References
1. Burlá C, Camarano
AA, Kanso S, Fernandes D, Nunes R. Panorama prospectivo das demências no
Brasil: um enfoque demográfico. Ciênc Saúde Coletiva.
2013;18(10):2949-2956. doi:10.1590/S1413-81232013001000019
2. Sáiz-Vazquez O,
Puente-Martínez A, Pacheco-Bonrostro J, Ubillos-Landa S. Blood pressure
and Alzheimer’s disease: A review of meta-analysis. Front Neurol.
2023;13:1065335. doi:10.3389/fneur.2022.1065335
3. Patterson C. World
alzheimer report 2018. Published online 2018.
4. Bennett S, Thomas
AJ. Depression and dementia: Cause, consequence or coincidence?Maturitas. 2014;79(2):184-190.
doi:10.1016/j.maturitas.2014.05.009
5. Hakim A.
Perspectives on the complex links between depression and dementia.Front Aging Neurosci. 2022;14:821866.
doi:10.3389/fnagi.2022.821866
6. Morishima-Kawashima
M, Ihara Y. Alzheimer’s disease: ?-Amyloid protein and tau. J
Neurosci Res. 2002;70(3):392-401. doi:10.1002/jnr.10355
7. Rapp MA,
Schnaider-Beeri M, Purohit DP, Perl DP, Haroutunian V, Sano M. Increased
Neurofibrillary Tangles in Patients With Alzheimer Disease With Comorbid
Depression. Am J Geriatr Psychiatry. 2008;16(2):168-174.
doi:10.1097/JGP.0b013e31816029ec
8. Leinonen V,
Koivisto AM, Savolainen S, et al. Amyloid and tau proteins in cortical
brain biopsy and Alzheimer’s disease. Ann Neurol.
2010;68(4):446-453. doi:10.1002/ana.22100
9. Pluta R,
Ułamek-Kozioł M, Kocki J, et al. Expression of the Tau Protein and
Amyloid Protein Precursor Processing Genes in the CA3 Area of the
Hippocampus in the Ischemic Model of Alzheimer’s Disease in the Rat.Mol Neurobiol. 2020;57(2):1281-1290.
doi:10.1007/s12035-019-01799-z
10. Metaxas A,
Thygesen C, Briting SRR, Landau AM, Darvesh S, Finsen B. Increased
Inflammation and Unchanged Density of Synaptic Vesicle Glycoprotein 2A
(SV2A) in the Postmortem Frontal Cortex of Alzheimer’s Disease Patients.Front Cell Neurosci. 2019;13:538. doi:10.3389/fncel.2019.00538
11. Sáiz-Vázquez O,
Gracia-García P, Ubillos-Landa S, et al. Depression as a Risk Factor for
Alzheimer’s Disease: A Systematic Review of Longitudinal Meta-Analyses.J Clin Med. 2021;10(9):1809. doi:10.3390/jcm10091809
12. Haass C, Selkoe
DJ. Soluble protein oligomers in neurodegeneration: lessons from the
Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol.
2007;8(2):101-112. doi:10.1038/nrm2101
13. Miller RL, Dhavale
DD, O’Shea JY, et al. Quantifying regional α ‐synuclein, amyloid β, and
tau accumulation in lewy body dementia. Ann Clin Transl Neurol.
2022;9(2):106-121. doi:10.1002/acn3.51482
14. Canet G, Pineau F,
Zussy C, et al. Glucocorticoid receptors signaling impairment
potentiates amyloid‐β oligomers‐induced pathology in an acute model of
Alzheimer’s disease. FASEB J. 2020;34(1):1150-1168.
doi:10.1096/fj.201900723RRR
15. Ennis GE, An Y,
Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol
measures predict Alzheimer disease risk. Neurology.
2017;88(4):371-378. doi:10.1212/WNL.0000000000003537
16. Mifsud KR, Kennedy
CLM, Salatino S, et al. Distinct regulation of hippocampal
neuroplasticity and ciliary genes by corticosteroid receptors. Nat
Commun. 2021;12(1):4737. doi:10.1038/s41467-021-24967-z
17. Lv J, Chen L, Zhu
N, et al. Beta amyloid-induced time-dependent learning and memory
impairment: involvement of HPA axis dysfunction. Metab Brain Dis.
2020;35(8):1385-1394. doi:10.1007/s11011-020-00613-3
18. Esmaeili MH,
Bahari B, Salari AA. ATP-sensitive potassium-channel inhibitor
glibenclamide attenuates HPA axis hyperactivity, depression- and
anxiety-related symptoms in a rat model of Alzheimer’s disease.Brain Res Bull. 2018;137:265-276.
doi:10.1016/j.brainresbull.2018.01.001
19. Pietrzak RH, Laws
SM, Lim YY, et al. Plasma Cortisol, Brain Amyloid-β, and Cognitive
Decline in Preclinical Alzheimer’s Disease: A 6-Year Prospective Cohort
Study. Biol Psychiatry Cogn Neurosci Neuroimaging.
2017;2(1):45-52. doi:10.1016/j.bpsc.2016.08.006
20. Bisht K, Sharma K,
Tremblay MÈ. Chronic stress as a risk factor for Alzheimer’s disease:
Roles of microglia-mediated synaptic remodeling, inflammation, and
oxidative stress. Neurobiol Stress. 2018;9:9-21.
doi:10.1016/j.ynstr.2018.05.003
21. Qin Z, Shi DD, Li
W, et al. Berberine ameliorates depression-like behaviors in mice via
inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing
neuroplasticity disruption. J Neuroinflammation. 2023;20(1):54.
doi:10.1186/s12974-023-02744-7
22. Li JM, Hu T, Zhou
XN, et al. The involvement of NLRP3 inflammasome in CUMS-induced AD-like
pathological changes and related cognitive decline in mice. J
Neuroinflammation. 2023;20(1):112. doi:10.1186/s12974-023-02791-0
23. Zhu K, Liang W, Ma
Z, et al. Necroptosis promotes cell-autonomous activation of
proinflammatory cytokine gene expression. Cell Death Dis.
2018;9(5):500. doi:10.1038/s41419-018-0524-y
24. Sharma VK, Singh
TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer’s
Disease: The Potential Targets and Approaches. Neurochem Res.
2022;47(6):1459-1476. doi:10.1007/s11064-022-03546-8
25. Rummel NG,
Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of
Oxidative Stress. Antioxid Redox Signal.
2022;36(16-18):1289-1305. doi:10.1089/ars.2021.0177
26. Emoto MC,
Sato-Akaba H, Hamaue N, et al. Early detection of redox imbalance in the
APPswe/PS1dE9 mouse model of Alzheimer’s disease by in vivo electron
paramagnetic resonance imaging. Free Radic Biol Med.
2021;172:9-18. doi:10.1016/j.freeradbiomed.2021.05.035
27. Zhang Y, Kiryu H.
Identification of oxidative stress-related genes differentially
expressed in Alzheimer’s disease and construction of a hub gene-based
diagnostic model. Sci Rep. 2023;13(1):6817.
doi:10.1038/s41598-023-34021-1
28. Tucci P, Bove M,
Sikora V, et al. Glucoraphanin Triggers Rapid Antidepressant Responses
in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour.Pharmaceuticals. 2022;15(9):1054. doi:10.3390/ph15091054
29. Sharma VK, Singh
TG, Mehta V. Stressed mitochondria: A target to intrude alzheimer’s
disease. Mitochondrion. 2021;59:48-57.
doi:10.1016/j.mito.2021.04.004
30. Esteras N, Kopach
O, Maiolino M, et al. Mitochondrial ROS control neuronal excitability
and cell fate in frontotemporal dementia. Alzheimers Dement.
2022;18(2):318-338. doi:10.1002/alz.12394
31. Jekabsone A,
Jankeviciute S, Pampuscenko K, Borutaite V, Morkuniene R. The Role of
Intracellular Ca2+ and Mitochondrial ROS in Small Aβ1-42
Oligomer-Induced Microglial Death. Int J Mol Sci.
2023;24(15):12315. doi:10.3390/ijms241512315
32. Blennow K,
Zetterberg H. The Past and the Future of Alzheimer’s Disease Fluid
Biomarkers. Perry G, Avila J, Tabaton M, Zhu X, eds. J Alzheimers
Dis. 2018;62(3):1125-1140. doi:10.3233/JAD-170773
33. Shankar GM, Li S,
Mehta TH, et al. Amyloid-β protein dimers isolated directly from
Alzheimer’s brains impair synaptic plasticity and memory. Nat
Med. 2008;14(8):837-842. doi:10.1038/nm1782
34. Moreno-Castilla P,
Rodriguez-Duran LF, Guzman-Ramos K, Barcenas-Femat A, Escobar ML,
Bermudez-Rattoni F. Dopaminergic neurotransmission dysfunction induced
by amyloid-β transforms cortical long-term potentiation into long-term
depression and produces memory impairment. Neurobiol Aging.
2016;41:187-199. doi:10.1016/j.neurobiolaging.2016.02.021
35. Tang X, Drotar J,
Li K, et al. Pharmacological enhancement of KCC2 gene expression
exerts therapeutic effects on human Rett syndrome neurons andMecp2 mutant mice. Sci Transl Med. 2019;11(503):eaau0164.
doi:10.1126/scitranslmed.aau0164
36. Abelaira HM, Réus
GZ, Neotti MV, Quevedo J. The role of mTOR in depression and
antidepressant responses. Life Sci. 2014;101(1-2):10-14.
doi:10.1016/j.lfs.2014.02.014
37. Sun YX, Ji X, Mao
X, et al. Differential Activation of mTOR Complex 1 Signaling in Human
Brain with Mild to Severe Alzheimer’s Disease. J Alzheimers Dis.
2013;38(2):437-444. doi:10.3233/JAD-131124
38. Yang G, Humphrey
SJ, Murashige DS, et al. RagC phosphorylation autoregulates mTOR complex
1. EMBO J. 2019;38(3):e99548. doi:10.15252/embj.201899548
39. Chandran A, Iyo
AH, Jernigan CS, Legutko B, Austin MC, Karolewicz B. Reduced
phosphorylation of the mTOR signaling pathway components in the amygdala
of rats exposed to chronic stress. Prog Neuropsychopharmacol Biol
Psychiatry. 2013;40:240-245. doi:10.1016/j.pnpbp.2012.08.001
40. Tao W, Dong Y, Su
Q, et al. Liquiritigenin reverses depression-like behavior in
unpredictable chronic mild stress-induced mice by regulating
PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res.
2016;308:177-186. doi:10.1016/j.bbr.2016.04.039
41. Prince M, Albanese
E, Guerchet M, Prina M. World Alzheimer Report 2014. Dementia and
Risk Reduction: An Analysis of Protective and Modifiable Risk Factors.Alzheimer’s Disease International; 2014.
42. Saczynski JS,
Beiser A, Seshadri S, Auerbach S, Wolf PA, Au R. Depressive symptoms and
risk of dementia: the Framingham Heart Study. Neurology.
2010;75(1):35-41. doi:10.1212/WNL.0b013e3181e62138
43. Enache D, Winblad
B, Aarsland D. Depression in dementia: epidemiology, mechanisms, and
treatment. Curr Opin Psychiatry. 2011;24(6):461-472.
doi:10.1097/YCO.0b013e32834bb9d4
44. Botto R, Callai N,
Cermelli A, Causarano L, Rainero I. Anxiety and depression in
Alzheimer’s disease: a systematic review of pathogenetic mechanisms and
relation to cognitive decline. Neurol Sci. 2022;43(7):4107-4124.
doi:10.1007/s10072-022-06068-x
45. Snyder EM, Nong Y,
Almeida CG, et al. Regulation of NMDA receptor trafficking by
amyloid-beta. Nat Neurosci. 2005;8(8):1051-1058.
doi:10.1038/nn1503
46. Bartels C, Wagner
M, Wolfsgruber S, Ehrenreich H, Schneider A, for the Alzheimer’s Disease
Neuroimaging Initiative. Impact of SSRI Therapy on Risk of Conversion
From Mild Cognitive Impairment to Alzheimer’s Dementia in Individuals
With Previous Depression. Am J Psychiatry. 2018;175(3):232-241.
doi:10.1176/appi.ajp.2017.17040404
47. Bukke VN, Archana
M, Villani R, et al. The Dual Role of Glutamatergic Neurotransmission in
Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int
J Mol Sci. 2020;21(20):7452. doi:10.3390/ijms21207452
48. Kálmán S, Pákáski
M, Szucs S, et al. [The transcription of the amyloid precursor protein
and tryptophan 2,3-dioxygenase genes are increased by aging in the rat
brain]. Ideggyogyaszati Szle. 2009;62(9-10):326-332.
49. Nyarko JNK,
Quartey MO, Baker GB, Mousseau DD. Can Animal Models Inform on the
Relationship between Depression and Alzheimer Disease? Can J
Psychiatry Rev Can Psychiatr. 2019;64(1):18-29.
doi:10.1177/0706743718772514
50. Wu C, Yang L, Li
Y, et al. Effects of Exercise Training on Anxious-Depressive-like
Behavior in Alzheimer Rat. Med Sci Sports Exerc.
2020;52(7):1456-1469. doi:10.1249/MSS.0000000000002294