for the water-wet Bentheimer sample in our previous studies [Blunt et al., 2019]. The selection of708

the capillary pressure empirical model and the relative permeability empirical models of the micro-709

link significantly influence these results. In this study, the capillary pressure model, as depicted in710

Figure 6a, exhibits typical water-wet behavior.711
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparative analysis of relative permeability for water and oil for three Estaillades sub-volumes,

obtained during waterflooding using our multiscale pore network model, versus experimental results. A good

agreement between the modeling and experimental data is evident. The error bars represent the uncertainty in

the experimental measurements, determined by taking into account the uncertainties in the input parameters

and the uncertainty ranges evaluated by including the saturation profile in addition to experimental uncertainty

(see [Zhang et al., 2023b] for further details). The blue dotted line corresponds to the experimental relative

permeability of water, and the red dashed line corresponds to the experimental relative permeability of oil.

Figures (a) and (b) correspond to sub-volume 1, Figures (c) and (d) correspond to sub-volume 2, and Figures (e)

and (f) correspond to sub-volume 3. These modeling results are derived from 310 realizations.

712
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The choice of empirical models to describe flow in micro-links is critical and a preliminary721

understanding of the relationship between wettability and sub-resolution pore structure is necessary.722

Experimental parameters such as permeability, formation factor, and MICP can provide valuable723

insights into these uncertain aspects. Additionally, a general understanding of wettability is beneficial724

in assigning the correct empirical model for micro-links.725

This approach can aid in characterizing and understanding both single and two-phase flow726

through all types of porous materials with wide pore size distributions.727

4 Conclusions and future work728

In this study, we present a novel workflow to develop a multiscale pore network model capable729

of simulating fluid flow in heterogeneous rocks with unresolved porosity. The model incorporates730

Darcy-type elements known as micro-links, enabling accurate representation of the pore space and731

flow behavior. Incorporation of this unresolved pore space in modeling is crucial for obtaining732

accurate pore volume measurements and ensuring correct accessibility and flow.733

We treat sub-resolution porosity as micro-links that connect the nearest resolved pores found734

using dilation-based algorithm. This algorithm assigns each grain voxel, which contains sub-735

resolution porosity, to its two closest resolved pores. Voxel groups with the same two nearest pores736

are categorized as a micro-link connecting them. We employ empirical models to calculate capillary737

pressure and relative permeability through the micro-links.738

We test our model on Estaillades carbonate which has a wide range of pore size. We use739

differential imaging to identify both the resolved macro-pore space and unresolved porosity. We740

first tune the model parameters to provide a good match to the measured permeability and drainage741

capillary pressure. We assign two types of micro-links based on their porosity: the more porous links742

are assumed to be principally associated with pores whose size is just below the image resolution,743

while lower porosity elements represent smaller micro-porosity.744

We predict both drainage and waterflooding relative permeabilities for water-wet conditions.745

The predicted waterflood relative permeabilities fall within the uncertainty of the experimental746

measurements.747

In the future, our intention is to expand the application of this methodology, coupled with our748

wettability optimization workflow [Foroughi et al., 2020, 2021], across a diverse range of datasets.749
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5 Appendix759

5.1 Experimental Procedure760

The experimental procedure was akin to other studies on intermittency by Gao et al. [2019],761

consisting of the following steps:762

1. The flow cell was subjected to a confining pressure of 2 MPa to compress the Viton sleeve763

around the rock sample, preventing fluid bypass. Two dry (air) scans were performed on the764

upper and lower sections of the sample over an 80-minute period at ambient conditions. The765

overlap between the scans was approximately 25%, facilitating the stitching of the two scans766

post-reconstruction.767

2. CO2 was injected into the rock sample for over 30 min to displace the air.768

3. Injection of brine followed, achieving complete saturation of the sample. A differential769

pressure transducer (PD-33X, Keller) was positioned along the tubing.770

4. The sample was flushed with over 1000 pore volumes of brine at 1 mL/min to ensure the rock771

was completely filled with brine.772

5. Two brine scans, similar to the dry scans, were captured over 80 min. A back pressure of773

2000 kPa was set for the entire system and the confining pressure was adjusted to 4 MPa.774

6. Primary drainage ensued with the injection of oil at a high flow rate of 2 mL/min for 30 min.775

This allowed us to achieve a uniform initial brine saturation along the sample.776

7. The injection of oil continued at a flow rate of 0.02 mL/min, while the brine fractional flow777

was set to 0. Injection proceeded until a steady state was reached, identifiable by a constant778

pressure drop sustained for over 2 hours. In our experiment, approximately 24 hours was779

required to attain this state. Subsequently, scans were taken at the same position of the core780

over an 80-minute period without interruption of the flow.781

8. Step 7 replicated for fractional flows, 𝑓𝑤 , of 0.15, 0.3, 0.5, 0.7, and 0.85. The total volumetric782

flow rate remained fixed as the oil flow rate decreased from 0.017 mL/min to 0.003 mL/min783

and the brine flow rate increased from 0.003 mL/min to 0.017 mL/min. This entire process784

represented an imbibition displacement in this water-wet sample (brine as the wetting phase).785

Concurrently, the pressure drop across the entire sample was recorded. Reaching a steady786

state for each fractional flow experiment took approximately 16–25 hours. Two scans were787

performed at the same position of the core over an 80-minute period without halting the flow.788
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9. Brine was injected at a low flow rate (0.02 mL/min) for 30 min to achieve the residual789

oil saturation. Then, brine injection continued at 0.02 mL/min to measure the steady-state790

pressure difference at a fractional flow of 1.791

10. Following a thorough cleaning of all the tubing and end fittings used in the experiment, steps792

7 to 9 were applied to the entire system excluding the rock sample. The pressure drops of the793

tubing itself were recorded at all fractional flows, ranging from 2 kPa to 20 kPa. The minimum794

pressure drop was obtained when 𝑓𝑤 was 0, while the maximum was achieved when 𝑓𝑤 was795

0.85.796

11. The pressure differences along the cores were computed by subtracting the pressure drops797

along the tubing (measured in step 10) from the total pressure drops (measured from steps 7798

to 9).799
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