References
1. Small E. Evolution and Classification of Cannabis sativa (Marijuana,
Hemp) in Relation to Human Utilization. Botanical Review.
2015;81:189–294.
2. Guindon J, Hohmann AG. Cannabinoid CB2 receptors: a therapeutic
target for the treatment of inflammatory and neuropathic pain. Br J
Pharmacol. 2008;153:319-34.
3. Jain R, Balhara YP. Neurobiology of cannabis addiction. Indian J
Physiol Pharmacol. 2008;52:217-32.
4. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three
plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and
delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199-215.
5. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain.
Science. 2002;296:678-82.
6. Mechoulam R, Fride E, Di Marzo V. Endocannabinoids. Eur J Pharmacol.
1998;359:1-18.
7. Balant M, Gras A, Ruz M, Valles J, Vitales D, Garnatje T. Traditional
uses of Cannabis: An analysis of the CANNUSE database. J Ethnopharmacol.
2021;279:114362.
8. Balant M, Gras A, Galvez F, Garnatje T, Valles J, Vitales D. CANNUSE,
a database of traditional Cannabis uses-an opportunity for new research.
Database (Oxford). 2021;2021.
9. Sharma P, Murthy P, Bharath MM. Chemistry, metabolism, and toxicology
of cannabis: clinical implications. Iran J Psychiatry. 2012;7:149-56.
10. Bloomfield MA, Ashok AH, Volkow ND, Howes OD. The effects of
Delta(9)-tetrahydrocannabinol on the dopamine system. Nature.
2016;539:369-77.
11. Mouslech Z, Valla V. Endocannabinoid system: An overview of its
potential in current medical practice. Neuro Endocrinol Lett.
2009;30:153-79.
12. Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids:
endogenous cannabinoid receptor ligands with neuromodulatory action.
Trends Neurosci. 1998;21:521-8.
13. Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS
Neurol Disord Drug Targets. 2009;8:403-21.
14. Costentin J. [Neuropsychopharmacology of
delta-9-tetrahydrocannabinol]. Ann Pharm Fr. 2008;66:219-31.
15. Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of
molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic
Clin Pharmacol Toxicol. 2022;130:439-56.
16. Bhunia S, Kolishetti N, Arias AY, Vashist A, Nair M. Cannabidiol for
neurodegenerative disorders: A comprehensive review. Front Pharmacol.
2022;13:989717.
17. Williams A. Defining neurodegenerative diseases. BMJ.
2002;324:1465-6.
18. Katsnelson A, De Strooper B, Zoghbi HY. Neurodegeneration: From
cellular concepts to clinical applications. Sci Transl Med.
2016;8:364ps18.
19. Neri S, Mastroianni G, Gardella E, Aguglia U, Rubboli G. Epilepsy in
neurodegenerative diseases. Epileptic Disord. 2022;24:249-73.
20. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al.
Distinct tau prion strains propagate in cells and mice and define
different tauopathies. Neuron. 2014;82:1271-88.
21. Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion
concept. Annu Rev Neurosci. 2015;38:87-103.
22. Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y. Is
the vulnerability of neurons in the substantia nigra of patients with
Parkinson’s disease related to their neuromelanin content? J Neurochem.
1992;59:1080-9.
23. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, et al.
Different species of alpha-synuclein oligomers induce calcium influx and
seeding. J Neurosci. 2007;27:9220-32.
24. Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P,
et al. Nitrated alpha-synuclein and microglial neuroregulatory
activities. J Neuroimmune Pharmacol. 2008;3:59-74.
25. Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, et al. On the
mechanism of internalization of alpha-synuclein into microglia: roles of
ganglioside GM1 and lipid raft. J Neurochem. 2009;110:400-11.
26. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al.
Rising prevalence of multiple sclerosis worldwide: Insights from the
Atlas of MS, third edition. Mult Scler. 2020;26:1816-21.
27. Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis.
Nat Rev Microbiol. 2023;21:51-64.
28. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis:
pathology of the newly forming lesion. Ann Neurol. 2004;55:458-68.
29. Russo E, Guy GW. A tale of two cannabinoids: the therapeutic
rationale for combining tetrahydrocannabinol and cannabidiol. Med
Hypotheses. 2006;66:234-46.
30. Angehagen M, Ben-Menachem E, Shank R, Ronnback L, Hansson E.
Topiramate modulation of kainate-induced calcium currents is inversely
related to channel phosphorylation level. J Neurochem. 2004;88:320-5.
31. Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, et
al. Cannabis sativa: A comprehensive ethnopharmacological review of a
medicinal plant with a long history. J Ethnopharmacol. 2018;227:300-15.
32. Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli
G, Memo M, et al. Cannabinoids in health and disease: Pharmacological
potential in metabolic syndrome and neuroinflammation. Hormone molecular
biology and clinical investigation. 2018;36.
33. Gilman JM, Schuster RM, Potter KW, Schmitt W, Wheeler G, Pachas GN,
et al. Effect of Medical Marijuana Card Ownership on Pain, Insomnia, and
Affective Disorder Symptoms in Adults: A Randomized Clinical Trial. JAMA
Netw Open. 2022;5:e222106.
34. Zloto O, Weisman A, Avisar I, Serlin T, Bar-Lev L, Priel A, et al.
Medical cannabis oil for benign essential blepharospasm: a prospective,
randomized controlled pilot study. Graefes Arch Clin Exp Ophthalmol.
2022;260:1707-12.
35. Almada RC, Dos Anjos-Garcia T, da Silva JA, Pigatto GR, Wotjak CT,
Coimbra NC. The modulation of striatonigral and nigrotectal pathways by
CB1 signalling in the substantia nigra pars reticulata regulates panic
elicited in mice by urutu-cruzeiro lancehead pit vipers. Behav Brain
Res. 2021;401:112996.
36. Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded
endocannabinoid system in neurological disorders. Nat Rev Neurol.
2020;16:9-29.
37. French ED. delta9-Tetrahydrocannabinol excites rat VTA dopamine
neurons through activation of cannabinoid CB1 but not opioid receptors.
Neurosci Lett. 1997;226:159-62.
38. Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of
Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative
Disorders. Front Psychiatry. 2022;13:828895.
39. Barre T, Di Marzo V, Marcellin F, Burra P, Carrieri P. Expanding
Research on Cannabis-Based Medicines for Liver Steatosis: A Low-Risk
High-Reward Way Out of the Present Deadlock? Cannabis Cannabinoid Res.
2022.
40. Lauritano A, Cipollone I, Verde R, Kalkan H, Moriello C, Iannotti
FA, et al. The endocannabinoidome mediator N-oleoylglycine is a novel
protective agent against 1-methyl-4-phenyl-pyridinium-induced
neurotoxicity. Front Aging Neurosci. 2022;14:926634.
41. Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and
Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS
Disorders. Int J Mol Sci. 2022;23.
42. Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, et
al. A biosynthetic pathway for anandamide. Proc Natl Acad Sci U S A.
2006;103:13345-50.
43. De Petrocellis L, Di Marzo V. An introduction to the endocannabinoid
system: from the early to the latest concepts. Best Pract Res Clin
Endocrinol Metab. 2009;23:1-15.
44. Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, et al.
Multiple pathways involved in the biosynthesis of anandamide.
Neuropharmacology. 2008;54:1-7.
45. Sun YX, Tsuboi K, Okamoto Y, Tonai T, Murakami M, Kudo I, et al.
Biosynthesis of anandamide and N-palmitoylethanolamine by sequential
actions of phospholipase A2 and lysophospholipase D. Biochem J.
2004;380:749-56.
46. Simon GM, Cravatt BF. Anandamide biosynthesis catalyzed by the
phosphodiesterase GDE1 and detection of glycerophospho-N-acyl
ethanolamine precursors in mouse brain. J Biol Chem. 2008;283:9341-9.
47. Dos Anjos-Garcia T, Coimbra NC. Opposing roles of dorsomedial
hypothalamic CB1 and TRPV1 receptors in anandamide signaling during the
panic-like response elicited in mice by Brazilian rainbow Boidae snakes.
Psychopharmacology (Berl). 2019;236:1863-74.
48. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M.
Endocannabinoid-mediated control of synaptic transmission. Physiol Rev.
2009;89:309-80.
49. Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids.
Prostaglandins Leukot Essent Fatty Acids. 2002;66:211-20.
50. Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol.
2003;140:790-801.
51. Baker D, Pryce G, Davies WL, Hiley CR. In silico patent searching
reveals a new cannabinoid receptor. Trends Pharmacol Sci. 2006;27:1-4.
52. Janecki M, Graczyk M, Lewandowska AA, Pawlak L. Anti-Inflammatory
and Antiviral Effects of Cannabinoids in Inhibiting and Preventing
SARS-CoV-2 Infection. Int J Mol Sci. 2022;23.
53. Mendiguren A, Aostri E, Alberdi E, Perez-Samartin A, Pineda J.
Functional characterization of cannabidiol effect on the serotonergic
neurons of the dorsal raphe nucleus in rat brain slices. Front
Pharmacol. 2022;13:956886.
54. Lillo J, Raich I, Silva L, Zafra DA, Lillo A, Ferreiro-Vera C, et
al. Regulation of Expression of Cannabinoid CB(2) and Serotonin 5HT(1A)
Receptor Complexes by Cannabinoids in Animal Models of Hypoxia and in
Oxygen/Glucose-Deprived Neurons. Int J Mol Sci. 2022;23.
55. Ahmed F, Torrens A, Mahler SV, Ferlenghi F, Huestis MA, Piomelli D.
A Sensitive Ultrahigh-Performance Liquid Chromatography/Tandem Mass
Spectrometry Method for the Simultaneous Analysis of Phytocannabinoids
and Endocannabinoids in Plasma and Brain. Cannabis Cannabinoid Res.
2022.
56. Asth L, Iglesias LP, De Oliveira AC, Moraes MFD, Moreira FA.
Exploiting cannabinoid and vanilloid mechanisms for epilepsy treatment.
Epilepsy Behav. 2021;121:106832.
57. Cristino L, Starowicz K, De Petrocellis L, Morishita J, Ueda N,
Guglielmotti V, et al. Immunohistochemical localization of anabolic and
catabolic enzymes for anandamide and other putative endovanilloids in
the hippocampus and cerebellar cortex of the mouse brain. Neuroscience.
2008;151:955-68.
58. Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di
Marzo V. Immunohistochemical localization of cannabinoid type 1 and
vanilloid transient receptor potential vanilloid type 1 receptors in the
mouse brain. Neuroscience. 2006;139:1405-15.
59. Etemad L, Karimi G, Alavi MS, Roohbakhsh A. Pharmacological effects
of cannabidiol by transient receptor potential channels. Life Sci.
2022;300:120582.
60. de la Harpe A, Beukes N, Frost CL. CBD activation of TRPV1 induces
oxidative signaling and subsequent ER stress in breast cancer cell
lines. Biotechnol Appl Biochem. 2022;69:420-30.
61. Sun FJ, Guo W, Zheng DH, Zhang CQ, Li S, Liu SY, et al. Increased
expression of TRPV1 in the cortex and hippocampus from patients with
mesial temporal lobe epilepsy. J Mol Neurosci. 2013;49:182-93.
62. Bhaskaran MD, Smith BN. Cannabinoid-mediated inhibition of recurrent
excitatory circuitry in the dentate gyrus in a mouse model of temporal
lobe epilepsy. PLoS One. 2010;5:e10683.
63. Moreira FA, Aguiar DC, Terzian AL, Guimaraes FS, Wotjak CT.
Cannabinoid type 1 receptors and transient receptor potential vanilloid
type 1 channels in fear and anxiety-two sides of one coin? Neuroscience.
2012;204:186-92.
64. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo
V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator
action of anandamide. Nature. 1999;400:452-7.
65. Ross RA, Gibson TM, Brockie HC, Leslie M, Pashmi G, Craib SJ, et al.
Structure-activity relationship for the endogenous cannabinoid,
anandamide, and certain of its analogues at vanilloid receptors in
transfected cells and vas deferens. Br J Pharmacol. 2001;132:631-40.
66. Fernandez-Ruiz J, Sagredo O, Pazos MR, Garcia C, Pertwee R,
Mechoulam R, et al. Cannabidiol for neurodegenerative disorders:
important new clinical applications for this phytocannabinoid? Br J Clin
Pharmacol. 2013;75:323-33.
67. Bevilaqua L, Ardenghi P, Schroder N, Bromberg E, Schmitz PK,
Schaeffer E, et al. Drugs acting upon the cyclic adenosine
monophosphate/protein kinase A signalling pathway modulate memory
consolidation when given late after training into rat hippocampus but
not amygdala. Behav Pharmacol. 1997;8:331-8.
68. Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of
cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30:1037-43.
69. Campos AC, Fogaca MV, Sonego AB, Guimaraes FS. Cannabidiol,
neuroprotection and neuropsychiatric disorders. Pharmacol Res.
2016;112:119-27.
70. Campos AC, Ferreira FR, Guimaraes FS. Cannabidiol blocks
long-lasting behavioral consequences of predator threat stress: possible
involvement of 5HT1A receptors. J Psychiatr Res. 2012;46:1501-10.
71. Khan AU, Falconi-Sobrinho LL, Dos Anjos-Garcia T, de Fatima Dos
Santos Sampaio M, de Souza Crippa JA, Menescal-de-Oliveira L, et al.
Cannabidiol-induced panicolytic-like effects and fear-induced
antinociception impairment: the role of the CB1 receptor in the
ventromedial hypothalamus. Psychopharmacology (Berl). 2020;237:1063-79.
72. Franzen JM, Werle I, Vanz F, de Oliveira BB, Martins Nascimento LM,
Guimaraes FS, et al. Cannabidiol attenuates fear memory expression in
female rats via hippocampal 5-HT(1A) but not CB1 or CB2 receptors.
Neuropharmacology. 2023;223:109316.
73. Fogaca MV, Reis FM, Campos AC, Guimaraes FS. Effects of
intra-prelimbic prefrontal cortex injection of cannabidiol on
anxiety-like behavior: involvement of 5HT1A receptors and previous
stressful experience. Eur Neuropsychopharmacol. 2014;24:410-9.
74. Fogaca MV, Gomes FV, Moreira FA, Guimaraes FS, Aguiar DC. Effects of
glutamate NMDA and TRPV1 receptor antagonists on the biphasic responses
to anandamide injected into the dorsolateral periaqueductal grey of
Wistar rats. Psychopharmacology (Berl). 2013;226:579-87.
75. Campos AC, Guimaraes FS. Evidence for a potential role for TRPV1
receptors in the dorsolateral periaqueductal gray in the attenuation of
the anxiolytic effects of cannabinoids. Prog Neuropsychopharmacol Biol
Psychiatry. 2009;33:1517-21.
76. Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S,
Fletcher PJ, et al. Cannabidiol, a non-psychotropic component of
cannabis, attenuates vomiting and nausea-like behaviour via indirect
agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe
nucleus. Br J Pharmacol. 2012;165:2620-34.
77. Fogaca MV, Campos AC, Coelho LD, Duman RS, Guimaraes FS. The
anxiolytic effects of cannabidiol in chronically stressed mice are
mediated by the endocannabinoid system: Role of neurogenesis and
dendritic remodeling. Neuropharmacology. 2018;135:22-33.
78. De Gregorio D, McLaughlin RJ, Posa L, Ochoa-Sanchez R, Enns J,
Lopez-Canul M, et al. Cannabidiol modulates serotonergic transmission
and reverses both allodynia and anxiety-like behavior in a model of
neuropathic pain. Pain. 2019;160:136-50.
79. Vallee A. Cannabidiol and SARS-CoV-2 Infection. Front Immunol.
2022;13:870787.
80. Jung T, Hudson R, Rushlow W, Laviolette SR. Functional interactions
between cannabinoids, omega-3 fatty acids, and peroxisome
proliferator-activated receptors: Implications for mental health
pharmacotherapies. Eur J Neurosci. 2022;55:1088-100.
81. O’Sullivan SE. An update on PPAR activation by cannabinoids. Br J
Pharmacol. 2016;173:1899-910.
82. Pistis M, O’Sullivan SE. The Role of Nuclear Hormone Receptors in
Cannabinoid Function. Adv Pharmacol. 2017;80:291-328.
83. Lopez-Gomez L, Szymaszkiewicz A, Zielinska M, Abalo R. The Enteric
Glia and Its Modulation by the Endocannabinoid System, a New Target for
Cannabinoid-Based Nutraceuticals? Molecules. 2022;27.
84. Keppel Hesselink JM, Kopsky DJ, Sajben NL. Vulvodynia and
proctodynia treated with topical baclofen 5 % and
palmitoylethanolamide. Arch Gynecol Obstet. 2014;290:389-93.
85. Godlewski G, Offertaler L, Wagner JA, Kunos G. Receptors for
acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat.
2009;89:105-11.
86. Ross RA. The enigmatic pharmacology of GPR55. Trends Pharmacol Sci.
2009;30:156-63.
87. Moriconi A, Cerbara I, Maccarrone M, Topai A. GPR55: Current
knowledge and future perspectives of a purported ”Type-3” cannabinoid
receptor. Curr Med Chem. 2010;17:1411-29.
88. Guerrero-Alba R, Barragan-Iglesias P, Gonzalez-Hernandez A,
Valdez-Morales EE, Granados-Soto V, Condes-Lara M, et al. Some
Prospective Alternatives for Treating Pain: The Endocannabinoid System
and Its Putative Receptors GPR18 and GPR55. Front Pharmacol.
2018;9:1496.
89. Tanaka K, Mayne L, Khalil A, Baartz D, Eriksson L, Mortlock SA, et
al. The role of the endocannabinoid system in aetiopathogenesis of
endometriosis: A potential therapeutic target. Eur J Obstet Gynecol
Reprod Biol. 2020;244:87-94.
90. Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis
and its constituents for cancer: History, biogenesis, chemistry and
pharmacological activities. Pharmacol Res. 2021;163:105302.
91. Celorrio M, Rojo-Bustamante E, Fernandez-Suarez D, Saez E,
Estella-Hermoso de Mendoza A, Muller CE, et al. GPR55: A therapeutic
target for Parkinson’s disease? Neuropharmacology. 2017;125:319-32.
92. Martinez-Pinilla E, Aguinaga D, Navarro G, Rico AJ, Oyarzabal J,
Sanchez-Arias JA, et al. Targeting CB1 and GPR55 Endocannabinoid
Receptors as a Potential Neuroprotective Approach for Parkinson’s
Disease. Mol Neurobiol. 2019;56:5900-10.
93. Martinez-Pinilla E, Rico AJ, Rivas-Santisteban R, Lillo J, Roda E,
Navarro G, et al. Expression of GPR55 and either cannabinoid CB1 or CB2
heteroreceptor complexes in the caudate, putamen, and accumbens nuclei
of control, parkinsonian, and dyskinetic non-human primates. Brain
Struct Funct. 2020;225:2153-64.
94. Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE,
Mendez-Diaz M, Prospero-Garcia O. Possible role of hippocampal GPR55 in
spatial learning and memory in rats. Acta Neurobiol Exp (Wars).
2018;78:41-50.
95. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J,
et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J
Pharmacol. 2007;152:1092-101.
96. Zagzoog A, Mohamed KA, Kim HJJ, Kim ED, Frank CS, Black T, et al. In
vitro and in vivo pharmacological activity of minor cannabinoids
isolated from Cannabis sativa. Sci Rep. 2020;10:20405.
97. Stafstrom CE. Epilepsy: a review of selected clinical syndromes and
advances in basic science. J Cereb Blood Flow Metab. 2006;26:983-1004.
98. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern
G, et al. Definition of drug resistant epilepsy: consensus proposal by
the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.
Epilepsia. 2010;51:1069-77.
99. Silvestro S, Mammana S, Cavalli E, Bramanti P, Mazzon E. Use of
Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in
Clinical Trials. Molecules. 2019;24.
100. Bahremand A, Nasrabady SE, Shafaroodi H, Ghasemi M, Dehpour AR.
Involvement of nitrergic system in the anticonvulsant effect of the
cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure
in mice. Epilepsy Res. 2009;84:110-9.
101. Consroe P, Benedito MA, Leite JR, Carlini EA, Mechoulam R. Effects
of cannabidiol on behavioral seizures caused by convulsant drugs or
current in mice. Eur J Pharmacol. 1982;83:293-8.
102. Consroe P, Wolkin A. Cannabidiol–antiepileptic drug comparisons
and interactions in experimentally induced seizures in rats. J Pharmacol
Exp Ther. 1977;201:26-32.
103. Jones NA, Glyn SE, Akiyama S, Hill TD, Hill AJ, Weston SE, et al.
Cannabidiol exerts anti-convulsant effects in animal models of temporal
lobe and partial seizures. Seizure. 2012;21:344-52.
104. Shirazi-zand Z, Ahmad-Molaei L, Motamedi F, Naderi N. The role of
potassium BK channels in anticonvulsant effect of cannabidiol in
pentylenetetrazole and maximal electroshock models of seizure in mice.
Epilepsy Behav. 2013;28:1-7.
105. Di Maio R, Cannon JR, Greenamyre JT. Post-status epilepticus
treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic
epileptic hippocampal damage in rats. Neurobiol Dis. 2015;73:356-65.
106. Vinogradova LV, Shatskova AB, van Rijn CM. Pro-epileptic effects of
the cannabinoid receptor antagonist SR141716 in a model of audiogenic
epilepsy. Epilepsy Res. 2011;96:250-6.
107. Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ. The
endogenous cannabinoid system regulates seizure frequency and duration
in a model of temporal lobe epilepsy. J Pharmacol Exp Ther.
2003;307:129-37.
108. Huizenga MN, Wicker E, Beck VC, Forcelli PA. Anticonvulsant effect
of cannabinoid receptor agonists in models of seizures in developing
rats. Epilepsia. 2017;58:1593-602.
109. Lerner R, Post J, Loch S, Lutz B, Bindila L. Targeting brain and
peripheral plasticity of the lipidome in acute kainic acid-induced
epileptic seizures in mice via quantitative mass spectrometry. Biochim
Biophys Acta Mol Cell Biol Lipids. 2017;1862:255-67.
110. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A,
et al. CB1 cannabinoid receptors and on-demand defense against
excitotoxicity. Science. 2003;302:84-8.
111. Schlicker E, Kathmann M. Modulation of transmitter release via
presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001;22:565-72.
112. Alger BE. Retrograde signaling in the regulation of synaptic
transmission: focus on endocannabinoids. Prog Neurobiol. 2002;68:247-86.
113. Bilbao A, Spanagel R. Medical cannabinoids: a pharmacology-based
systematic review and meta-analysis for all relevant medical
indications. BMC Med. 2022;20:259.
114. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ.
Molecular Targets of Cannabidiol in Neurological Disorders.
Neurotherapeutics. 2015;12:699-730.
115. Gray RA, Whalley BJ. The proposed mechanisms of action of CBD in
epilepsy. Epileptic Disord. 2020;22:10-5.
116. Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E,
et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and
cannabidiol (CBD), activate and desensitize transient receptor potential
vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of
neuronal hyperexcitability. ACS Chem Neurosci. 2014;5:1131-41.
117. Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C,
et al. Cannabidiol: pharmacology and potential therapeutic role in
epilepsy and other neuropsychiatric disorders. Epilepsia.
2014;55:791-802.
118. Franco V, Perucca E. Pharmacological and Therapeutic Properties of
Cannabidiol for Epilepsy. Drugs. 2019;79:1435-54.
119. Maggio N, Shavit Stein E, Segal M. Cannabidiol Regulates Long Term
Potentiation Following Status Epilepticus: Mediation by Calcium Stores
and Serotonin. Front Mol Neurosci. 2018;11:32.
120. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO.
Cannabidiol–recent advances. Chem Biodivers. 2007;4:1678-92.
121. Pertwee RG. GPR55: a new member of the cannabinoid receptor clan?
Br J Pharmacol. 2007;152:984-6.
122. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. Cannabidiol
targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci.
2009;29:2053-63.
123. Jones NA, Hill AJ, Smith I, Bevan SA, Williams CM, Whalley BJ, et
al. Cannabidiol displays antiepileptiform and antiseizure properties in
vitro and in vivo. J Pharmacol Exp Ther. 2010;332:569-77.
124. Do Val-da Silva RA, Peixoto-Santos JE, Kandratavicius L, De Ross
JB, Esteves I, De Martinis BS, et al. Protective Effects of Cannabidiol
against Seizures and Neuronal Death in a Rat Model of Mesial Temporal
Lobe Epilepsy. Front Pharmacol. 2017;8:131.
125. Khan AA, Shekh-Ahmad T, Khalil A, Walker MC, Ali AB. Cannabidiol
exerts antiepileptic effects by restoring hippocampal interneuron
functions in a temporal lobe epilepsy model. Br J Pharmacol.
2018;175:2097-115.
126. Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic Potential of
Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals.
Pharmacology. 2022;107:131-49.
127. Hill AJ, Mercier MS, Hill TD, Glyn SE, Jones NA, Yamasaki Y, et al.
Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol.
2012;167:1629-42.
128. Hill TD, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM, et
al. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse
and rat via a CB1 receptor-independent mechanism. Br J Pharmacol.
2013;170:679-92.
129. Perry MS. Don’t Fear the Reefer-Evidence Mounts for Plant-Based
Cannabidiol as Treatment for Epilepsy. Epilepsy Curr. 2019;19:93-5.
130. VanLandingham KE, Crockett J, Taylor L, Morrison G. A Phase 2,
Double-Blind, Placebo-Controlled Trial to Investigate Potential
Drug-Drug Interactions Between Cannabidiol and Clobazam. J Clin
Pharmacol. 2020;60:1304-13.
131. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502-17.
132. Coles A, Deans J, Compston A. Campath-1H treatment of multiple
sclerosis: lessons from the bedside for the bench. Clin Neurol
Neurosurg. 2004;106:270-4.
133. Guimarães J, Sá MJ. Esclerose múltipla e outras doenças
inflamatórias e desmielinizantes do sistema nervoso central. In: Sá MJ,
editor. Neurologia clínica: Compreender as doenças neurológicas. 2 ed.
Porto: Edições Universidade Fernando Pessoa; 2014. p. 373-411.
134. Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis.
Clin Immunol. 2012;142:2-8.
135. Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest.
2012;122:1180-8.
136. Ingram G, Pearson OR. Cannabis and multiple sclerosis. Pract
Neurol. 2019;19:310-5.
137. Brucki SM, Frota NA, Schestatsky P, Souza AH, Carvalho VN, Manreza
ML, et al. [Cannabinoids in neurology–Brazilian Academy of
Neurology]. Arq Neuropsiquiatr. 2015;73:371-4.
138. Notcutt W, Langford R, Davies P, Ratcliffe S, Potts R. A
placebo-controlled, parallel-group, randomized withdrawal study of
subjects with symptoms of spasticity due to multiple sclerosis who are
receiving long-term Sativex(R) (nabiximols). Mult Scler. 2012;18:219-28.
139. Maccarrone M, Maldonado R, Casas M, Henze T, Centonze D.
Cannabinoids therapeutic use: what is our current understanding
following the introduction of THC, THC:CBD oromucosal spray and others?
Expert Rev Clin Pharmacol. 2017;10:443-55.
140. Mecha M, Carrillo-Salinas FJ, Feliu A, Mestre L, Guaza C.
Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A
Mini-Review. Front Cell Neurosci. 2020;14:34.
141. Russo EB. Cannabis Therapeutics and the Future of Neurology. Front
Integr Neurosci. 2018;12:51.
142. Montero-Oleas N, Arevalo-Rodriguez I, Nunez-Gonzalez S,
Viteri-Garcia A, Simancas-Racines D. Therapeutic use of cannabis and
cannabinoids: an evidence mapping and appraisal of systematic reviews.
BMC Complement Med Ther. 2020;20:12.
143. Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR.
Meta-analysis of cannabis based treatments for neuropathic and multiple
sclerosis-related pain. Curr Med Res Opin. 2007;23:17-24.
144. Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova
O, et al. A randomized, double-blind, placebo-controlled,
parallel-group, enriched-design study of nabiximols* (Sativex((R)) ), as
add-on therapy, in subjects with refractory spasticity caused by
multiple sclerosis. Eur J Neurol. 2011;18:1122-31.
145. Langford RM, Mares J, Novotna A, Vachova M, Novakova I, Notcutt W,
et al. A double-blind, randomized, placebo-controlled, parallel-group
study of THC/CBD oromucosal spray in combination with the existing
treatment regimen, in the relief of central neuropathic pain in patients
with multiple sclerosis. J Neurol. 2013;260:984-97.
146. Feliu A, Moreno-Martet M, Mecha M, Carrillo-Salinas FJ, de Lago E,
Fernandez-Ruiz J, et al. A Sativex((R)) -like combination of
phytocannabinoids as a disease-modifying therapy in a viral model of
multiple sclerosis. Br J Pharmacol. 2015;172:3579-95.
147. Al-Ghezi ZZ, Miranda K, Nagarkatti M, Nagarkatti PS. Combination of
Cannabinoids, Delta9- Tetrahydrocannabinol and Cannabidiol, Ameliorates
Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through
Regulation of miRNA-Mediated Signaling Pathways. Front Immunol.
2019;10:1921.
148. Braak H, Del Tredici K. Neuropathological Staging of Brain
Pathology in Sporadic Parkinson’s disease: Separating the Wheat from the
Chaff. J Parkinsons Dis. 2017;7:S71-S85.
149. Mack JM, Schamne MG, Sampaio TB, Pertile RA, Fernandes PA, Markus
RP, et al. Melatoninergic System in Parkinson’s Disease: From
Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxid
Med Cell Longev. 2016;2016:3472032.
150. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S,
Chang D, et al. Identification of novel risk loci, causal insights, and
heritable risk for Parkinson’s disease: a meta-analysis of genome-wide
association studies. Lancet Neurol. 2019;18:1091-102.
151. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in
the development of Parkinson’s disease-related pathology. Cell Tissue
Res. 2004;318:121-34.
152. Yasuda T, Nakata Y, Mochizuki H. alpha-Synuclein and neuronal cell
death. Mol Neurobiol. 2013;47:466-83.
153. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic
factors in Alzheimer’s and Parkinson’s diseases: implications for
pathogenesis and therapy. Neural Regen Res. 2017;12:549-57.
154. Garcia C, Palomo-Garo C, Gomez-Galvez Y, Fernandez-Ruiz J.
Cannabinoid-dopamine interactions in the physiology and physiopathology
of the basal ganglia. Br J Pharmacol. 2016;173:2069-79.
155. Oz M, Jaligam V, Galadari S, Petroianu G, Shuba YM, Shippenberg TS.
The endogenous cannabinoid, anandamide, inhibits dopamine transporter
function by a receptor-independent mechanism. J Neurochem.
2010;112:1454-64.
156. Pisani A, Fezza F, Galati S, Battista N, Napolitano S, Finazzi-Agro
A, et al. High endogenous cannabinoid levels in the cerebrospinal fluid
of untreated Parkinson’s disease patients. Ann Neurol. 2005;57:777-9.
157. Garcia MC, Cinquina V, Palomo-Garo C, Rabano A, Fernandez-Ruiz J.
Identification of CB(2) receptors in human nigral neurons that
degenerate in Parkinson’s disease. Neurosci Lett. 2015;587:1-4.
158. Van Laere K, Casteels C, Lunskens S, Goffin K, Grachev ID, Bormans
G, et al. Regional changes in type 1 cannabinoid receptor availability
in Parkinson’s disease in vivo. Neurobiol Aging. 2012;33:620 e1-8.
159. Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, et al.
The decrease of dopamine D(2)/D(3) receptor densities in the putamen and
nucleus caudatus goes parallel with maintained levels of CB(1)
cannabinoid receptors in Parkinson’s disease: a preliminary
autoradiographic study with the selective dopamine D(2)/D(3) antagonist
[(3)H]raclopride and the novel CB(1) inverse agonist
[(1)(2)(5)I]SD7015. Brain Res Bull. 2012;87:504-10.
160. Song L, Yang X, Ma Y, Wu N, Liu Z. The CB1 cannabinoid receptor
agonist reduces L-DOPA-induced motor fluctuation and ERK1/2
phosphorylation in 6-OHDA-lesioned rats. Drug Des Devel Ther.
2014;8:2173-9.
161. Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C.
Potential of the cannabinoid CB(2) receptor as a pharmacological target
against inflammation in Parkinson’s disease. Prog Neuropsychopharmacol
Biol Psychiatry. 2016;64:200-8.
162. Carroll CB, Zeissler ML, Hanemann CO, Zajicek JP.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC) exerts a direct
neuroprotective effect in a human cell culture model of Parkinson’s
disease. Neuropathol Appl Neurobiol. 2012;38:535-47.
163. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R,
Fernandez-Ruiz J. Cannabinoids provide neuroprotection against
6-hydroxydopamine toxicity in vivo and in vitro: relevance to
Parkinson’s disease. Neurobiol Dis. 2005;19:96-107.
164. Nguyen CH, Krewenka C, Radad K, Kranner B, Huber A, Duvigneau JC,
et al. THC (Delta9-Tetrahydrocannabinol) Exerts Neuroprotective Effect
in Glutamate-affected Murine Primary Mesencephalic Cultures Through
Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving
CB1 Receptor-dependent Mechanism. Phytother Res. 2016;30:2044-52.
165. Moldzio R, Pacher T, Krewenka C, Kranner B, Novak J, Duvigneau JC,
et al. Effects of cannabinoids Delta(9)-tetrahydrocannabinol,
Delta(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected
murine mesencephalic cultures. Phytomedicine. 2012;19:819-24.
166. Zeissler ML, Eastwood J, McCorry K, Hanemann CO, Zajicek JP,
Carroll CB. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity
in SH-SY5Y cells by restoring proteins involved in mitochondrial
biogenesis. Oncotarget. 2016;7:46603-14.
167. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism.
Adv Physiol Educ. 2006;30:145-51.
168. Thanabalasingam SJ, Ranjith B, Jackson R, Wijeratne DT. Cannabis
and its derivatives for the use of motor symptoms in Parkinsonâ\euro™s
disease: a systematic review and meta-analysis. Therapeutic Advances in
Neurological Disorders. 2021;14:17562864211018561.
169. Heumann R, Moratalla R, Herrero MT, Chakrabarty K,
Druckerâ\euroColÃn R, Garciaâ\euroMontes JR, et al. Dyskinesia in
Parkinson’s disease: mechanisms and current nonâ\europharmacological
interventions. Journal of Neurochemistry. 2014;130:472-89.
170. Garcia-Arencibia M, Gonzalez S, de Lago E, Ramos JA, Mechoulam R,
Fernandez-Ruiz J. Evaluation of the neuroprotective effect of
cannabinoids in a rat model of Parkinson’s disease: importance of
antioxidant and cannabinoid receptor-independent properties. Brain Res.
2007;1134:162-70.
171. Gugliandolo A, Pollastro F, Bramanti P, Mazzon E. Cannabidiol
exerts protective effects in an in vitro model of Parkinson’s disease
activating AKT/mTOR pathway. Fitoterapia. 2020;143:104553.
172. Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R,
Fernandez-Ruiz J. Symptom-relieving and neuroprotective effects of the
phytocannabinoid Delta(9)-THCV in animal models of Parkinson’s disease.
Br J Pharmacol. 2011;163:1495-506.
173. Wang G, Zhu L, Zhao Y, Gao S, Sun D, Yuan J, et al. A natural
product from Cannabis sativa subsp. sativa inhibits
homeodomain-interacting protein kinase 2 (HIPK2), attenuating
MPP(+)-induced apoptosis in human neuroblastoma SH-SY5Y cells. Bioorg
Chem. 2017;72:64-73.
174. Santos NA, Martins NM, Sisti FM, Fernandes LS, Ferreira RS, Queiroz
RH, et al. The neuroprotection of cannabidiol against MPP(+)-induced
toxicity in PC12 cells involves trkA receptors, upregulation of axonal
and synaptic proteins, neuritogenesis, and might be relevant to
Parkinson’s disease. Toxicol In Vitro. 2015;30:231-40.
175. Wang L, Wu X, Yang G, Hu N, Zhao Z, Zhao L, et al. Cannabidiol
Alleviates the Damage to Dopaminergic Neurons in
1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinson’s Disease
Mice Via Regulating Neuronal Apoptosis and Neuroinflammation.
Neuroscience. 2022;498:64-72.
176. Ojha S, Javed H, Azimullah S, Haque ME. beta-Caryophyllene, a
phytocannabinoid attenuates oxidative stress, neuroinflammation, glial
activation, and salvages dopaminergic neurons in a rat model of
Parkinson disease. Mol Cell Biochem. 2016;418:59-70.
177. Javed H, Azimullah S, Haque ME, Ojha SK. Cannabinoid Type 2 (CB2)
Receptors Activation Protects against Oxidative Stress and
Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone
Model of Parkinson’s Disease. Front Neurosci. 2016;10:321.
178. Dos Santos RG, Hallak JEC, Crippa JAS. Neuropharmacological Effects
of the Main Phytocannabinoids: A Narrative Review. Adv Exp Med Biol.
2021;1264:29-45.